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ADDITIVE LOCAL MULTIPLICATIONS

AND ZERO–PRESERVING MAPS ON C(X)

QIAN HU

Abstract. Suppose X is a compact Hausdorff space. In terms of topological properties of X , we
find topological conditions on X that are equivalent to each of the following: 1. Every additive
local multiplication on C(X) is a multiplication, 2. Every additive local multiplication on CR (X)
is a multiplication, 3. Every additive map on C(X) that is zero-preserving (i.e., f (x) = 0 implies
(T f )(x) = 0) has the form T ( f ) = T (1)Re f +T (i) Im f .
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