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THE NORM OF AN INFINITE L–MATRIX

LUDOVICK BOUTHAT AND JAVAD MASHREGHI ∗

Abstract. Evaluating the norm of infinite matrices, as operators acting on the sequence space
�2 , is not an easy task. For a few celebrated matrices, e.g., the Hilbert matrix and the Cesàro
matrix, the precise value of the norm is known. But, for many other important cases we use
estimated values of norm. In this note, we study the norm of L -matrices A = [an] , which appear
in studying Hadamard multipliers of function spaces. We provide some necessary and sufficient
conditions for the finiteness of norm and study the sharpness of these conditions. In particular,
for the decay rate an = O(1/nα ) , our characterization is complete. Finally, parallel to the above
classical results of Hilbert and Cesàro, we succeed to show that ‖As‖ = 4 for the family of
L -matrices As = [1/(n+ s)] , irrelevant of the parameter s which runs over [1/2,∞) .
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