
Operators
and

Matrices

Volume 14, Number 4 (2020), 1015–1027 doi:10.7153/oam-2020-14-63

TRACIAL MOMENT PROBLEMS ON HYPERCUBES

CONG TRINH LE

Dedicated to Prof. Ha Huy Vui on the occasion of his 70th birthday

(Communicated by D. R. Farenick)

Abstract. In this paper we introduce the tracial K -moment problem and the sequential matrix-
valued K -moment problem and show the equivalence of the solvability of these problems. Using
a Haviland’s theorem for matrix polynomials, we solve these K -moment problems for the case
where K is the hypercube [−1,1]n .

1. Introduction

Let R[X ]:=R[X1, . . .,Xn] denote the algebra of polynomials in n variables X1, . . . ,Xn

with real coefficients.
For a real-valued linear functional L on R[X ] and a closed subset K ⊆ Rn , the

K -moment problem asks when does there exist a positive Borel measure σ on Rn sup-
ported on K such that

L( f ) =
∫

f (x)dσ(x), ∀ f ∈ R[X ]?

Each functional of this form is called a K -moment functional.
Another kind of K -moment problems for sequences of numbers is stated as fol-

lows. For a multi-index sequence s = (sα )α∈Nn
0
, the K -moment problem for sequences

asks when does there exist a positive Borel measure σ on Rn supported on K such that

sα =
∫

xαdσ(x), ∀α ∈ N
n
0,

where xα = xα1
1 . . .xαn

n . Each sequence of this form is called a K -moment sequence.
For each sequence s = (sα )α∈Nn

0
, the Riesz functional Ls on R[X ] associated to s

is defined by
Ls(xα) = sα ,∀α ∈ N

n
0.
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It is easy to check that s is a K -moment sequence if and only if Ls is a K -moment
functional.

In the case K = R (resp. [0,+∞) , [0,1]), we go back to the Hamburger (resp.
Stieltjes, Hausdorff ) moment problem which was solved completely by many authors
(see, for example, a very excellent book of Schmüdgen [10] on the moment problem).
If K is a compact basic closed semi-algebraic set in R

n , the K -moment problem was
solved by Schmüdgen (1991, [9]).

One of the power tools to solve K -moment problems is the Haviland theorem,
which was proved by E.K. Haviland (1935) and stated as follows.

Given a linear functional L on R[X ] and a closed subset K in Rn . Then L is a
K -moment functional if and only if L( f ) � 0 for all f � 0 on K .

Here the notation f � 0 on K means that f (x) � 0,∀x ∈ K . A similar meaning is
defined for the notation f > 0 on K .

For a fixed integer t > 0, we denote by Mt(R[X ]) the algebra of t × t matrices
with entries in R[X ] , and by St(R[X ]) the subalgebra of symmetric matrices. Each
element A ∈ Mt(R[X ]) is a matrix whose entries are polynomials in R[X ] , which is
called a polynomial matrix. A is also called a matrix polynomial, because it can be
viewed as a polynomial in X1, . . . ,Xn whose coefficients come from Mt(R) . Namely,
we can write A as

A(X) =
d

∑
|α |=0

AαXα ,

where α = (α1, · · · ,αn) ∈ Nn
0 , |α| := α1 + . . .+ αn , Xα := Xα1

1 . . .Xαn
n , Aα ∈ Mt(R) .

To unify notation, throughout the paper each element of Mt(R[X ]) is called a matrix
polynomial.

Let A(X) =
d

∑
|α |=0

AαXα be a matrix polynomial. Denote

Ad(X) := ∑
|α |=d

AαXα .

If Ad �≡ 0, the matrix polynomial A is called of degree d . In particular, when n = 1

and A(x) =
d

∑
i=0

Aix
i is a univariate matrix polynomial of degree d , the non-zero matrix

Ad is called the leading coefficient of A .
Recently, there are some research on (truncated) non-commutative K -moment

problems, e.g. Dette and Studden (2002, [4]), Burgdorf and Klep (2011, [1]), Burgdorf,
Klep and Povh (2013, [2]), Cimprič and Zalar (2013, [3]), Kimsey and Woerdeman
(2013, [6]), Kimsey (2011, [5]) and the references therein. In particular, in [3], Cimprič
and Zalar proved a version of the Haviland theorem for matrix polynomials, and they
applied this development to solve the matrix-valued moment problem on compact basic
closed semi-algbraic sets.

In the case where K ⊆ Rn is a basic closed semi-algebraic set defined by a subset
G = {g1, . . . ,gm} of R[X ] , almost all solutions of the matrix-valued K -moment prob-
lems are obtained using the positivity of the given linear functional on the quadratic
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module M(G)t in Mt(R[X ]) , where M(G) is the quadratic module in R[X ] generated
by G and

M(G)t = {
r

∑
i=1

miAT
i Ai|r ∈ N,mi ∈ M(G),Ai ∈ Mt(R[X ])}.

The main aim of this paper is to introduce some kinds of K -moment problems
for matrix polynomials and solve these matrix-valued K -moment problems in the case
where K is the hypercube [−1,1]n . The main advantage working on the hypercube
[−1,1]n (and in general, on convex, compact polyhedra with non-empty interior) is
that any matrix polynomial which is positive definite on [−1,1]n can be represented
in terms of positive definite scalar matrices (see Theorem 3.1 for the case n = 1 and
Corollary 4.1.1 for n � 1). Then the solution of the matrix-valued [−1,1]n -moment
problem is obtained based on the positivity of the given linear functional on the cone of
positive definite scalar matrices, which is well described.

The paper is organized as follows. In Section 2 we introduce the definition of the
tracial K -moment problem and the sequential matrix-valued K -moment problem and
establish an equivalence of the solvability of these problems (Proposition 1). Moreover,
we also prove in this section a version of Haviland’s theorem for matrix polynomials
which was proved mainly by Cimprič and Zalar in [3]. Next, in Section 3 we solve the
tracial (resp. sequential matrix-valued) [−1,1]-moment problem, which is established
based on a representation of univariate matrix polynomials positive definite on [−1,1] .
A solution of the tracial (resp. sequential matrix-valued) [0,1]-moment problem is
also given in this section. Finally, in Section 4 we solve the tracial (resp. sequential
matrix-valued) moment problem on the general hypercube [−1,1]n .

NOTATION. For any matrix A ∈ Mt(R[X ]) , the notation A � 0 means A is posi-
tive semidefinite, i.e. for each x ∈ Rn , vT A(x)v � 0 for all v ∈ Rt ; A > 0 means A is
positive definite, i.e. for each x ∈ Rn , vT A(x)v > 0 for all v ∈ Rt \ {0} .

2. Haviland’s theorem for matrix polynomials

2.1. Matrix-valued measures and integrals

In this section we recall some basic notions of the matrix-valued measures and
integrals on a closed subset of Rn , which can be seen from the thesis of Kimsey [5].

Throughout this subsection, let X ⊆ Rn be a non-empty closed set.

DEFINITION 1. Denote by B(X) the smallest σ -algebra generated from the open
(or equivalently closed) subsets of X . A measure σ defined on B(X) is called a Borel
measure. A Borel measure σ on B(X) is called finite if σ(X) < +∞ . Denote by m(X)
the set of all finite measures on X .

A measure σ ∈ m(X) is called positive if σ(E) � 0 for all E ∈ B(X) . The set of
all finite positive Borel measures on X is denoted by m+(X) .

For each σ ∈ m(X) , the support of σ is defined by

supp(σ) := {E ∈ B(X) : |σ |(E) > 0},
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where |σ |(E) := |σ(E)| for all E ∈ B(X) .

DEFINITION 2. Let t be a positive integer. Let σi j ∈m(X) , i, j = 1, . . . ,t . Define
the matrix-valued function E : B(X) −→ Mt(R) by

E(A) := (σi j(A))i, j=1,...,t ∈ Mt(R),∀A ∈ B(X).

The matrix-valued function E defined by this way is called a matrix-valued measure
on X . The set of all matrix-valued measure on X is denoted by M(X) . The set

supp(E) :=
t⋃

i, j=1

supp(σi j)

is called the support of the matrix-valued measure E .
If σi j = σ ji for all i, j = 1, . . . ,t , we say that E is a symmetric measure. In addi-

tion, if for all A ∈ B(X) and for all v ∈ Rt we have vT E(A)v � 0, then E is called a
positive semidefinite matrix-valued measure. The set of all positive semidefinite matrix-
valued measures on X is denoted by M+(X) .

DEFINITION 3. Let E = (σi j) ∈ M(X) . A function f : X → R is called E-
measurable if f is σi j -measurable for every i, j = 1, . . . ,t .

Let E = (σi j) ∈ M(X) and f : X → R be E-measurable. The matrix-valued inte-
gral of f with respect to the matrix measure E is defined by

∫
X

f (x)dE(x) :=
(∫

X
f (x)dσi j(x)

)
i, j=1,...,t

∈ Mt(R).

2.2. Tracial K -moment problems

Let L be a real-valued linear functional on Mt(R[X ]) , where R[X ] := R[X1, . . . ,Xn]
and K ⊆ Rn a closed subset.

DEFINITION 4. (cf. [3]) L is called a tracial K -moment functional if there ex-
ists a positive semidefinite matrix-valued E ∈ M+(Rn) such that

supp(E) ⊆ K and L (F) =
∫

tr(F(x)dE(x)), ∀F ∈ Mt(R[X ]). (2.1)

The matrix-valued measure E ∈ M+(Rn) satisfying (2.1) is called a representing mea-
sure of the tracial K -moment functional L .

PROBLEM 1. Let L be a linear functional on Mt(R[X ]) and K ⊆Rn a closed set.
The tracial K -moment problem asks when does there exist a matrix-valued measure
E ∈ M+(Rn) satisfying the conditions (2.1)?

The following definition of matrix-valued K -moment sequences is learned from
Kimsey in [5].
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DEFINITION 5. Let S = (Sα)α∈Nn
0

be a multi-indexed sequence of symmetric ma-
trices in Mt(R) and K ⊆ R

n a closed subset. The sequence S is called a matrix-valued
K -moment sequence if there exists a positive semidefinite matrix-valued E ∈ M+(Rn)
such that

supp(E) ⊆ K and Sα =
∫

xαdE(x), ∀α ∈ N
n
0, (2.2)

where xα = xα1
1 . . .xαn

n with α = (α1, . . . ,αn) and x = (x1, . . . ,xn) ∈ Rn .
The matrix-valued measure E ∈ M+(Rn) satisfying (2.2) is called a representing

measure of the matrix-valued K -moment sequence S .

PROBLEM 2. Let S = (Sα)α∈Nn
0

be a multi-indexed sequence of symmetric ma-
trices in Mt(R) and K ⊆ R

n a closed set. The sequential matrix-valued K -moment
problem asks when does there exist a matrix-valued measure E ∈ M+(Rn) satisfying
the conditions (2.2)?

For each matrix-valued sequence S = (Sα)α∈Nn
0
, let us consider the real-valued

function LS on Mt(R[X ]) defined as follows. For each F(X)=
d

∑
|α |=0

FαXα ∈Mt(R[X ]) ,

define

LS(F) :=
d

∑
|α |=0

tr(FαSα).

It is easy to check that LS is linear, which is called the Riesz functional associated to
the sequence S .

PROPOSITION 1. Let S = (Sα)α∈Nn
0

be a sequence of symmetric matrices in Mt(R)
and K ⊆ Rn a closed set. Then S is a matrix-valued K -moment sequence if and only
if LS is a tracial K -moment functional.

Proof. Assume that S is a matrix-valued K -moment sequence. Then there exists
a matrix-valued measure E in M+(Rn) supported in K and

Sα =
∫

xαdE(x), ∀α ∈ N
n
0.

Then, for each F(X) =
d

∑
|α |=0

FαXα ∈ Mt(R[X ]) , by definition of LS , we have

LS(F) = ∑
α

tr(FαSα) = ∑
α

tr
(∫

xαFαdE(x)
)

=
∫

tr
(
∑
α

FαxαdE(x)
)

=
∫

tr(F(x)dE(x)).

This implies that LS is a tracial K -moment functional.
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Conversely, assume that E is a matrix-valued measure in M+(Rn) satisfying

supp(E) ⊆ K and LS(F) =
∫

tr(F(x)dE(x)), ∀F ∈ Mt(R[X ]).

In particular, for each coordinate matrix Wk,l of the algebra Mt(R) and each α ∈ Nn
0 ,

we have
LS(XαWk,l) =

∫
xα tr(Wk,ldE(x)) =

∫
xαdEl,k.

Here we use the fact that for each k, l = 1, . . . ,t and for each matrix A = (Ai, j)i, j ∈
Mt(R) , we have

tr(Wk,lA) = Al,k.

On the other hand, by definition of the associated Riesz functional, we have

LS(XαWk,l) = tr(Wk,lSα) = (Sα)l,k.

It follows that

ST
α =

(
(Sα)l,k

)
k,l =

(∫
xαdEl,k(x)

)
k,l

=
(∫

xαdE(x)
)T

.

Equivalently, Sα =
∫

xαdE(x) , i.e. S is a matrix-valued K -moment sequence. �

2.3. Haviland’s theorem for matrix polynomials

THEOREM 2.1. Let L be a real-valued linear functional on Mt(R[X ]) and K ⊆
Rn a closed set. Then the following are equivalent.

(1) L is a tracial K -moment functional, i.e. there exists a positive semi-definite
matrix-valued measure E on Rn whose support is contained in K such that

L (F) =
∫

tr(FdE).

(2) L (F) � 0 for all F � 0 on K .

(3) L (F+ εI) � 0 for all F � 0 on K and for all ε > 0 .

(4) L (F) � 0 for all F > 0 on K .

Proof. The equivalence of (1) and (2) was proved by Cimprič and Zalar [3, Theo-
rem 3 and Remark 5].

Assume that (2) is satisfied. Then L (I) � 0, since I � 0 on K . It follows (3) by
the linearity of L on Mt(R[X ]) .

Now we check (3) ⇒ (2) . Take F � 0 on K . Consider ε =
1
n

for n ∈ N . Then

by the assumption of (3),

0 � L
(
F+

1
n
I
)

= L (F)+
1
n
L (I),
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where L (I) � 0 by hypothesis. Letting n → +∞ , we get L (F) � 0, i.e. we have (2).
It is obvious that (2) ⇒ (4) . Now we verify (4) ⇒ (3) . Take F � 0 on K and

ε > 0. Then F+ εI > 0 on K . Hence by the assumption we have L (F+ εI) � 0, i.e.
we have (3). The proof is complete. �

3. Tracial moment problems on the intervals [−1,1] and [0,1]

Firstly we propose a version of the Bernstein theorem (cf. [10, Prop. 3.4]) for
matrix polynomials, representing a matrix polynomial positive definite on the interval
[−1,1] . This is a special case of the Handelman’s Positivstellensatz for matrix polyno-
mials established in [7], but the proof given here is special for the case of one-variable
matrix polynomials.

THEOREM 3.1. Let F ∈ Mt(R[x]) be a matrix polynomial of degree d > 0 . As-
sume F(x) > 0 for all x ∈ [−1,1] . Then there exists a positive number N ∈ N and
positive definite matrices Gi, i = 1, . . . ,N +d such that

F(x) =
N+d

∑
i=0

Gi(1+ x)i(1− x)N+d−i.

The main idea of the proof is learned from the proof [10, Prop. 3.4] for poly-
nomials, using the Goursat transform and the Pólya theorem for homogeneous matrix
polynomials established in [8].

Let F be as in Theorem 3.1. The Goursat transform of F is defined by

F̃(x) := (1+ x)dF
(1− x

1+ x

)
.

LEMMA 3.1.1. deg(F̃) = d , F̃d > 0 , and F̃(t) > 0 for all t ∈ [0,+∞) , where F̃d

denotes the leading coefficient of the matrix polynomial F̃ .

Proof. Let F(x) = ∑d
i=0 Fixi , with Fd �≡ 0. Then we can write F̃ as

F̃(x) =
d

∑
i=0

Fi(1− x)i(1+ x)d−i.

The leading coefficient of F̃ is

F̃d :=
d

∑
i=0

(−1)iFi = F(−1)

which is positive definite by the assumption of F .

For every t ∈ [0,+∞) , x :=
1− t
1+ t

∈ (−1,1] . Observe that t =
1− x
1+ x

, and hence

F̃(t) = (1+ t)dF(x).

It follows from the assumption of F that F̃(t) > 0. �
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LEMMA 3.1.2. Let G ∈ Mt(R[x]) be a matrix polynomial of degree d with a
positive definite leading coefficient Gd . If G(x) > 0 for all x ∈ [0,+∞) then there
exists a positive integer N and positive definite matrices Hi , i = 0, . . . ,N +d such that

(1+ x)NG(x) =
N+d

∑
i=0

Hix
i.

Proof. Assume G(x) = ∑d
i=0 Gixi . Denote by Δ the standard simplex in R2

Δ = {(x,y) ∈ R
2|x � 0,y � 0,x+ y � 1}.

Let Gh(x,y) ∈Mt(R[x,y]) be the homogenization of G with respect to the new variable
y , defined by

Gh(x,y) :=
d

∑
i=0

Gix
iyd−i.

For any (x,y) ∈ Δ , if y = 0, we have x = 1, then

Gh(1,0) = Gd > 0.

If y > 0, we have

Gh(x,y) = ydG
(x

y

)
> 0,

since
x
y
∈ [0,+∞) . In summary, we have Gh(x,y) > 0 for all (x,y) ∈ Δ .

It follows from the Pólya theorem for homogeneous matrix polynomials proved
by Scherer and Hol [8, Theorem 3] that there exist a positive integer N and positive
definite matrices Gk,l, with k, l ∈ N0 , k+ l = 0, . . . ,N +d such that

(x+ y)NGh(x,y) = ∑
k+l=N+d

Gk,lx
kyl. (3.1)

Substituting y = 1 in both sides of the expression (3.1), observing that Gh(x,1) = G(x) ,
we get

(1+ x)NG(x) = ∑
k+l=N+d

Gk,lx
k =

N+d

∑
k=0

Gk,N+d−kx
k.

For each k = 0, . . . ,N + d , the matrices Hk := Gk,N+d−k satisfy conclusion of the
lemma. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let F satisfy the hypothesis of the theorem. It follows from
Lemma 3.1.1 that the Goursat transform F̃ satisfy the following properties

• deg(F̃) = d ;

• F̃d > 0;
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• F̃(t) > 0 for all t ∈ [0,+∞) .

Ir follows from Lemma 3.1.2 that there exist a positive integer N and positive definite
matrices Hi, i = 0, . . . ,N +d such that

(1+ t)NF̃(t) =
N+d

∑
i=0

Hit
i, ∀t ∈ [0,+∞). (3.2)

For any x ∈ (−1,1] , there exists a unique t ∈ [0,+∞) such that x =
1− t
1+ t

. Then

t =
1− x
1+ x

, (1+ t)−1 =
1+ x

2
, and F̃(t) = (1+ t)dF(x).

Substituting into (3.2), we get

(1+ t)N(1+ t)dF(x) =
N+d

∑
i=0

Hi

(1− x
1+ x

)i
.

It follows that

F(x) = (1+ t)−N+d
N+d

∑
i=0

Hi

(1− x
1+ x

)i

=
1

2N+d (1+ x)N+d
N+d

∑
i=0

Hi

(1− x
1+ x

)i

=
N+d

∑
i=0

( 1
2N+d Hi

)
(1− x)i(1+ x)N+d−i.

Hence the matrices Gi :=
1

2N+d
Hi , i = 0, . . . ,N +d , satisfy the conclusion of the the-

orem. �

It follows from the Haviland theorem for matrix polynomials (Theorem 2.1) and
Theorem 3.1 the following solution of the tracial [−1,1]-moment problem.

COROLLARY 3.1.1. Let L be a real-valued linear functional on Mt(R[x]) . Then
the following are equivalent.

(1) L is a tracial [−1,1]-moment functional.

(2) L ((1+x)k(1−x)lG) � 0 for all positive definite matrices G∈Mt(R) and k, l ∈
N0 .

Proof. If (1) holds, for each G positive definite and k, l ∈ N0 , since (1+ x)k(1−
x)lG � 0 on [−1,1] , it follows from Theorem 2.1, (1) ⇒ (2) , that L ((1 + x)k(1−
x)lG) � 0. Hence we have (1) ⇒ (2) .
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Conversely, assume (2) holds. Then for each F ∈ St(R[x]) of degree d , F > 0 on
[−1,1] , it follows from Theorem 3.1 that

F(x) =
N+d

∑
i=0

Gi(1+ x)i(1− x)N+d−i

for some N > 0 and Gi > 0 for all i = 0, . . . ,N +d . Then

L (F) =
N+d

∑
i=0

L (Gi(1+ x)i(1− x)N+d−i) � 0.

It follows from Theorem 2.1, (4)⇒ (1) , that L is a tracial [−1,1]-moment functional,
i.e. (2) ⇒ (1) . The proof is complete. �

As a consequence of this result, we obtain the following solution of the tracial
[0,1]-moment problem, which was also solved by Cimprič and Zalar [3, Coro. 1],
using sums of Hermitian squares.

COROLLARY 3.1.2. Let L be a real-valued linear functional on Mt(R[x]) . Then
the following are equivalent.

(1) L is a tracial [0,1]-moment functional.

(2) L (xk(1− x)lG) � 0 for all positive definite matrices G ∈ Mt(R) and k, l ∈ N0 .

Proof. Observe that there is a bijection from the interval [−1,1] onto the interval
[0,1] given by

x 	→ x+1
2

,∀x ∈ [−1,1].

Using this bijection, it follows from Theorem 3.1 that for F ∈ St(R[x]) of degree d , if
F > 0 on [0,1] then

F(x) =
N+d

∑
i=0

Gix
i(1− x)N+d−i

for some N > 0 and Gi > 0 for all i = 0, . . . ,N +d . Then the result follows from this
representation and Theorem 2.1. �

For the sequential matrix-valued [−1,1]-problem, we have the following solution.

COROLLARY 3.1.3. Let S = (Si)i∈N0 be a sequence of symmetric matrices in
Mt(R) . Then S is a matrix-valued [−1,1]-moment sequence if and only if

k

∑
i=0

l

∑
j=0

(−1) j
(

k
i

)(
l
j

)
tr(GSi+ j) � 0

for all positive definite matrices G ∈ Mt(R) and k, l ∈ N0 .
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Proof. Let LS be the Riesz functional on Mt(R[x]) associated to the sequence S .
For each G ∈ St(R[x]) , G > 0, and k, l ∈ N0 , we have

LS
(
(1+ x)k(1− x)lG

)
= LS

( k

∑
i=0

l

∑
j=0

(−1) j
(

k
i

)(
l
j

)
xi+ jG

)

=
k

∑
i=0

l

∑
j=0

(−1) j
(

k
i

)(
l
j

)
LS(xi+ jG)

=
k

∑
i=0

l

∑
j=0

(−1) j
(

k
i

)(
l
j

)
tr(GSi+ j).

By Proposition 1, S is a matrix-valued [−1,1]-moment sequence if and only if LS is a
tracial [−1,1]-moment functional. It follows from Corollary 3.1.1 that this is equivalent
to LS

(
(1+ x)k(1− x)lG

)
� 0 for all positive definite matrices G ∈ Mt(R) and k, l ∈

N0 . This implies the result. �
Similarly, using Corollary 3.1.2, we have the following solution of the sequential

matrix-valued [0,1]-moment problem.

COROLLARY 3.1.4. Let S = (Si)i∈N0 be a sequence of symmetric matrices in
Mt(R) . Then S is a matrix-valued [0,1]-moment sequence if and only if

k

∑
i=0

(−1)i
(

k
i

)
tr(GSi+l) � 0

for all positive definite matrices G ∈ Mt(R) and k, l ∈ N0 .

4. Tracial moment problems on the hypercube [−1,1]n

In this section we consider a convex, compact polyhedron K ⊆Rn with non-empty
interior. Assume that K is the basic closed semi-algebraic set defined by linear polyno-
mials L1, . . . ,Lm ∈ R[X ] := R[X1, . . . ,Xn] , i.e.

K = {x ∈ R
n|L1(x) � 0, . . . ,Lm(x) � 0}.

The following version of Handelman’s Positivstellensatz for matrix polynomials was
proved by the author in [7].

THEOREM 4.1. Let F ∈ St(R[X ]) be a matrix polynomial of degree d > 0 . If
F(x) > 0 for all x ∈ K , then there exist a positive integer N and positive definite ma-
trices Gα ∈ Mt(R) , α ∈ Nm

0 , |α| = 0, . . . ,N +d , such that

F(X) =
N+d

∑
|α |=0

GαLα1
1 . . .Lαm

m .
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Applying Theorem 4.1 for the linear polynomials

l1 = 1+X1, l2 = 1−X1, . . . , l2n−1 = 1+Xn, l2n = 1−Xn

we obtain the following representation for matrix polynomials positive definite on the
hypercube [−1,1]n .

COROLLARY 4.1.1. Let F∈ St(R[X ]) be a matrix polynomial of degree d > 0 . If
F(x) > 0 for all x ∈ [−1,1]n , then there exist a positive integer N and positive definite
matrices Gα ∈ Mt(R) , α ∈ N2n

0 , |α| = 0, . . . ,N +d , such that

F(X) =
N+d

∑
|α |=0

Gα lα1
1 lα2

2 . . . lα2n−1
2n−1 lα2n

2n .

Now, applying the Haviland theorem for matrix polynomials (Theorem 2.1) and
Corollary 4.1.1 we obtain the following solution of the tracial [−1,1]n -moment prob-
lem.

COROLLARY 4.1.2. Let L be a real-valued linear functional on Mt(R[X ]) . Then
the following are equivalent.

(1) L is a tracial [−1,1]n -moment functional.

(2) L (lα1
1 lα2

2 . . . lα2n−1
2n−1 lα2n

2n G) � 0 for all positive definite matrices G ∈ Mt(R) and
α = (α1, . . . ,α2n) ∈ N2n

0 .

Observe that the solution of the tracial K -moment problem, where K is a convex,
compact polyhedron in Rn with non-empty interior, can be solved by the same way,
using the linear polynomial Li instead of l j in Corollary 4.1.2.

Finally, applying Proposition 1 and Corollary 4.1.2 we obtain the following solu-
tion of the sequential matrix-valued [−1,1]n -moment problem.

COROLLARY 4.1.3. Let S = (Sα)α∈Nn
0

be a sequence of symmetric matrices in
Mt(R) . Then S is a matrix-valued [−1,1]n -moment sequence if and only if

∑
β∈N2n

0 ,β�α
(−1)e(α)

(
α
β

)
tr(GSβ ) � 0

for all positive definite matrices G ∈ Mt(R) and α ∈ N2n
0 .

Here, for α = (α1, . . . ,α2n) and β = (β1, . . . ,β2n) , β � α means βi � αi for all

i = 1, . . . ,2n;
(α

β
)

:=
(α1

β1

)
. . .

(α2n
β2n

)
; and e(α) :=

n

∑
i=1

α2i .

Proof. The proof is similar to that of Corollary 3.1.3, using Proposition 1, Corol-
lary 4.1.2 and the identity

(1+X1)α1(1−X1)α2 . . .(1+Xn)α2n−1(1−Xn)α2n = ∑
β∈N2n

0 ,β�α
(−1)e(α)

(
α
β

)
Xβ ,
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where α = (α1, . . . ,α2n) . �
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[7] C.-T. LÊ, T. H. B. DU, Handelman’s Positivstellensatz for polynomial matrices positive definite on
polyhedra, Positivity 22 (3) (2018), 449–460.

[8] C. W. SCHERER, C. W. J. HOL, Matrix sum-of-squares relaxations for robust semi-definite programs,
Math. Program. 107 no. 1–2, Ser. B (2006), 189–211.
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