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GROUP INVERSE OF FINITE POTENT ENDOMORPHISMS

ON ARBITRARY VECTOR SPACES

FERNANDO PABLOS ROMO

(Communicated by I. M. Spitkovsky)

Abstract. The aim of this work is to introduce the group inverse of a finite potent endomorphism
on an infinite-dimensional vector space that generalizes the notion of group inverse of a square
finite matrix. The existence and uniqueness of this inverse is proved, several properties are
offered and the relations with Drazin inverse, CMP inverse and DMP inverses are studied.

1. Introduction

For an arbitrary (n×n)-matrix A with entries in the complex numbers, the index
of A , i(A) � 0, is the smallest integer such that rk(Ai(A)) = rk(Ai(A)+1) .

It is known that, given a matrix A ∈ Matn×n(k) , the system of equations

AXA = A

XAX = X

AX = XA

has a solution if and only if i(A) � 1 and the solution is unique. This solution is the
“group inverse” of A and is denoted A# and satisfies several properties (Subsection
2.5).

This notion can be immediately extended to endomorphisms of finite-dimensional
vector spaces over C . Thus, given a finite-dimensional C-vector space E , an endo-
morphism f ∈ EndC E has index i( f ) � 1 (Im f 2 = Im f ) if and only if there exists
an endomorphism f # ∈ EndC E such that:

f ◦ f # ◦ f = f ;

f # ◦ f ◦ f # = f # ;

f # ◦ f = f ◦ f # .

The endomorphism f # is the “group inverse” of f .
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If V is an infinite-dimensional vector space over an arbitrary ground field k ,
an endomorphism ϕ ∈ Endk(V ) is “finite potent” when there exists n ∈ N such that
dimk ϕn < ∞ . The index of a finite potent endomorphism ϕ is the smaller n ∈ N such
that dimk Imϕn = dimk Imϕn+1 < ∞ .

The aim of this work is to give an affirmative answer to the following question:
is it possible to extend the notion of group inverse to finite potent endomorphisms on
infinite-dimensional vector spaces such that ϕ# exists if and only if i(ϕ) � 1?.

Given an arbitrary k -vector space V , we prove the existence and uniqueness of
the group inverse ϕ# of a finite potent endomorphism ϕ ∈ Endk(V ) with i(ϕ) � 1.
Moreover, several properties of ϕ# are offered and its relations with Drazin inverse,
CMP inverse and DMP inverses are studied.

In particular, for every matrix A ∈ Matn×n(C) , from the statement of this paper,
we deduce that:

• A is EP ⇐⇒ Ac† = A# ;

• A# = Ad,† if and only if N(A†) ⊆ N(AD) ;

• A# = A†,d if and only if R(A) ⊆ R(A∗) ;

where Ac† is the CMP inverse of A , Ad,† and A†,d are the DMP inverses of A and AD

is the Drazin inverse of A .
The paper is organized as follows. In section 2 we recall the basic definitions of

this work and a summary of the statements of the articles [2], [8] and [10].
Section 3 contains the main results of this work: in Subsection 3.1 we study the

Drazin inverse of two commuting linear maps; the goal of Subsection 3.2 is to prove
the existence and uniqueness of the group inverse of a finite potent endomorphism
(Theorem 3.5) and to show several properties of this inverse; Subsection 3.3 is devoted
to offer new results on EP finite potent endomorphisms and, finally, in Subsection 3.4
we obtain the relations between the group inverse and the DMP inverses of finite potent
endomorphisms.

Finally, bearing in mind the relationship that exists between linear maps and matri-
ces, we wish to remark that the results of this work are valid for some infinite matrices
(associated with finite potent endomorphisms).

2. Preliminaries

This section is added for the sake of completeness.

2.1. Finite potent endomorphisms

Let k be an arbitrary field, and let V be a k -vector space.
Let us now consider an endomorphism ϕ of V . We say that ϕ is “finite potent” if

ϕnV is finite dimensional for some n . This definition was introduced by J. Tate in [11]
as a basic tool for his elegant definition of Abstract Residues.
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In 2007 M. Argerami, F. Szechtman and R. Tifenbach showed in [1] that an endo-
morphism ϕ is finite potent if and only if V admits a ϕ -invariant decomposition V =
Uϕ ⊕Wϕ such that ϕ|Uϕ

is nilpotent, Wϕ is finite dimensional, and ϕ|Wϕ
: Wϕ

∼−→Wϕ
is an isomorphism.

Indeed, if k[x] is the algebra of polynomials in the variable x with coefficients in
k , we may view V as an k[x]-module via ϕ , and the explicit definition of the above
ϕ -invariant subspaces of V is:

• Uϕ = {v ∈V such that xmv = 0 for some m } .

• Wϕ = {v ∈V such that p(x)v = 0 for some p(x) ∈ k[x] relative prime to x} .

Note that if the annihilator polynomial of ϕ is xm · p(x) with (x, p(x)) = 1, then
Uϕ = Kerϕm and Wϕ = Ker p(ϕ) .

Hence, this decomposition is unique. We shall call this decomposition the ϕ -
invariant AST-decomposition of V .

Moreover, we shall call “index of ϕ ”, i(ϕ) , to the nilpotent order of ϕ|Uϕ
, which

coincides with the smaller n ∈ N such that Imϕn = Wϕ . One has that i(ϕ) = 0 if and
only if V is a finite-dimensional vector space and ϕ is an automorphism.

For a finite potent endomorphism ϕ , a trace TrV (ϕ)∈ k may be defined as TrV (ϕ)
= TrWϕ (ϕ|Wϕ

) . Furthermore, a determinant for every finite potent endomorphism is
defined as follows:

detkV (1+ ϕ) := detkWϕ (1+ ϕ|Wϕ
) .

2.2. Drazin inverse of finite potent endomorphisms

Let V be an arbitrary k -vector space, and let ϕ ∈ Endk(V ) be a finite potent
endomorphism of V . Let us consider the AST-decomposition V = Uϕ ⊕Wϕ induced
by ϕ .

For each finite potent endomorphism ϕ there exists a unique finite potent endo-
morphism ϕD that satisfies:

1. ϕk+1 ◦ϕD = ϕk ;

2. ϕD ◦ϕ ◦ϕD = ϕD ;

3. ϕD ◦ϕ = ϕ ◦ϕD ;

where k is the index of ϕ .
The map ϕD is the Drazin inverse of ϕ and is the unique linear map such that:

ϕD(v) =

{
(ϕ|Wϕ

)−1(v) if v ∈Wϕ

0 if v ∈Uϕ
.

Moreover, ϕD satisfies the following properties:

• (ϕD)D = ϕ if and only if the i(ϕ) � 1;
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• ϕ = ϕD if and only if ϕ|Uϕ
= 0 and (ϕ|Wϕ

)2 = Id|Wϕ
;

• TrV (ϕ + ϕD) = TrV (ϕ)+TrV (ϕD) ;

• If ψ is a projection finite potent endomorphism, then ψD = ψ .

2.3. CN decomposition of a finite potent endomorphism

Given a finite potent endomorphism ϕ ∈ Endk(V ) , there exists a unique decompo-
sition ϕ = ϕ1+ϕ2 , where ϕ1,ϕ2 ∈Endk(V ) are finite potent endomorphisms satisfying
that:

• i(ϕ1) � 1;

• ϕ2 is nilpotent;

• ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 = 0.

According to [8, Theorem 3.2], if ϕD is the Drazin inverse of ϕ , one has that
ϕ1 = ϕ ◦ϕD ◦ϕ is the core part of ϕ . Also, ϕ2 is named the nilpotent part of ϕ .

Moreover, one has that

ϕ = ϕ1 ⇐⇒Uϕ = Kerϕ ⇐⇒Wϕ = Im ϕ ⇐⇒ (ϕD)D = ϕ ⇐⇒ i(ϕ) � 1 . (2.1)

2.4. Moore-Penrose inverse of a linear map over arbitrary vector spaces

2.4.1. Moore-Penrose inverse of an (n×m)-matrix

Let C be the field. Given a matrix A ∈ Matn×m(C) , the Moore-Penrose inverse of
A is a matrix A† ∈ Matm×n(C) such that:

• AA† A = A ;

• A† AA† = A† ;

• (AA†)∗ = AA† ;

• (A† A)∗ = A† A ;

B∗ being the conjugate transpose of the matrix B .
The Moore-Penrose inverse of A always exists, it is unique, [A†]† = A , and, if

A ∈ Cn×n is non-singular, then the Moore-Penrose inverse of A coincides with the
inverse matrix A−1 .

For details, readers are referred to [3].
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2.4.2. Moore-Penrose inverse of a linear map over arbitrary vector spaces

Let (V,g) and (W, g) be inner product vector spaces over k , with k = C or k = R .
Given a linear map f : V →W , a linear map f + : W →V is a reflexive generalized

inverse of f when

• f ◦ f + ◦ f = f ;

• f + ◦ f ◦ f + = f + .

DEFINITION 2.1. Given a linear map f : V →W , we say that f is admissible for
the Moore-Penrose inverse when V = Ker f ⊕ [Ker f ]⊥ and W = Im f ⊕ [Im f ]⊥ .

If (V,g) and (W, g) are inner product spaces over k and f : V → W is a linear
map admissible for the Moore-Penrose inverse, according to [2, Theorem 3.11] there
exists a unique linear map f † : W →V such that:

1. f † is a reflexive generalized inverse of f ;

2. f † ◦ f and f ◦ f † are self-adjoint, that is:

• g([ f † ◦ f ](v),v′) = g(v, [ f † ◦ f ](v′)) ;

• g([ f ◦ f †](w),w′) = g(w, [ f ◦ f †](w′)) ;

for all v,v′ ∈ V and w,w′ ∈W . The operator f † is named the Moore-Penrose inverse
of f and it is the unique linear map satisfying that

f †(w) =

{
( f|[Ker f ]⊥

)−1(w) if w ∈ Im f

0 if w ∈ [Im f ]⊥
.

The Moore-Penrose inverse f † : W →V also satisfies the following properties:

• f † is admissible for the Moore-Penrose inverse and ( f †)† = f ;

• If f ∈ Endk(V ) and f is an isomorphism, then f † = f−1 ;

• f † ◦ f = P[ker f ]⊥ ;

• f ◦ f † = PIm f ;

where P[ker f ]⊥ and PIm f are the projections induced by the decompositions V = Ker f ⊕
[Ker f ]⊥ and W = Im f ⊕ [Im f ]⊥ respectively.

For details on this Moore-Penrose inverse readers are referred to [2].
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2.5. Group inverse of a finite matrix

Given a matrix A ∈ Matn×n(k) , the system of equations

AXA = A

XAX = X

AX = XA

has a solution if and only if i(A) � 1 and the solution is unique. This solution is the
“group inverse” of A and is denoted A# .

If A ∈ Matn×n(k) with i(A) � 1, then the group inverse A# satisfies the following
properties:

• If A is nonsingular, then A# = A−1 .

• (A#)# .

• (At)# = (A#)t , where At is the transpose of A .

• If n ∈ Z
+ , then (An)# = (A#)n .

• A is EP if and only if A# = A† .

3. Group inverse of a finite potent endomorphism

In this final section we shall characterize the conditions under which the group
inverse of a finite potent endomorphism exits. Moreover, we shall offer the explicit
expression of this linear map and we shall study its properties.

3.1. Commuting finite potent endomorphisms

Similar to above, if ϕ ∈ Endk(V ) is finite potent, we denote ϕ = ϕ1 + ϕ2 to the
core-nilpotent decomposition of ϕ , where ϕ1 is the core part and ϕ2 is the nilpotent
part.

LEMMA 3.1. Let ψ ,ϕ ∈ Endk(V ) , where ϕ is finite potent and ψ ◦ϕ = ϕ ◦ψ . If
V = Uϕ ⊕Wϕ is the AST ϕ -invariant decomposition of V , then:

1. Uϕ and Wϕ are ψ -invariant;

2. ϕD ◦ψ = ψ ◦ϕD ;

ϕD being the Drazin inverse of ϕ .
Moreover, if ψ is finite potent, then

ϕD ◦ψD = ψD ◦ϕD .
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Proof. Let us assume that Im ϕn = Wϕ . If u ∈Uϕ , one has that

ϕn(ψ(u)) = ψ(ϕn(u)) = ψ(0) = 0

and ψ(u) ∈Uϕ .
Moreover, if w ∈Wϕ , writing ϕn(w′) = w with w′ ∈Wϕ , then

ψ(w) = ψ(ϕn(w′)) = ϕn(ψ(w′)) ∈Wϕ .

Hence, the first assertion is proved and, bearing in mind that

ϕD(v) =

{
0 if v ∈Uϕ

(ϕ|Wϕ
)−1(v) if v ∈Wϕ

,

the second statement is also deduced. �

A direct consequence of Lemma 3.1 is

COROLLARY 3.2. If ψ ,ϕ ∈ Endk(V ) , ϕ is finite potent, ψ ◦ϕ = ϕ ◦ψ and ϕ =
ϕ1 + ϕ2 is the core-nilpotent decomposition of ϕ , then

• ϕ1 ◦ψ = ψ ◦ϕ1 ;

• ϕ2 ◦ψ = ψ ◦ϕ2 .

3.2. Group inverse of a finite potent endomorphism

Let ϕ ∈ Endk(V ) be again a finite potent endomorphism on an arbitrary k -vector
space V .

DEFINITION 3.3. We say that a linear map ϕ# ∈ Endk(V ) is a group inverse of ϕ
when it satisfies the following properties:

• ϕ ◦ϕ# ◦ϕ = ϕ ;

• ϕ# ◦ϕ ◦ϕ# = ϕ# ;

• ϕ# ◦ϕ = ϕ ◦ϕ# .

Thus, a group inverse ϕ# is a reflexive generalized inverse of ϕ that commutes
with it.

LEMMA 3.4. Given a finite potent endomorphism ϕ ∈ Endk(V ) , if there exists a
group inverse ϕ# ∈ Endk(V ) , then i(ϕ) � 1 .
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Proof. Let V = Uϕ ⊕Wϕ be the AST decomposition of V induced by ϕ and let
us assume that i(ϕ) = s . If u ∈Uϕ and a group inverse ϕ# ∈ Endk(V ) exists, bearing
in mind that

ϕ ◦ϕ# ◦ϕ = ϕ and ϕ# ◦ϕ = ϕ ◦ϕ# ,

one has that ϕ = (ϕ#)n−1 ◦ϕn for every n ∈ N , and then

ϕ(u) = [(ϕ#)s−1 ◦ϕs](u) = 0 ,

because (ϕs)|Uϕ
= 0.

Hence, Kerϕ = Uϕ and we conclude that i(ϕ) � 1. �

THEOREM 3.5. If ϕ ∈ Endk(V ) is a finite potent endomorphism with i(ϕ) � 1 ,
then ϕD = ϕ# is the unique group inverse of ϕ , where ϕD is its Drazin inverse.

Proof. Since i(ϕ) � 1, then ϕ = ϕ1 . Let ϕD be the Drazin inverse of ϕ .
Bearing in mind that ϕD ◦ϕ ◦ϕD = ϕD and ϕD ◦ϕ = ϕ ◦ϕD , it follows from

ϕ1 = ϕ ◦ϕD ◦ϕ

that ϕD is a group inverse of ϕ .
Conversely, let us assume that ϕ# is a group inverse of ϕ and let V = Uϕ ⊕Wϕ

be again the AST decomposition of V induced by ϕ .
Since ϕ#◦ϕ = ϕ ◦ϕ# , one deduces from Lemma 3.1 that Uϕ and Wϕ are invariant

under the action of ϕ# .
Accordingly, if i(ϕ) = s and u ∈Uϕ , it follows from ϕ# ◦ϕ ◦ϕ# = ϕ# that

ϕ#(u) = [(ϕ#)s+1 ◦ϕs](u) = 0 .

Moreover, since ϕ|Wϕ
∈ Autk(Wϕ) , one has that

(ϕ ◦ϕ# ◦ϕ)(w) = ϕ(w) for all w ∈Wϕ ⇐⇒
(ϕ ◦ϕ#)|Wϕ

= Id|Wϕ
⇐⇒

(ϕ#)|Wϕ
= (ϕ|Wϕ

)−1 .

Hence, ϕ# = ϕD and the statement is proved. �

EXAMPLE 1. Let V be a vector space of countable dimension over k . Let {v1,v2,
v3, . . .} be a basis of V indexed by the natural numbers. If (xi)i∈N ∈ ⊕

i∈N

k , since xi = 0

for all but finitely many i∈ N , we shall write x = (xi) to denote the well-defined vector

x = ∑
i∈N

xi · vi ∈V .
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If we consider the finite potent endomorphism ϕ ∈ Endk(V ) defined as:

ϕ(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i is odd

v10 j−4 if i = 10 j−8 and j ∈ {1,2,3,4}
v10 j − v10 j−8 if i = 10 j−6 and j ∈ {1,2,3,4}

v10 j−2 if i = 10 j−4 and j ∈ {1,2,3,4}
v10 j−6 + v10 j if i = 10 j−2 and j ∈ {1,2,3,4}

v10 j−8 if i = 10 j and j ∈ {1,2,3,4}
0 if i = 2s and s � 21

,

it is clear that i(ϕ) = 1 and its group inverse ϕ# is the unique linear map such that

ϕ#(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i is odd

v10 j if i = 10 j−8 and j ∈ {1,2,3,4}
v10 j−2− v10 j−6− v10 j if i = 10 j−6 and j ∈ {1,2,3,4}

v10 j−8 if i = 10 j−4 and j ∈ {1,2,3,4}
v10 j−4 if i = 10 j−2 and j ∈ {1,2,3,4}

v10 j−6 + v10 j if i = 10 j and j ∈ {1,2,3,4}
0 if i = 2s and s � 21

.

From the basic properties of the Drazin inverse [10], for every finite potent endo-
morphism ϕ ∈ Endk(V ) with i(ϕ) � 1, the group inverse ϕ# immediately satisfies the
following properties:

• (ϕ#)# = ϕ ;

• ϕ = ϕ# if and only if (ϕ|Wϕ
)2 = Id|Wϕ

;

• TrV (ϕ + ϕ#) = TrV (ϕ)+TrV (ϕ#) .

LEMMA 3.6. If ϕ ∈ Endk(V ) is a finite potent endomorphism with i(ϕ) � 1 and
n ∈ Z+ , then (ϕn)# = (ϕ#)n .

Proof. Let V = Uϕ ⊕Wϕ be the AST decomposition of V induced by ϕ . For all
n ∈ Z+ , it is clear that Uϕn = Uϕ and Wϕn = Wϕ . Thus, the claim is deduced bearing
in mind that

([ϕn]|Wϕ
)−1 = [(ϕ|Wϕ

)−1]n . �

REMARK 3.7. Given a finite potent endomorphism ϕ ∈ Endk(V ) , if we denote
ϕ0 = ϕ ◦ϕ# and ϕ−i = (ϕ#)i for every i∈ N , it follows from Theorem 3.5 and Lemma
3.6 that X = {ϕ j} j∈Z is an Abelian Group with identity element ϕ0 .
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LEMMA 3.8. If ϕ ∈ Endk(V ) is a finite potent endomorphism with i(ϕ) � 1 and
τ ∈ Autk(V ) , then τ ◦ϕ ◦ τ−1 is finite potent with i(τ ◦ϕ ◦ τ−1) � 1 and

(τ ◦ϕ ◦ τ−1)# = τ ◦ϕ# ◦ τ−1 .

Proof. Since (τ ◦ϕ ◦ τ−1)n = τ ◦ϕn ◦ τ−1 for every n ∈ N , if i(ϕ) � 1, it is clear
that τ ◦ϕ ◦ τ−1 is also finite potent with i(τ ◦ϕ ◦ τ−1) � 1.

Moreover, one has that:

• (τ ◦ϕ ◦τ−1)◦ (τ ◦ϕ# ◦τ−1)◦ (τ ◦ϕ ◦τ−1) = τ ◦ (ϕ ◦ϕ# ◦ϕ)◦τ−1 = τ ◦ϕ ◦τ−1 ;

• (τ ◦ϕ# ◦ τ−1)◦ (τ ◦ϕ ◦ τ−1)◦ (τ ◦ϕ# ◦ τ−1) = τ ◦ (ϕ# ◦ϕ ◦ϕ#)◦ τ−1 =
τ ◦ϕ# ◦ τ−1 ;

• (τ ◦ϕ ◦ τ−1)◦ (τ ◦ϕ# ◦ τ−1) = τ ◦ (ϕ ◦ϕ#)◦ τ−1 = τ ◦ (ϕ# ◦ϕ)◦ τ−1 =
(τ ◦ϕ# ◦ τ−1)◦ (τ ◦ϕ ◦ τ−1) ;

and we conclude that (τ ◦ϕ ◦ τ−1)# = τ ◦ϕ# ◦ τ−1 . �

REMARK 3.9. According to the statements of [7], the set of finite potent endo-
morphisms admits a classification when the group Autk(V ) acts by conjugation. In this
context, if ϕ ,ψ ∈ Endk(V ) are finite potent and ϕ ∼ ψ , then it follows from Lemma
3.8 that ϕ# ∼ ψ# .

To finish this part related to the definition and the basic properties of the group
inverse of a finite potent endomorphism, we shall study the group inverse of the com-
position of two commuting linear maps.

LEMMA 3.10. If ϕ ,ψ ∈ Endk(V ) such that ϕ is finite potent and ϕ ◦ψ = ψ ◦ϕ ,
then one has that:

1. ϕ ◦ψ is finite potent;

2. (ϕ ◦ψ)# = ψ−1 ◦ϕ# when ψ ∈ Autk(V );

3. (ϕ ◦ψ)# = ψ# ◦ϕ# when ψ is finite potent.

Proof.

1. For every linear map ψ ∈ Endk(V ) , since ϕ is finite potent, one has that

(ϕ ◦ψ)n = ψn ◦ϕn ,

from where we deduce that ϕ ◦ψ is finite potent.

2. If ψ ∈ Autk(V ) , it is clear that:

• (ϕ ◦ψ)◦ (ψ−1 ◦ϕ#)◦ (ϕ ◦ψ) = (ϕ ◦ϕ# ◦ϕ)◦ψ = ϕ ◦ψ ;



GROUP INVERSE OF FINITE POTENT ENDOMORPHISMS 1039

• (ψ−1 ◦ϕ#)◦ (ϕ ◦ψ)◦ (ψ−1 ◦ϕ#) = ψ−1 ◦ (ϕ# ◦ϕ ◦ϕ#) = ψ−1 ◦ϕ# ;

• Bearing in mind Lemma 3.1 one deduces that

(ϕ ◦ψ)◦ (ψ−1 ◦ϕ#) = ϕ ◦ϕ# = ϕ# ◦ϕ

= (ϕ# ◦ψ−1)◦ (ψ ◦ϕ) = (ψ−1 ◦ϕ#)◦ (ϕ ◦ψ)
;

and from Theorem 3.5 we conclude that (ϕ ◦ψ)# = ψ−1 ◦ϕ# .

3. With similar arguments to the previous proof, from Corollary 3.2 and Theorem
3.5, we deduce that (ϕ ◦ψ)# = ψ# ◦ϕ# when ψ is finite potent. �

3.3. EP finite potent endomorphisms

Henceforth, (V,g) will be an inner product vector space over k , with k = C or
k = R . According to [4, Lemma 2.1], the following definition makes sense:

DEFINITION 3.11. We say that a linear map ϕ ∈ Endk(V ) admissible for the
Moore-Penrose inverse is EP when

ϕ ◦ϕ† = ϕ† ◦ϕ .

We shall now characterize EP finite potent endomorphisms.

LEMMA 3.12. Let ϕ ∈ Endk(V ) be a finite potent endomorphism admissible for
the Moore-Penrose inverse. If ϕ is EP, then i(ϕ) � 1 .

Proof. Similar to the proof of Lemma 3.4, let V = Uϕ ⊕Wϕ be the AST decom-
position of V induced by ϕ and let us assume that i(ϕ) = s . If u∈Uϕ , it follows from
the definition of the Moore-Penrose inverse that

ϕ(u) = [(ϕ†)s−1 ◦ϕs](u) = 0 .

Hence, Kerϕ = Uϕ and we conclude that i(ϕ) � 1. �

PROPOSITION 3.13. A finite potent endomorphismadmissible for the Moore-Penrose
inverse ϕ ∈ Endk(V ) is EP if and only if ϕ# = ϕ† .

Proof. If ϕ is EP, then ϕ† is a group inverse of ϕ and it follows from Theorem
3.5 that

ϕ† = ϕD = ϕ# .

On the other hand, if ϕ# = ϕ† , one deduces from Definition 3.3 that ϕ is EP. �

COROLLARY 3.14. If ϕ ∈ Endk(V ) is an EP finite potent endomorphism admis-
sible for the Moore-Penrose inverse, then ϕ† is also EP.
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Proof. Since ϕ ∈ Endk(V ) is an EP finite potent endomorphism, then ϕ† is also
finite potent. Moreover, it follows from [2, Corollary 3.12] that ϕ† is admissible for
the Moore-Penrose inverse.

Hence, the claim is immediately deduced from Proposition 3.13 bearing in mind
that (ϕ#)# = ϕ . �

Moreover, for every finite potent endomorphism admissible for the Moore-Penrose
inverse ϕ ∈ Endk(V ) the author has shown in [8] that there exists a unique finite potent
endomorphism ϕc† ∈ Endk(V ) satisfying that:

• ϕc† ◦ϕ ◦ϕc† = ϕc† ;

• ϕ ◦ϕc† ◦ϕ = ϕ1 ;

• ϕ ◦ϕc† = ϕ1 ◦ϕ† ;

• ϕc† ◦ϕ = ϕ† ◦ϕ1 .

The finite potent endomorphism ϕc† is the core-Moore-Penrose (CMP) inverse of
ϕ .

LEMMA 3.15. If ϕ ∈ Endk(V ) is a finite potent endomorphism admissible for the
Moore-Penrose inverse and ϕ# = ϕc† , then i(ϕ) � 1 .

Proof. Since ϕ# = ϕc† , then

ϕ = ϕ ◦ϕ# ◦ϕ = ϕ ◦ϕc† ◦ϕ = ϕ1 ,

and the statement is deduced. �
Hence, another characterization of EP finite potent endomorphisms is the following:

PROPOSITION 3.16. A finite potent endomorphismadmissible for the Moore-Penrose
inverse ϕ ∈ Endk(V ) is EP if and only if ϕ# = ϕc† .

Proof. Let us firstly assume that ϕ is EP. Then ϕ = ϕ1 and, since ϕ# = ϕ†

(Proposition 3.13), one deduces that ϕ# = ϕc† .
Conversely, if ϕ# = ϕc† , it follows from Lemma 3.15 that i(ϕ) � 1 and then

ϕ ◦ϕ† = ϕ1 ◦ϕ† = ϕ ◦ϕ# = ϕ# ◦ϕ = ϕ† ◦ϕ1 = ϕ† ◦ϕ ,

and we conclude that ϕ is EP. �

REMARK 3.17. Given a matrix A ∈ Matn×n(C) , if Ac† is the CMP inverse of A
introduced by M. Mehdipour and A.Salemi in [6], it follows from Proposition 3.16 that
a new characterization of EP matrices is

“A is EP ⇐⇒ Ac† = A# .′′
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3.4. Drazin-Moore-Penrose inverses

Let (V,g) be again an inner product vector space over k , with k = C or k = R ,
and let ϕ ∈Endk(V ) be a finite potent endomorphismadmissible for the Moore-Penrose
inverse. According to [9], the left Drazin-Moore-Penrose (lDMP) inverse of ϕ is the
unique finite potent endomorphism ϕd,† ∈Endk(V ) satisfying the following conditions:

• ϕd,† ◦ϕ ◦ϕd,† = ϕd,† ;

• ϕm ◦ϕd,† = ϕm ◦ϕ† with m = i(ϕ) ;

• ϕd,† ◦ϕ = ϕD ◦ϕ .

LEMMA 3.18. Given a finite potent endomorphism admissible for the Moore-
Penrose inverse ϕ ∈ Endk(V ) with i(ϕ) � 1 , one has that ϕ# = ϕd,† if and only if
Kerϕ† ⊆ KerϕD .

Proof. It follows from [9, Proposition 3.3] that ϕ ◦ϕd,† ◦ϕ = ϕ1 , where ϕ1 is the
core part of ϕ . Moreover, from [9, Proposition 3.9], we knew that ϕ ◦ϕd,† = ϕd,† ◦ϕ
if and only if Kerϕ† ⊆ KerϕD .

Accordingly, the statement is deduced from Theorem 3.5. �
Furthermore, the right Drazin-Moore-Penrose (rDMP) inverse of ϕ is the unique

finite potent endomorphism ϕ†,d ∈ Endk(V ) satisfying the following conditions:

• ϕ†,d ◦ϕ ◦ϕ†,d = ϕ†,d ;

• ϕ†,d ◦ϕm = ϕ† ◦ϕm with m = i(ϕ) ;

• ϕ ◦ϕ†,d = ϕ ◦ϕD .

LEMMA 3.19. If ϕ ∈ Endk(V ) be a finite potent endomorphism admissible for
the Moore-Penrose inverse with i(ϕ) � 1 and V =Uϕ ⊕Wϕ be the AST decomposition
of V induced by ϕ , then ϕ# = ϕ†,d if and only if Wϕ ⊆ [Kerϕ ]⊥ .

Proof. Similar to above, the claim is obtained from Theorem 3.5 from the follow-
ing properties of the rDMP inverse ϕ†,d studied in [9]:

• ϕ ◦ϕ†,d ◦ϕ = ϕ1 , where ϕ1 is the core part of ϕ ;

• ϕ ◦ϕ†,d = ϕ†,d ◦ϕ if and only if Wϕ ⊆ [Kerϕ ]⊥ . �

REMARK 3.20. Given a matrix A ∈ Matn×n(C) , in [5] S. Malik and N. Thome
introduced the DMP inverses Ad,† and A†,d .

Thus, if i(A) � 1, from Lemma 3.18 and Lemma 3.19 we deduce that:

• A# = Ad,† if and only if N(A†) ⊆ N(AD) ;

• A# = A†,d if and only if R(A) ⊆ R(A∗) ;
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where N(B) is the Kernel of B and R(B) is the range of B , for every matrix B ∈
Matn×n(C) .

Acknowledgement. The author would like to thank the anonymous reviewer for
his/her valuable comments to improve the quality of the paper.

RE F ER EN C ES

[1] M. ARGERAMI, F. SZECHTMAN, R. TIFENBACH,On Tate’s trace, Linear Multilinear Algebra 55 (6),
(2007) 515–520.
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Instituto de Fı́sica Fundamental y Matemáticas
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