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Abstract. In this work we study the point spectra of selfadjoint Sturm-Liouville operators with
generalized point interactions, where the two one-sided limits of the solution data are related
via a general SL(2,R) matrix. We are particularly interested in the stability of eigenvalues with
respect to the variation of the parameters of the interaction matrix. As a particular application
to the case of random generalized point interactions we establish a version of Pastur’s theorem,
stating that except for degenerate cases, any given energy is an eigenvalue only with probability
zero. For this result, independence is important but identical distribution is not required, and
hence our result extends Pastur’s theorem from the ergodic setting to the non-ergodic setting.

1. Introduction

In this paper we study the point spectra of selfadjoint Sturm-Liouville operators
with generalized point interactions. More specifically, we investigate whether varying
the parameters of the spectral problem preserves or destroys the fact that a given energy
is an eigenvalue. This is of particular interest in the setting of random parameters. In
the case of i.i.d. random variables, one can use methods from ergodic theory and it
is a classical result due to Pastur [17] that a given energy can be an eigenvalue only
with probability zero. However, if the random variables are not identically distributed,
Pastur’s argument does not apply and it was realized only recently, in the special case
of δ and δ ′ point interactions, that a result in the same spirit still holds [4].

The purpose of the present paper is two-fold. On the one hand, we introduce a new
approach to this problem, which is based on geometric ideas and mapping properties
of SL(2,R) matrices. This makes the resulting spectral statement particularly natural
and easy to understand. On the other hand, our approach allows us to generalize the
setting and pass from δ and δ ′ point interactions to the whole class of real connecting
selfadjoint point interactions and hence develops the theory in the appropriate level of
generality.
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The key idea will be the following. Fixing the boundary conditions of the spectral
problem and considering an energy that is an eigenvalue for a given collection of param-
eters, we vary one of them while keeping the others fixed. How to vary the parameter
is clear if δ or δ ′ point interactions are considered, but it is somewhat less clear in the
case of general SL(2,R) matrices connecting the left- and right-limit of the solution
data at the point in question. To this end, we will consider the Iwasawa decomposi-
tion of an SL(2,R) matrix, which expresses it as a canonical product of a parabolic, a
hyperbolic, and an elliptic factor. This provides the parameters we seek and will vary.
The next step is to investigate the stability question for the eigenvalue problem at hand
when the parameter is varied. It turns out in most cases that there is a dichotomy. Either
the eigenvalue is present for all values of the parameter, or it is present only for the one
we started with and not for any other value. To establish this dichotomy we look at
the projective action of the SL(2,R) matrix in question and are able to exhibit this di-
chotomy via direct and very simple calculations. Once the dichotomy corresponding to
a single point interaction has been established, it will then be straightforward to process
the entire family and to deduce a global result. The application to the case of random
parameters is then also immediate.

Since they are crucial to our discussion, we will include discussions of the essen-
tial tools we use in Section 2, even though this material is well known. We hope that
this will be useful for those readers who are less familiar with these tools in the context
of spectral theory applications. This includes in particular the Iwasawa decomposition
of SL(2,R) matrices and their mapping properties on the real projective line. As a
warm-up we consider the case of a single δ interaction in Section 3. Although this
case has been studied before, we present our new perspective in this simple setting,
partly to introduce the ideas, and partly to show how the known result can be proved
with our method. In Section 4 we then consider the case of a general connecting point
interaction, which is given by an SL(2,R) matrix. The three parameters describing
such a matrix are given, in our representation, by the parameters corresponding to the
three factors in the Iwasawa decomposition of the given matrix. We discuss the stability
question for a given eigenvalue when two of the three parameters are fixed and the third
is varied. Next, Section 5 considers the case of countably many general point interac-
tions located on a discrete set inside the interval. Again, only one parameter for one
interaction will be varied, while all other parameters are fixed, and the eigenvalue sta-
bility problem is investigated. Finally, we consider the case of countably many general
point interactions with random parameters in Section 6 and prove a result in the spirit
of Pastur and in the appropriate level of generality, that is, without assuming identical
distribution. We do, however, make crucial use of independence. An important case
where our result holds is when we have a measurable family of operators.

Acknowledgements. We are grateful to the anonymous referee for the careful read-
ing of the manuscript and very useful comments and observations which led to the
improvement of this paper.
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2. Preliminaries

In this section we collect a few tools, all of which are well known. As usual,
SL(2,R) and GL(2,R) denote the special and general linear groups respectively. We
include this material for the sake of the reader. Anyone familiar with these concepts
may skip ahead to the next section.

2.1. Transfer matrices

Let us discuss an elementary way to introduce the transfer matrices, which we
emphasize is not the standard way of introducing them.

Consider an open interval I = (a,b)⊂R , a L1
loc potential V : I →R , and an energy

E ∈ R . The associated differential equation is

−u′′(x)+V(x)u(x) = Eu(x), x ∈ I. (1)

Standard ODE theory shows that for each x ∈ I and each (v,d)T ∈R2 , there is a unique
solution u of (1) with (u(x),u′(x))T = (v,d)T . Moreover, all real solutions of (1) arise
in this way. See for example [16, Thm. 2.2.1]. This has the following immediate
consequence.

PROPOSITION 2.1. The set SE of real solutions of (1) is a two-dimensional real
vector space and, for each x ∈ I , the map

Mx,E : SE → R2, u �→
(

u(x)
u′(x)

)

is a linear isomorphism.

Proof. It follows directly from the definition of the map Mx,E (and the linearity
of differentiation) that it is linear. By the standard ODE results quoted above, it is
both onto and one-to-one. This also implies the well-known fact that SE is a two-
dimensional real vector space. �

PROPOSITION 2.2. For x,y ∈ I , there is a matrix M(x,y;E) ∈ SL(2,R) such that
for every u ∈ SE , we have (

u(x)
u′(x)

)
= M(x,y;E)

(
u(y)
u′(y)

)
. (2)

Proof. If we define M(x,y;E) := Mx,EM−1
y,E , then (2) holds by Proposition 2.1. By

construction, M(x,y;E) ∈ GL(2,R) , so it remains to show that detM(x,y;E) = 1.
Consider the two solutions uD,uN ∈ SE with(

uN(y) uD(y)
u′N(y) u′D(y)

)
=

(
1 0
0 1

)
.
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Then,

M(x,y;E) = M(x,y;E)
(

1 0
0 1

)

= M(x,y;E)
(

uN(y) uD(y)
u′N(y) u′D(y)

)

=
(

uN(x) uD(x)
u′N(x) u′D(x)

)
,

and therefore

detM(x,y;E) = det

(
uN(x) uD(x)
u′N(x) u′D(x)

)
= uN(x)u′D(x)−uD(x)u′N(x)
= uN(y)u′D(y)−uD(y)u′N(y)
= 1.

Here we used the constancy of the Wronskian, which follows from the fact that uD,uN

solve (1):

(uN(t)u′D(t)−uD(t)u′N(t))′ =
= u′N(t)u′D(t)+uN(t)u′′D(t)−u′D(t)u′N(t)−uD(t)u′′N(t)
= uN(t)[(V (t)−E)uD(t)]−uD(t)[(V (t)−E)uN(t)]
= 0. �

2.2. The real projective line

Recall that the real projective line RP1 is given by

RP1 = {lines in R2 through the origin}.

Note that the elements of RP1 are equivalence classes with respect to the equivalence
relation on R2 \ {0} given by

v ∼ w ⇔ ∃λ ∈ R\ {0} : v = λw.

DEFINITON 2.1. We denote the equivalence class of v ∈ R2 \ {0} by [v] .

REMARK 2.1. Let u = (u1,u2)T and v = (v1,v2)T . Then, [u] = [v] if and only if
arg(u2 + iu1) = arg(v2 + iv1)+ kπ , k ∈ Z .

LEMMA 2.1. Any M ∈ GL(2,R) induces a well-defined bijective map from RP1

to RP1 , which will be denoted by M̃ , via

M̃([v]) = [Mv].
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Proof. Let u ∼ v . Then u = λv for some λ ∈ R\ {0} and

[Mu] = M̃[u] = M̃[λv] = [Mλv] = [λMv] = [Mv].

This shows that M̃ is well defined.
Let [v] ∈ RP1 with representative v . Since M is surjective by assumption, there

exists u ∈ R2 such that Mu = v . Since

M̃([u]) = [Mu] = [v],

it follows that M̃ is surjective.
Finally, suppose [Mu] = [Mv] . Then there exists k ∈R\{0} such that Mu = kMv ,

and since M is injective by assumption, u = kv . Thus [u] = [v] and M̃ is injective. �

2.3. The Iwasawa decomposition of SL(2,R) matrices

In this subsection we discuss the Iwasawa decomposition of SL(2,R) matrices;
compare [9]. We provide some details on how to obtain this decomposition for the
reader’s convenience.

We define the following subgroups of SL(2,R) :

E =
{

Eθ :=
(

cosθ −sinθ
sinθ cosθ

)
: θ ∈ R

}
,

P =
{

Pα :=
(

1 α
0 1

)
: α ∈ R

}
,

H =
{

Hr :=
(

r 0
0 1/r

)
: r > 0

}
.

THEOREM 2.1. (Iwasawa decomposition) Every A ∈ SL(2,R) can be written in
a unique way as A = PαHrEθ , where Pα ∈ P , Hr ∈ H and Eθ ∈ E .

Proof. Consider the complex upper half-plane, C+ = {z ∈ C : ℑz > 0} . Given
A ∈ SL(2,R) , we consider its action on C+ given by

A · z =
(

a b
c d

)
· z :=

az+b
cz+d

.

Note that A · z indeed belongs to C+ for each z ∈ C+ since

ℑ
(

az+b
cz+d

)
=

(ad−bc)ℑz
|cz+d|2 =

ℑz
|cz+d|2 > 0.

Moreover, note that
(A ·B) · z = A · (B · z) (3)

for all A,B ∈ SL(2,R) and z ∈ C+ .
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Consider the case A · i = i , that is,

ai+b
ci+d

= i ⇔ ai+b = di− c⇔ a = d and b = −c.

Thus the condition detA = ad−bc = 1 becomes a2 +c2 = 1 and we can choose θ ∈ R

with a = cosθ and c = sinθ , so that

A =
(

a b
c d

)
=

(
a −c
c a

)
=

(
cosθ −sinθ
sinθ cosθ

)
.

This discussion shows that A · i = i if and only if A ∈ E .
Given any A ∈ SL(2,R) , we consider A · i ∈ C+ and set

α := ℜ(A · i), r := (ℑ(A · i))1/2.

Then,

A · i = α + ir2

=
(

r α/r
0 1/r

)
· i

=
(

1 α
0 1

)(
r 0
0 1/r

)
· i

Thus, by (3), (
r 0
0 1/r

)−1 (
1 α
0 1

)−1

A · i = i,

which implies that (
r 0
0 1/r

)−1 (
1 α
0 1

)−1

A =
(

cosθ −sinθ
sinθ cosθ

)

for a suitable θ ∈ R by our discussion above. Thus,

A =
(

1 α
0 1

)(
r 0
0 1/r

)(
cosθ −sinθ
sinθ cosθ

)
,

as desired. This establishes existence.
To show uniqueness, consider the identity(
1 α1

0 1

)(
r1 0
0 1/r1

)(
cosθ1 −sinθ1

sinθ1 cosθ1

)
=

(
1 α2

0 1

)(
r2 0
0 1/r2

)(
cosθ2 −sinθ2

sinθ2 cosθ2

)

with α1,α2,θ1,θ2 ∈ R and r1,r2 > 0.
Applying both sides to i ∈ C+ , we obtain(

1 α1

0 1

)(
r1 0
0 1/r1

)
· i =

(
1 α2

0 1

)(
r2 0
0 1/r2

)
· i,
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which (by an observation above) is equivalent to

α1 + ir2
1 = α2 + ir2

2.

This implies α1 = α2 and r1 = r2 (since r1,r2 > 0). Once this holds, we must also
have (

cosθ1 −sinθ1

sinθ1 cosθ1

)
=

(
cosθ2 −sinθ2

sinθ2 cosθ2

)
,

proving uniqueness. �

REMARK 2.2. Since any matrix in SL(2,R) can be written as the inverse of the
transpose of a matrix in SL(2,R) , we also have the decomposition

A =
(

1 0
−α̃ 1

)(
1
r̃ 0
0 r̃

)(
cos θ̃ −sin θ̃
sin θ̃ cos θ̃

)

for some α̃ ∈ R , r̃ > 0 and θ̃ ∈ R .

2.4. The differential operator and its eigenvalues

For a finite closed interval I = [a,b] and a real-valued V ∈ L1(I) , consider the
associated differential expression defined by

τ f := − f ′′ +V f .

For all x,y ∈ I , let M(x,y;E) be the transfer matrix defined in Proposition 2.2.
Then M(x,y;E) ∈ SL(2,R) and for every real solution of τu = Eu , we have(

u(x)
u′(x)

)
= M(x,y;E)

(
u(y)
u′(y)

)
.

Let Tθ ,γ be the selfadjoint operator defined by

Tθ ,γ f = τ f

with domain

D(Tθ ,γ) := { f ∈ L2(I) : f , f ′abs. con. onI,τ f ∈ L2(I)

f (a)cosθ − f ′(a)sinθ = 0

f (b)cosγ − f ′(b)sinγ = 0}.
See Theorem 8.25 a) and Theorem 8.26 in [18].

As an application of Lemma 2.1 we will prove the following well-known result.

THEOREM 2.2. Let E ∈ R , then for each θ ∈ [0,π) (γ ∈ [0,π)) , there exists a
unique γ ∈ [0,π) (θ ∈ [0,π)) such that E ∈ σp(Tθ ,γ ) .
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Proof. For E ∈ R and θ ∈ [0,π) , there exists a non-trivial solution u ∈ L2(I) of
τu = Eu , which is unique up to a non-zero multiple, satisfying

u(a)cosθ −u′(a)sinθ = 0.

Since M(b,a;E) ∈ SL(2,R) , there exists a unique vector (u(b),u′(b))T satisfying(
u(b)
u′(b)

)
= M(b,a;E)

(
u(a)
u′(a)

)

Let γ := arctan u(b)
u′(b) be the angle of the vector (u(b),u′(b))T . Then,

u(b)cosγ −u′(b)sinγ = 0.

Therefore, E ∈ σp(Tθ ,γ ) .
Assume γ̃ ∈ [0,π) , γ̃ 
= γ and E ∈ σp(Tθ ,γ̃) . Then there exists a non-zero v ∈

D(Tθ ,γ̃) such that τv = Ev ,

v(a)cosθ − v′(a)sinθ = 0,

v(b)cos γ̃ − v′(b)sin γ̃ = 0.

Thus the angle of the vector (v(a),v′(a))T is θ and the angle of the vector (v(b),v′(b))T

is γ̃ . Then by Lemma 2.1,

M̃(a,b;E)[(v(b),v′(b))T ] = [(u(a),u′(a))T ] = M̃(a,b;E)[(u(b),u′(b))T ]

the vectors (v(b),v′(b))T and (u(b),u′(b))T must belong to the same element of the
real projective line, i.e. they must have the same angle, so that γ = γ̃ . Analogously, for
each γ ∈ [0,π) , there exists a unique θ ∈ [0,π) such that E ∈ σp(Tθ ,γ) . �

COROLLARY 2.1. Let γ fixed and θ such that E ∈ σp(Tθ ,γ) , then for any θ̃ 
= θ
one has E 
∈ σp(Tθ̃ ,γ) .

3. The case of a single δ -interaction

As a warm-up we consider the case of a single δ -interaction.
Let I = [a,b] ⊂ R be a closed finite interval, V ∈ L1(I) real valued, p ∈ I an

interior point, and α ∈ R .
We consider the formal differential expressions

τ := − d2

dx2 +V

and

τα ,p := − d2

dx2 +V + αδ (x− p).
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The maximal operator Tα ,p corresponding to τα ,p is defined by

Tα ,p f = τ f

D(Tα ,p) =
{

f ∈ L2(I) : f , f ′ abs. cont in I \ {p},− f ′′+V f ∈ L2(I),(
f (p+)
f ′(p+)

)
= Aα ,p

(
f (p−)
f ′(p−)

)}
.

REMARK 3.1. Note that the restriction of any absolutely continuous function to
a bounded interval is of bounded variation and therefore the limits from the right and
from the left at any point exist, see Section 8.15 in [13].

Here, Aα ,p is the SL(2,R) matrix defined by

Aα ,p =
(

1 0
α 1

)
. (4)

Let us consider the selfadjoint restriction Hα ,p of Tα ,p in L2(I) , see Theorem 5.2
in [3], defined by

Hα ,p f = τ f (5)

D(Hα ,p) =
{

f ∈ D(Tα ,p) :
f (a)cosθ + f ′(a)sinθ = 0
f (b)cosγ + f ′(b)sin γ = 0

}
θ , γ ∈ [0,π).

THEOREM 3.1. Let E ∈ σp(Hα ,p) . Then one of the following holds:

i) E ∈ σp(Hα̃ ,p) for every α̃ ∈ R ,

ii) E 
∈ σp(Hα̃ ,p) for every α̃ ∈ R\ {α} .

Proof. Note first that on the level of transfer matrices, the local point interaction
inserts the factor (4) between M(y, p+;E) and M(p−,x;E) for a � x < p < y � b .

Let E ∈ R be such that E ∈ σp(Hα ,p) . Then there exists a non-zero u ∈ D(Hα ,p)
with Hα ,pu = Eu . In particular, we have(

u(p+)
u′(p+)

)
= Aα ,p

(
u(p−)
u′(p−)

)
.

Suppose ii) fails; and hence we have to prove i) . Let E ∈ σp(Hα̃ ,p) for some
α̃ ∈ R \ {α} . There exists a non-zero v ∈ D(Hα̃,p) such that Hα̃,pv = Ev . Since
M = M(p−,a;E) ∈ SL(2,R) and [(u(a),u′(a))T ] = [(v(a),v′(a))T ] , we have

[(u(p−),u′(p−))T ] = M̃([(u(a),u′(a))T ]) = M̃([(v(a),v′(a))T ]) = [(v(p−),v′(p−))T ].

Thus there exists k ∈ R\ {0} such that(
u(p−)
u′(p−)

)
= k

(
v(p−)
v′(p−)

)
,
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and since u ∈ D(Hα ,p) and v ∈ D(Hα̃ ,p) ,(
u(p−)

(α − α̃)u(p−)+u′(p−)

)
=

(
1 0

α − α̃ 1

)(
u(p−)
u′(p−)

)
= A−1

α̃ ,pAα ,p

(
u(p−)
u′(p−)

)

= A−1
α̃,p

(
u(p+)
u′(p+)

)
= kA−1

α̃ ,p

(
v(p+)
v′(p+)

)
= k

(
v(p−)
v′(p−)

)
=

(
u(p−)
u′(p−)

)

and then (α − α̃)u(p−)+u′(p−) = u′(p−) . Since α̃ 
= α , u(p−) = 0. Thus ∀α̃ ∈ R ,(
u(p+)
u′(p+)

)
=

(
0

u′(p+)

)
=

(
1 0
α 1

)(
0

u′(p−)

)
=

(
1 0
α̃ 1

)(
0

u′(p−)

)
= Aα̃,p

(
u(p−)
u′(p−)

)

Therefore u ∈ σp(Hα̃ ,p) , ∀α̃ 
= α and i) holds. �

4. The case of a single general point interaction

Now we construct the operator with one general point interaction. The case we
are going to consider in this and in the following sections corresponds to the case of
connecting real selfadjoint boundary conditions, see Definition 2.5 in [3]. In more
general cases, an additional phase factor may appear in front of the transfer matrix, see
Theorem 1 in [1].

Let I = [a,b] ⊂ R be a closed finite interval. Let V ∈ L1(I) be a real-valued
function, p ∈ I an interior point and Aα ,r,θ ∈ SL(2,R) with Iwasawa decomposition
Aα ,r,θ = PαHrEθ , where Pα ∈ P , Hr ∈ H and Eθ ∈ E . We consider the formal
differential expression

τ := − d2

dx2 +V.

DEFINITON 4.1. The corresponding maximal operator Tα ,r,θ is defined by

Tα ,r,θ f = τ f

D(Tα ,r,θ ) =
{

f ∈ L2(I) : f , f ′ abs. cont in I \ {p},− f ′′+V f ∈ L2(I),(
f (p+)
f ′(p+)

)
= Aα ,r,θ

(
f (p−)
f ′(p−)

)}
.

Let us consider the selfadjoint restriction Hδ ,γ
α ,r,θ of Tα ,r,θ in L2(I) , see equation

(4.3) in [15], defined below

DEFINITON 4.2. Let Hδ ,γ
α ,r,θ be the operator defined by

Hδ ,γ
α ,r,θ f = τ f

D(Hδ ,γ
α ,r,θ ) =

{
f ∈ D(Tα ,r,θ ) :

f (a)cosδ + f ′(a)sinδ = 0
f (b)cosγ + f ′(b)sinγ = 0

}
, δ , γ ∈ [0,π).
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LEMMA 4.1. Let θ , θ̃ ∈ R and fix v ∈ R2 . The following holds: θ̃ 
= θ + kπ ,
k ∈ Z if and only if [Aα ,r,θv] 
= [Aα ,r,θ̃ v] .

Proof.

⇒) Let θ̃ 
= θ + kπ , k ∈ Z and v ∈ R2 . Since Eγ acts as a rotation matrix through
an angle γ , we have [Eθ v] 
= [Eθ̃ v] . Taking into account that PαHr ∈ SL(2,R) ,
Lemma 2.1 gives that [Aα ,r,θv] 
= [Aα ,r,θ̃v] .

⇐) Suppose now [Aα ,r,θ v] 
= [Aα ,r,θ̃v] . Recalling the definition introduced in Lemma
2.1,

P̃αHr[Eθ̃ v] = [PαHrEθ̃ v] = [Aα ,r,θ̃ v] 
= [Aα ,r,θv] = P̃αHr[Eθ v],

since P̃αHr is injective. Thus [Eθ v] 
= [Eθ̃ v] and hence θ̃ 
= θ + kπ , k ∈ Z . �

LEMMA 4.2. Let r, r̃ > 0 , r̃ 
= r and v ∈ R2 . The following are equivalent:

i) [v] = [(sinθ ,cosθ )T ] or [v] = [(cosθ ,−sinθ )T ] ,

ii) [Aα ,r,θv] = [Aα ,r̃,θ v] .

Proof.

ii) ⇒ i) Assume [Aα ,r,θv] = [Aα ,r̃,θ v] . Then P̃α [HrEθ v] = P̃α [Hr̃Eθ v] . Since by
Lemma 2.1 P̃α is injective, [HrEθ v] = [Hr̃Eθ v] , that is, there exists k ∈
R\ {0} such that HrEθ v = kHr̃Eθ v . Thus, H−1

r̃ HrEθ v = kEθ v , and there-
fore Eθ v is eigenvector of the diagonal matrix H−1

r̃ Hr . Since r 
= r̃ , the
eigenvectors are multiples of [0,1]T or [1,0]T . Then [Eθ v] = [(1,0)T ] or
[Eθ v] = [(0,1)T ] , taking into account that

E−1
θ =

(
cosθ sinθ
−sinθ cosθ

)

and Lemma 2.1, we obtain [v] = [(sinθ ,cosθ )T ] or [v] = [(cosθ ,−sinθ )T ] .

i) ⇒ ii) Assume [v] = [(sinθ ,cosθ )T ] . Then,

[Aα ,r,θ v] = [PαHr(0,1)T ] =
[1
r
Pα(0,1)T

]
=

[1
r̃
Pα(0,1)T

]
= [PαHr̃(0,1)T ] = [Aα ,r̃,θ v].

When [v] = [(cosθ ,−sinθ )T ] , the result follows in an analogous way. �

LEMMA 4.3. Let α, α̃ ∈ R , α̃ 
= α and v ∈ R2 . The following are equivalent:

i) [v] = [(cosθ ,−sinθ )T ] ,

ii) [Aα ,r,θv] = [Aα̃ ,r,θ v] .
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Proof.

ii) ⇒ i) Assume [Aα ,r,θv] = [Aα̃,r,θ v] , that is, there exists k∈R\{0} such that PαHrEθ v
= kPα̃HrEθ v . Then P−1

α̃ PαHrEθ v = kHrEθ v . Thus HrEθ v is an eigenvector
of the matrix P−1

α̃ Pα . Since α 
= α̃ , P−1
α̃ Pα 
= I and its eigenvectors are

multiples of (1,0)T . Then [HrEθ v] = [(1,0)T ] , and taking into account that

(HrEθ )−1 =
( 1

r cosθ r sinθ
− 1

r sinθ rcosθ

)

as well as Lemma 2.1, we obtain [v] = [ 1
r (cosθ ,−sinθ )T ] = [(cosθ ,−sinθ )T ] .

i) ⇒ ii) Assume [v] = [(cosθ ,−sinθ )] . Then

[Aα ,r,θv] = [Pαr(1,0)T ] = [r(1,0)T ] = [Pα̃r(1,0)T ] = [Aα̃ ,r,θ v]. �

THEOREM 4.1. Let E ∈ R . If E ∈ σp(H
δ ,γ
α ,r,θ ) , then:

a) E ∈ σp(H
δ ,γ
α ,r,θ̃ ) if and only if θ̃ = θ + kπ , k ∈ Z .

b) One of the following holds:

i) E 
∈ σp(H
δ ,γ
α ,r̃,θ ) for every r̃ 
= r .

ii) E ∈ σp(H
δ ,γ
α ,r̃,θ ) for every r̃ > 0 .

c) One of the following holds:

i) E 
∈ σp(H
δ ,γ
α̃ ,r,θ ) for every α̃ 
= α .

ii) E ∈ σp(H
δ ,γ
α̃ ,r,θ ) for every α̃ ∈ R .

Proof. Since E ∈ σp(H
δ ,γ
α ,r,θ ) , there exists u ∈ L2(a,b) , u 
= 0, such that u ∈

D(Hδ ,γ
α ,r,θ ) and Hδ ,γ

α ,r,θu = Eu .

a) Suppose now that E ∈σp(H
δ ,γ
α ,r,θ̃ ) for some θ̃ 
= θ . Then there exists v∈L2(a,b) ,

v 
= 0, such that v ∈ D(Hδ ,γ
α ,r,θ̃ ) and Hδ ,γ

α ,r,θ̃v = Ev . We will now consider the

matrices M(p−,a;E) and M(b, p+;E) , which do not depend on α,r and θ .

Since M := M(p−,a;E) ∈ SL(2,R) and [(u(a),u′(a))T ] = [(v(a),v′(a))T ] , we
have

[(u(p−),u′(p−))T ] = M̃([(u(a),u′(a))T ]) = M̃([(v(a),v′(a))T ])

= [(v(p−),v′(p−))T ].
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Thus there exists λ ∈ R\ {0} such that(
u(p−)
u′(p−)

)
= λ

(
v(p−)
v′(p−)

)
.

Analogously, since M−1(b, p+;E)∈ SL(2,R) , there exists μ ∈R\{0} such that(
u(p+)
u′(p+)

)
= μ

(
v(p+)
v′(p+)

)
.

Since(
u(p+)
u′(p+)

)
= Aα ,r,θ

(
u(p−)
u′(p−)

)
and

(
v(p+)
v′(p+)

)
= Aα ,r,θ̃

(
v(p−)
v′(p−)

)
,

we have

[Aα ,r,θ (u(p−),u′(p−))T ] = [Aα ,r,θ̃(v(p−),v′(p−))T ] = [Aα ,r,θ̃ (u(p−),u′(p−))T ].

By Lemma 4.1 this happens if and only if θ̃ = θ + kπ , k ∈ Z .

b) Let us assume that i) is false. Then for some r0 
= r , there is E ∈ σp(H
δ ,γ
α ,r0,θ ) .

Therefore there exists a non-zero v ∈ L2(a,b) such that v ∈ D(Hδ ,γ
α ,r0,θ ) and

Hδ ,γ
α ,r0,θ v = Ev . As in case a) above we conclude

[Aα ,r,θ (u(p−),u′(p−))T ] = [Aα ,r0,θ (v(p−),v′(p−))T ] = [Aα ,r0,θ (u(p−),u′(p−))T ].

By Lemma 4.2 this happens if and only if [(u(p−),u′(p−))T ] = [(sinθ ,cosθ )T ]
or [(u(p−),u′(p−))T ] = [(cosθ ,−sinθ )T ] .

Let us assume that [(u(p−),u′(p−))T ] = [(sinθ ,cosθ )T ] . If [(u(p−),u′(p−))T ] =
[(cosθ ,−sinθ )T ] , the argument proceeds analogously. There exists c ∈ R\ {0}
such that (u(p−),u′(p−))T = c(sinθ ,cosθ )T . We normalize and take c = 1.

Let us verify that for each r̃ > 0, E ∈ σ(Hδ ,γ
α ,r̃,θ ) with eigenvector

w(x) :=

{
r̃
r u(x) if a � x < p

u(x) if p < x � b

First notice that w satisfies the conditions at a and b of the functions in D(Hδ ,γ
α ,r,θ )

since u satisfies these conditions too. Now

Aα ,r̃,θ

(
w(p−)
w′(p−)

)
= Aα ,r̃,θ

(
r̃
r

(
u(p−)
u′(p−)

))
=

r̃
r
Aα ,r̃,θ

(
sinθ
cosθ

)

=
r̃
r
1
r̃

(
α
1

)
=

1
r

(
α
1

)
= Aα ,r,θ

(
sinθ
cosθ

)

=
(

u(p+)
u′(p+)

)
=

(
w(p+)
w′(p+)

)
.
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The first and second equalities hold by definition of w and u , the next three
equalities are straightforward calculations. The equality before the last one fol-
lows because u ∈ D(Hδ ,γ

α ,r,θ ) and the last one follows because w = u to the right

of p . Therefore w ∈D(Hδ ,γ
α ,r̃,θ ) , τw = Ew in [a,b]\{p} , and E is an eigenvalue

for Hδ ,γ
α ,r̃,θ , r̃ > 0.

c) Let us assume that i) is false. Then for some α0 
= α , there is E ∈ σp(H
δ ,γ
α0,r,θ ) .

Therefore there exists v∈L2(a,b) , v 
= 0, such that v∈D(Hδ ,γ
α0,r,θ ) and Hδ ,γ

α0,r,θ v =
Ev . As in case a) above we conclude

[Aα ,r,θ (u(p−),u′(p−))T ] = [Aα0,r,θ (v(p−),v′(p−))T ] = [Aα0,r,θ (u(p−),u′(p−))T ].

By Lemma 4.3 this happens if and only if [(u(p−),u′(p−))T ] = [(cosθ ,−sinθ )T ] .
There exists c∈ R\{0} such that (u(p−),u′(p−))T = c(sinθ ,cosθ )T . We nor-
malize and take c = 1. For all α̃ ∈ R ,

Aα̃ ,r,θ

(
u(p−)
u′(p−)

)
= Aα̃ ,r,θ

(
cosθ
−sinθ

)
= r

(
1 α̃
0 1

)(
1
0

)
= r

(
1
0

)
.

Therefore, for every α̃ ∈ R , u ∈ D(Hδ ,γ
α̃ ,r,θ ) and Hδ ,γ

α̃ ,r,θu = Eu . �

5. The case of countably many general point interactions

Let −∞ � a < b � ∞ and let V ∈ L1
loc(a,b) be a real-valued function. Fix a set

of points M = {xn}n∈I ⊂ (a,b) , where I ⊆ Z . We assume that the discrete set M
accumulates at most at a or b . Let Λ := {αn} ⊂ R , R := {rn} ⊂ (0,∞) and Θ :=
{θn} ⊂ R .

DEFINITON 5.1. Let Aαn,rn,θn ∈SL(2,R) with Iwasawa decomposition Aαn,rn,θn =
PαnHrnEθn , where Pαn ∈ P , Hrn ∈ H and Eθn ∈ E for every n ∈ I .

We consider the formal differential expression

τ := − d2

dx2 +V.

DEFINITON 5.2. The maximal operator TΛ,R,Θ is defined by

TΛ,R,Θ f = τ f

D(TΛ,R,Θ) =
{

f ∈ L2(a,b) : f , f ′ abs. cont in (a,b)\M,− f ′′ +V f ∈ L2(a,b),(
f (xn+)
f ′(xn+)

)
= Aαn,rn,θn

(
f (xn−)
f ′(xn−)

)
∀n ∈ I

}
(See Remark 3.1)
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DEFINITON 5.3. Given g∈ L1
loc(a,b) and z∈C , we call f a solution of (τΛ,R,Θ−

z) f = g if f and f ′ are absolutely continuous in (a,b) \M with − f ′′ +V f − z f = g
and (

f (xn+)
f ′(xn+)

)
= Aαn,rn,θn

(
f (xn−)
f ′(xn−)

)
∀n ∈ I.

DEFINITON 5.4. We define the Wronskian of two solutions u1 and u2 of (τΛ,R,Θ−
z) f = 0 by

Wx(u1,u2) = u1(x+)u′2(x+)−u′1(x+)u2(x+).

DEFINITON 5.5. For f and g absolutely continuous in (a,b)\M , we define the
Lagrange bracket by

[ f ,g]x := f (x+)g′(x+)− f ′(x+)g(x+) x ∈ (a,b)

If f ,g ∈ D(TΛ,R,Θ) , then the limits

[ f ,g]a := lim
x→a+

[ f ,g]x and [ f ,g]b := lim
x→b−

[ f ,g]x

exist; see [3, Theorem 2.2].
A solution of (τΛ,R,Θ − z) f = 0 is said to lie right (resp., left) in L2(a,b) if f is

square integrable in a neighborhood of b (resp., a ).

DEFINITON 5.6.

i) τΛ,R,Θ is in the limit circle case (lcc) at b if for every z ∈ C , all solutions of
(τΛ,R,Θ − z) f = 0 lie right in L2(a,b) .

ii) τΛ,R,θ is in the limit point case (lpc) at b if for every z ∈ C , there is at least one
solution of (τΛ,R,Θ − z) f = 0 not lying right in L2(a,b) .

The same definition applies to the endpoint a .

According to the Weyl alternative, see [3, Theorem 4.4], we have always either i)
or ii) .

In Theorem 5.2 in [3] is stated that the operator HΛ,R,Θ , defined below, is a self-
adjoint restriction of the maximal operator TΛ,R,Θ introduced in Definition 5.2.

DEFINITON 5.7. Let HΛ,R,Θ be the operator defined as

HΛ,R,Θ f = τ f

D(HΛ,R,Θ) =
{

f ∈ D(TΛ,R,Θ) :
[v, f ]a = 0 if τΛ,R,Θ lcc at a
[w, f ]b = 0 if τΛ,R,Θ lcc at b

}
,

where v and w are non-trivial real solutions of (τΛ,R,Θ −λ )v = 0 near a and near b ,
respectively, λ ∈ R .
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If τΛ,R,Θ is in the lcc at b , then w lies right in L2(a,b) and therefore [w, f ]b is
well defined and the same holds for a and v . If τΛ,R,Θ is in the lpc at a or b we do not
require any conditions at those points.

REMARK 5.1. For the existence of the boundary values [v, f ]a and [w, f ]b see
Theorem 2.2 a) in [3]. In Theorem 5.2 in [3], the selfadjoint restrictions are character-
ized using unitary matrices. The case we are treating corresponds to the particular case
of the connecting real selfadjoint boundary conditions. For construction of selfadjoint
restrictions see also [10, pp. 216], [5, Section 15], [6, Theorem 2.2], [14, Section 3]
and [1, Theorem 1].

REMARK 5.2. Whenever we fix a parameter, we do not write it. For example if
we fix R and Θ we shall just write HΛ and analogously for the other cases.

DEFINITON 5.8. We say that τΛ,R,Θ is regular at a if a is finite, V ∈ L1
loc[a,b)

and a is not an accumulation point of M . The same definition applies to the endpoint
b .

If τΛ,R,Θ is regular at a , then τΛ,R,Θ is lcc at a and the condition [v, f ]a = 0 can
be replaced by

f (a)cosψ + f ′(a)sinψ = 0

for ψ ∈ [0,π) . The same holds for b .
In the rest of this section for the operator HΛ,R,Θ of Definition 5.7 we are going to

fix the values of αn , rn and θn for n 
= n0 . Set α = αn0 , r = rn0 and θ = θn0 . This
operator will be denoted by Hα ,r,θ , where only the values that Λ , R and Θ take on n0

are made explicit.
Let E ∈ R be fixed and define

P(E) := {(α,r,θ ) ∈ R× (0,∞)×R : E ∈ σp(Hα ,r,θ )}.

Now let us take the operator Hδ ,γ
α ,r,θ introduced in Definition 4.2 with p = xn0 and

I = [c,d] ⊂ (a,b) such that [c,d]∩M = {xn0} (Note that we have changed the notation
for the endpoints of the interval I ).

LEMMA 5.1. There exist fixed δ0 , γ0 ∈ [0,π) such that for all (α,r,θ ) ∈ P(E) ,
it happens that E ∈ σp(H

δ0,γ0
α ,r,θ ) .

Proof. If (α1,r1,θ1)∈P(E) , then for some non-zero ϕ ∈D(Hα1,r1,θ1) , Hα1,r1,θ1ϕ =
Eϕ .

Let us fix the points δ0,γ0 ∈ [0,π) where

ϕ(c)cosδ0 + ϕ ′(c)sinδ0 = 0
ϕ(d)cosγ0 + ϕ ′(d)sinγ0 = 0

(6)
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If (α,r,θ ) ∈ P(E) is such that (α,r,θ ) = (α1,r1,θ1) , the assertion follows.
If (α,r,θ ) ∈ P(E) but (α,r,θ ) 
= (α1,r1,θ1) , then Hα ,r,θ ψ = Eψ for some non-

zero ψ ∈ D(Hα ,r,θ ) . Therefore, there exist δ ,γ ∈ [0,π) which satisfy the boundary
conditions at c and d for ψ , similar to (6). If we prove that δ = δ0 and γ = γ0 , then

Hδ0,γ0
α ,r,θ ψ = Eψ and therefore E ∈ σ(Hδ0,γ0

α ,r,θ ) .

Let us prove that γ = γ0 . The proof for δ is analogous.

a) Assume τα ,r,θ is in the limit circle case at b.

The Wronskian satisfies Wx(w,ϕ) = [w,ϕ ]x and Wx(w,ψ) = [w,ψ ]x because w is
real. It is constant for x ∈ [d,b) since w,ψ and ϕ are solutions of τα ,r,θ f = E f
in the interval [d,b) because xn0 does not intersect [d,b) . By hypothesis, the
functions ϕ and ψ satisfy the lcc condition at b. This implies

0 = [w,ψ ]b = lim
x→b−

Wx(w,ψ) and 0 = [w,ϕ ]b = lim
x→b−

Wx(w,ϕ)

Therefore Wx(w,ψ) = Wx(w,ϕ) = 0 and then Wx(ϕ ,ψ) = 0 . Thus ϕ and ψ
are linearly dependent and ϕ = Kψ for some non-zero constant K ∈ R . Hence
γ = γ0 . See Lemma 4.2 [3].

b) Assume τα ,r,θ is in the limit point case at b. If γ0 
= γ , then ϕ and ψ are linearly
independent in [d,b) , since if there exists a non-zero constant K ∈ R such that
ψ = Kϕ then γ = γ0 . Therefore every solution f of τα ,r,θ f = E f in [d,b) can
be written as u = c1ϕ + c2ψ . But, since ϕ ,ψ ∈ L2(a,b) , then u ∈ L2(a,b) and
we get a contradiction to the limit point case. �

THEOREM 5.1. We have the following cases:

a) If α = α0 and r = r0 are fixed, then {(α0,r0,θ ) ∈ P(E)} is empty or is count-
able.

b) If α = α0 and θ = θ0 are fixed, then {(α0,r,θ0) ∈ P(E)} has at most one ele-
ment or {(α0,r,θ0) ∈ P(E)} = {α0}× (0,∞)×{θ0} .

c) If r = r0 and θ = θ0 are fixed, then {(α,r0,θ0)∈ P(E)} has at most one element
or {(α,r0,θ0) ∈ P(E)} = R×{r0}×{θ0} .

Proof.

a) Suppose that for some θ , (α0,r0,θ )∈P(E) . Then by Lemma 5.1, E ∈σp(H
δ0,γ0
α0,r0,θ ) .

By Theorem 4.1 a) , this implies (α0,r0, θ̃ ) ∈ P(E) if and only if θ̃ = θ + kπ ,
k ∈ Z . Therefore the set {(α0,r0,θ ) ∈ P(E)} is countable.

b) Suppose that for some r , (α0,r,θ0)∈P(E) . Then by Lemma 5.1, E ∈σp(H
δ0,γ0
α0,r,θ0

) .
By Theorem 4.1 b) , one has (α0, r̃,θ0) 
∈ P(E) , ∀r̃ 
= r or (α0, r̃,θ0) ∈ P(E) ,
∀r̃ > 0. Therefore the assertion follows.
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c) Suppose that for some α , (α,r0,θ0)∈P(E) . Then by Lemma 5.1, E ∈σp(H
δ0,γ0
α ,r0,θ0

) .
By Theorem 4.1 c) , one has (α̃,r0,θ0) 
∈ P(E) , ∀α̃ 
= α or (α̃ ,r0,θ0) ∈ P(E) ,
∀α̃ ∈ R . Therefore the assertion follows. �

REMARK 5.3. Observe that in b) of Theorem 5.1, if the eigenvector associated
to E is such that u(xn0−) = cosθn0 and u′(xn0−) = −sinθn0 or u(xn0−) = sinθn0

and u′(xn0−) = cosθn0 , then {(α0,r,θ0) ∈ P(E)} = {α0}× (0,∞)×{θ0} , otherwise
{(α0,r,θ0) ∈ P(E)} has at most one element. In case c) of the same theorem, if the
eigenvector associated to E is such that u(xn0−) = cosθn0 and u′(xn0−) = −sinθn0 ,
then {(α,r0,θ0) ∈ P(E)} = R×{r0}× {θ0} , otherwise {(α,r0,θ0) ∈ P(E)} has at
most one element.

6. Sturm-Liouville operators with random point interactions

In this section we use the previously obtained results to study the random case.
First the probability space Ω where the sequences of coupling constants live is con-
structed and then our random operators are defined.

The space of real valued sequences {ωn}n∈I , where I ⊆ Z , will be denoted by
RI . We introduce a measure in RI in the following way. Let {pn}n∈I be a sequence
of probability measures in R and consider the product measure P = ×n∈Ipn defined
on the product σ -algebra F of RI generated by the cylinder sets, that is, by the sets
of the form {ω : ω(i1) ∈ A1, . . . ,ω(in) ∈ An} for i1, . . . , in ∈ I , where A1, . . . ,An are
Borel sets in R . In this way a measure space Ω = (RI,F ,P) is constructed. See
chapter 1, section 1 in [12]. In some cases we may require for the measure space Ω
to be complete, i.e. subsets of sets of measure zero are measurable. Every measurable
space can be completed, see Theorem 1.36 [13].

If we fix R and Θ , and let Λ ∈ RI , we denote the operator HΛ,R,Θ as HΛ and
analogously HR and HΘ when the parameters Λ and Θ or Λ and R are fixed respec-
tively, see Remark 5.2. Assume moreover the limit point occurs at a or that τΛ,R,Θ is
regular at a and the same possibilities for b (see Definition 5.8).

Let Ω1 = (RI,F1,P1) , Ω2 = ((0,∞)I,F2,P2) and Ω3 = (RI,F3,P3) be prob-
ability spaces constructed as described above.

DEFINITON 6.1. For any E ∈ R , we define

PR,Θ(E) := {Λ ∈ RI : E ∈ σp(HΛ)}
PΛ,Θ(E) := {R ∈ (0,∞)I : E ∈ σp(HR)}

PΛ,R(E) := {Θ ∈ RI : E ∈ σp(HΘ)}
We shall prove the following theorem. Recall that a continuous measure p is a

measure such that p({x}) = 0, for any point x .

THEOREM 6.1. Assume Ω1 is complete and P1 = ×n∈I pn is such that pn are
continuous measures for all n ∈ I . Let E ∈ R fixed and B ⊂ PR,Θ(E) , for any measur-
able set B ∈ F1 . Then one of the following options holds:
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i) P1(B) = 0

ii) PR,Θ(E) = RI

REMARK 6.1. We will show that in some cases there is always a set of point
interactions M where option ii) happens. See Theorem 6.5 below.

REMARK 6.2. An analogous result holds for PΛ,Θ(E) : either P2(B)= 0 or PΛ,Θ(E)
= (0,∞)I .

Before proving Theorem6.1 we shall prove the following lemma, where Definition
2.1 is used.

LEMMA 6.1. For any measurable B ⊆ PR,Θ and any n ∈ I , set

Qn,E := {Λ ∈ B : ∃uΛ ∈ D(HΛ)\ {0}, HΛuΛ = EuΛ and

[(uΛ(xn−),u′Λ(xn−))T ] 
= [(cosθn,−sinθn)T ]}.

Then Qn,E is measurable and P1(Qn,E) = 0 .

Proof. Let

χB(Λ) =
{

1 if Λ ∈ B,
0 if Λ 
∈ B.

If Λ ∈ Qn,E , then from the definition of Qn,E it follows that χB(Λ) = 1.
Let f : RI\{n} → [0,∞) be defined by

f (Λ̃) :=
∫

R

χB(Λ)dpn(Λ(n)),

where Λ̃ = ∑
k∈I\{n}

Λ(k)e(k) . Here e(k) = (em)m∈I are the canonical vectors with en-

tries em = 0 if k 
= m and ek = 1. The measurability of f follows from Fubini’s
Theorem. (See [13, Theorem 7.8].)

If Λ = ∑
k∈I

Λ(k)e(k) ∈ Qn,E , then f (Λ̃) = 0, where Λ̃ = ∑
k∈I\{n}

Λ(k)e(k) . This

follows from Remark 5.3 since pn is continuous.
Hence Qn,E ⊆ [ f−1({0})×R]∩B .
Now, using Fubini,∫

f−1({0})×R

χB(Λ)dP1 =
∫

f−1({0})
dP1(Λ̃)

∫
R

χB(Λ)dpn(Λ(n))

=
∫

f−1({0})
f (Λ̃)dP1(Λ̃) = 0.

Then, ∫
[ f−1({0})×R]∩B

χB(Λ)dP1 = 0,
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and since χB(Λ) = 1 in B , we get P1([ f−1({0})×R]∩B) = 0.
Since the measure dP1 is complete, any subset of a measurable set of measure

zero is measurable with measure zero. Therefore Qn,E is measurable. �
Proof of Theorem 6.1. It will be enough to prove that if ii) doesn’t hold, then i)

must hold.
Assume that there exists Λ0 ∈ RI such that E is not an eigenvalue of HΛ0 .
If E is not an eigenvalue of HΛ for every Λ ∈ RI , then P1(B) = 0 and the result

follows.
Suppose now Λ ∈ B , then E ∈ σp(HΛ) , i.e. there exist uΛ ∈ D(HΛ) \ {0} such

that HΛuΛ = EuΛ . Then Λ ∈ Qn,E for some n ∈ I .
This follows because if [(uΛ(xn−),u′Λ(xn−))T ] = [(cosθn,−sinθn)T ] for every

n∈ I , then there exist cn ∈ R such that (u(xn−),u′(xn−))T = cn(cosθ ,−sinθ ) , hence

AΛ(n),rn,θn

(
u(xn−)
u′(xn−)

)
= AΛ(n),rn,θncn

(
cosθn

−sinθn

)
= cnrn

(
1 Λ(n)
0 1

)(
1
0

)
= cnrn

(
1
0

)

Since the right hand side does not depend on Λ , from the definition of HΛ , E must be
an eigenvalue of HΛ for all Λ ∈ RI , in particular E is an eigenvalue of HΛ0 , cf. proof
Theorem 4.1 c) , which is not possible by our initial assumption. Therefore

B ⊂
⋃
n∈I

Qn,E ,

where Qn,E was defined in Lemma 6.1. Using that lemma we obtain P1(
⋃

n∈I
Qn) = 0.

Therefore the result follows. �

REMARK 6.3. If τΛ,R,Θ is in lcc at b we need to assume it is regular at b , oth-
erwise we cannot assure that the function uΛ in the proof of Theorem 6.1 satisfies the
boundary conditions at b for every Λ(n) , and the same for the endpoint a .

THEOREM 6.2. Assume P3 = ×n∈Iqn is such that qn0 is a continuous measure
for some n0 ∈ I . Let E ∈ R be fixed and let B be any measurable subset of PΛ,R(E) .
Then P3(B) = 0 .

Proof. Let

χB(Θ) =
{

1 if Θ ∈ B,
0 if Θ 
∈ B,

and define f : RI\{n0} → [0,∞) as

f (Θ̃) :=
∫

R

χB(Θ)dqn0(Θ(n0)),

where Θ̃ = ∑
k∈I\{n0}

Θ(k)e(k) . Here e(k) = (em)m∈I are the canonical vectors with

entries em = 0 if k 
= m and ek = 1. The measurability of f follows from Fubini’s
Theorem. (See [13, Theorem 7.8].)
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If Θ = ∑
k∈I

Θ(k)e(k) ∈ B , then f (Θ̃) = 0, where Θ̃ = ∑
k∈I\{n}

Θ(k)e(k) . This fol-

lows from Theorem 5.1 since qn0 is continuous.
Hence B ⊆ [ f−1({0})×R] .
Now, using Fubini,∫

f−1({0})×R

χB(Θ)dP3 =
∫

f−1({0})
dP3(Θ̃)

∫
R

χB(Θ)dqn0(Θ(n0))

=
∫

f−1({0})
f (Θ̃)dP3(Θ̃) = 0.

Then, P3([ f−1({0})×R]) = 0. Therefore P3(B) = 0. �

DEFINITON 6.2. For any E ∈ R , we define

P(E) := {(Λ,R,Θ) ∈ Ω1×Ω2×Ω3 : E ∈ σp(HΛ,R,Θ)}.
In the following Theorems the hypothesis of measurability of the set P(E) is cru-

cial. This assumption can be satisfied for example, if we assume the operators HΛ,R,Θ
are measurable. See Theorem 4.6 [4] which states this fact for any family of measurable
operators defined in a separable Hilbert space.

THEOREM 6.3. Assume P3 = ×n∈Iqn is such that qn0 is a continuous measure
for some n0 ∈ I . Let E ∈ R be fixed and suppose that P(E) is measurable. Let
P = P1×P2×P3 . Then,

P(P(E)) = 0.

Proof. Let

χP(E)(Λ,R,Θ) =
{

1 if (Λ,R,Θ) ∈ P(E),
0 if (Λ,R,Θ) 
∈ P(E).

Then,

P(P(E)) =
∫

Ω1×Ω2×Ω3

χP(E)(Λ,R,Θ)dP.

Using Fubini we have∫
Ω1×Ω2×Ω3

χP(E)(Λ,R,Θ)dP =
∫

Ω1×Ω2

dP1×dP2

∫
Ω3

χPΛ,R(E)(Θ)dP3(Θ),

where PΛ,R(E) is as in Definition 6.1.
Note that ∫

Ω3

χPΛ,R(E)(Θ)dP3(Θ) = P3(PΛ,R(E)),

and that Theorem 6.2 gives P3(PR,Θ(E)) = 0. Thus, the theorem follows. �

THEOREM 6.4. Assume Ω1 is complete and P1 = ×n∈Ipn is such that pn are
continuous measures for all n ∈ I . Let E ∈ R be fixed and suppose that P(E) is
measurable. Let P = P1 ×P2×P3 . Then one of the following options holds:
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i) P(P(E)) = 0 ,

ii) P(P(E)) = 1 .

Proof. Let

χP(E)(Λ,R,Θ) =
{

1 if (Λ,R,Θ) ∈ P(E),
0 if (Λ,R,Θ) 
∈ P(E).

Then,

P(P(E)) =
∫

Ω1×Ω2×Ω3

χP(E)(Λ,R,Θ)dP.

Using Fubini we have∫
Ω1×Ω2×Ω3

χP(E)(Λ,R,Θ)dP =
∫

Ω2×Ω3

dP2×dP3

∫
Ω1

χPR,Θ(E)(Λ)dP1(Λ),

where PR,Θ(E) is as in Definition 6.1. Since

∫
Ω

χPR,Θ(E)(Λ)dP(Λ) = P(PR,Θ(E)),

using Theorem 6.1 we conclude that either P(PR,Θ(E)) = 0 or P(PR,Θ(E)) = 1. There-
fore the theorem follows. �

REMARK 6.4. An analogous result holds if we assume that Ω2 satisfies the hy-
pothesis of the theorem instead of Ω1 .

6.1. Oscillation of solutions

The next result, Theorem 6.5, shows that it is always possible to construct a set of
point interactions M such that option ii) in Theorem 6.1 occurs.

Let H = HΛ,R,Θ with Λ = {0}n∈I , R = {1}n∈I and Θ = {0}n∈I be the unper-
turbed operator. This operator does not depend on M and I , and it is the selfadjoint
operator without interactions. The matrices introduced in Definition 5.1 are now the
identity, that is

Aαn,rn,θn =
(

1 0
0 1

)

DEFINITON 6.3. (See Section XI.6 in [7]) The equation

(τ −E)u = 0

is said to be oscillatory on an interval J if every solution has infinitely many zeros on
J .

If t = b is a (possibly infinite) endpoint of J which does not belong to J , then the
equation is said to be oscillatory at t = b if every solution has an infinite number of
zeros in J accumulating at b .
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Define
ϕ(x) := arg(u′(x)+ iu(x)) x ∈ (a,b).

The zeros of the solution u are given by the values of x such that ϕ(x) = kπ for some
integer k . (τ −E)u = 0 is oscillatory at b if and only if ϕ(x) → ∞ as x → b ; see [8,
p. 9].

LEMMA 6.2. Given two consecutive zeros t1,t2 ∈ (a,b) of a solution u of (τ −
E)u = 0 and given a vector v = (v1,v2)T ∈ R2 , there exists a point x0 ∈ [t1,t2) such
that [(

u(x0)
u′(x0)

)]
=

[(
v1

v2

)]
.

Proof. Since t1 and t2 are zeros of the solution u , there exist k1,k2 ∈ Z such that
ϕ(t1) = k1π and ϕ(t2) = k2π . Since ϕ cannot tend to a multiple of π from above,
see [2, Theorem 8.4.3 ii)], we have k2 = k1 + 1. Since ϕ is continuous, there exists
x0 ∈ [t1, t2) such that

arg(u′(x0)+ iu(x0)) = arg(v2 + iv1).

Therefore, by Remark 2.1, [(
u(x0)
u′(x0)

)]
=

[(
v1

v2

)]
. �

THEOREM 6.5. Let (τ −E)u = 0 be oscillatory on (a,b) , −∞ � a < b � ∞ ,
E ∈ σp(H) and the zeros of u does not accumulate at any interior point of (a,b) . Fix
R = {rn}n∈I and Θ = {θn}n∈I , where I is finite or I = N . Then there exists M ⊂ R

discrete such that PR,Θ(E) = RI .

Proof. Assume Hu = Eu .
Suppose I is finite, I = {n1,n2, . . . ,nr} , and Θ = {θn1 , . . . ,θnr} . Let t0,t1, . . . ,tr

be r+1 consecutive zeros of u . For ni ∈ I , let xni be such that xni ∈ [ti−1, ti) and

[(
u(xni)
u′(xni)

)]
=

[(
cosθni

−sinθni

)]
.

Due to Lemma 6.2, such an xni exists. Let M = {xni}r
i=1 and take Aαni ,rni ,θni

= Pαni
Hrni

Eθni
as in Definition 5.1, for all ni ∈ I . Then,

Aαni ,rni ,θni

(
u(xni−)
u′(xni−)

)
= Aαni ,rni ,θni

(
cosθni

−sinθni

)
= rni

(
1 αni

0 1

)(
1
0

)
= rni

(
1
0

)
.

From the definition of HΛ , E must be an eigenvalue of HΛ for all Λ ∈ RI , and there-
fore PR,Θ(E) = RI .
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Suppose I = N . Let us assume that there are infinitely many zeros of u , increas-
ingly enumerated by t0,t1, . . . . Let Θ = {θn}n∈I . Let x1 be such that x1 ∈ [t0, t1) and[(

u(x1)
u′(x1)

)]
=

[(
cosθ1

−sinθ1

)]
.

As above let x2 be such that x2 ∈ [t1,t2) and[(
u(x2)
u′(x2)

)]
=

[(
cosθ2

−sinθ2

)]
.

In this way we get a sequence M := {xn}n∈I . Take Aαn,rn,θn = PαnHrEθn as in
Definition 5.1. Then,

Aαn,rn,θn

(
u(xn−)
u′(xn−)

)
= Aαn,rn,θn

(
cosθn

−sinθn

)
= rn

(
1 αn

0 1

)(
1
0

)
= rn

(
1
0

)
.

From the definition of HΛ , E must be an eigenvalue of HΛ for all Λ ∈ RI , and there-
fore PR,Θ(E) = RI . �
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