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THE NORM OF AN INFINITE L–MATRIX

LUDOVICK BOUTHAT AND JAVAD MASHREGHI ∗

(Communicated by F. Kittaneh)

Abstract. Evaluating the norm of infinite matrices, as operators acting on the sequence space
�2 , is not an easy task. For a few celebrated matrices, e.g., the Hilbert matrix and the Cesàro
matrix, the precise value of the norm is known. But, for many other important cases we use
estimated values of norm. In this note, we study the norm of L -matrices A = [an] , which appear
in studying Hadamard multipliers of function spaces. We provide some necessary and sufficient
conditions for the finiteness of norm and study the sharpness of these conditions. In particular,
for the decay rate an = O(1/nα ) , our characterization is complete. Finally, parallel to the above
classical results of Hilbert and Cesàro, we succeed to show that ‖As‖ = 4 for the family of
L -matrices As = [1/(n+ s)] , irrelevant of the parameter s which runs over [1/2,∞) .

1. Introduction

Infinite matrices appear in studying bounded linear operators on infinite dimen-
sional Hilbert spaces. In particular, we consider the sequence Hilbert space �2 =

{(x0,x1, . . .) : ‖x‖ < ∞} , where ‖x‖ :=
(
∑∞

n=0 |xn|2
) 1

2 , and the operators A : �2 → �2

equipped with the operator norm ‖A‖�2→�2 = supx∈�2\{0}
‖Ax‖
‖x‖ . Each such operator has

the canonical representation A = [ai j] , where ai j = 〈Aej,ei〉�2 , with respect to the stan-
dard orthonormal basis (en)n�0 of �2 . Due to connections to function theory, the index
is started from zero. However, without loss of generality, it can equally start from one.
The precise determination of ‖A‖�2→�2 is usually a difficult task. Except for some spe-
cial cases, we are mostly content with upper estimations of the norm. The Schur test is
an effective method to obtain such upper bounds [13].

Let us mention two celebrated examples. Upon studying some questions in ap-
proximation theory, the matrix

H =

⎛
⎜⎜⎜⎝

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠
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was introduced by D. Hilbert in 1894 [7]. He obtained exact formula for the determinant
of finite Hilbert matrices and investigated their asymptotics. We also know that ‖H‖ =
π [3, 5]. The Cesàro matrix

C =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

is related to the simplest Cesàro summation method which appears in studying divergent
series [6]. We know that ‖C‖ = 2 [2]. As a byproduct of our main results, we show
that

As =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
s

1
s+1

1
s+2 · · ·

1
s+1

1
s+1

1
s+2 · · ·

1
s+2

1
s+2

1
s+2 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

is a bounded operator on �2 and, more importantly, we have ‖As‖ = 4 for all s � 1/2.
Infinite matrices have been the center of several recent studies. It is not possible to

address them all here. We mention just a few which actually reveals authors’ research
preferences. Bozkurt [1], Solak [14], Solak–Bozkurt [15] and Orr [12] studied the norm
of infinite matrices. van de Mee–Seatzu [16] gave a very interesting algorithm to gen-
erate infinite multi-index positive self-adjoint Toeplitz matrices. Ismail–Štampach [9]
and Dai–Ismail–Wang [4] provided a complete spectral analysis of self-adjoint opera-
tors action on �2(Z) and studied their connections to difference equations. See also N.
Hindman [8].

2. The origin of L -matrices and main results

We encountered these matrices in studying the Hadamard multipliers in function
spaces [10, 11]. Characterizing Mult(X) , the multipliers of a Banach space of analytic
functions on the open unit disc D , is essential in various studies of function spaces,
e.g., zero sets, invariant subspaces, cyclic elements, etc. In [11], we observed that
h(z) = ∑∞

n=0 cnzn is a Hadamard multiplier for the Dirichlet Space Dω if and only if the
infinite matrix

Th =

⎛
⎜⎜⎜⎜⎜⎝

c1− c0 c2− c1 c3− c2 c4− c3 · · ·
0 c2− c1 c3− c2 c4− c3 · · ·
0 0 c3− c2 c4− c3 · · ·
0 0 0 c4− c3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

acts as a bonded operator on �2 . This essential observation gave birth to the study
of L-matrices, which is an interesting subject by itself. Let (an)n�0 be a sequence of



THE NORM OF AN INFINITE L-MATRIX 49

complex numbers. Then the infinite matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a1 a1 a2 a3 · · ·
a2 a2 a2 a3 · · ·
a3 a3 a3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

is called an L-matrix. Abusing the notation, we will write A = [an] . However, despite
being slightly confusing, a general element of A will also be denoted by ai j , where i
and j run through {0,1,2, . . .} . This concept should not be mixed with another family
of matrices, which is also called L-matrices, in the theory of large linear systems [17,
Page 42].

In this note, our main goal is to evaluate the norm of an L -matrix. We start with
the necessary condition

an = O
( 1√

n

)
, (n → ∞),

in Section 3 and study its sharpness. Then, in Section 4, we study positive decreasing
sequences. In Section 5, we study the general case and present a sufficient condition.
Section 6 contains two definitive results. First, the general theorem leads to a complete
description of sequences which satisfy the decay rate 1/nα . Second, it also enables us
to detect a very interesting phenomenon for a special family of L -matrices which de-
pend on a parameter. Surprisingly enough, the norm does not depend on the parameter
and, moreover, we can precisely determine the norm.

3. A necessary condition and its sharpness

If A is bounded on �2 , then each column should be an element of �2 . Therefore,
by considering the norm of n -th column

(n+1)|an|2 + |an+1|2 + |an+2|2 + · · ·< ∞,

we see that a necessary condition is

an = O
( 1√

n

)
, (n → ∞). (1)

We provide two examples; one to show that this condition is not sufficient, the other to
show that the rate 1/

√
n is sharp.

EXAMPLE 1. Let

a4n =
1

n2n , (n � 1),

and a j = 0 for other values of index. This is a sparse matrix for which we have

∞

∑
i, j=0

|ai j|2 =
∞

∑
n=1

2 ·4n +1
n24n < ∞.
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Therefore, A is a bounded (indeed, Hilbert–Schmidt) operator on �2 . We see that

√
mam =

{ log4
logm if m = 4n,

0 otherwise.

However, with a similar technique, the decay rate 1/ logm can be decreased as much
as required. As a matter of fact, let ϕ(n) be any sequence of positive number with
ϕ(n) → 0, as n → ∞ . Note that there is no restriction of the rate of decay of ϕ(n) (in
the previous concrete example, we have ϕ(n) = 1/n ). Pick a subsequence nk such that

∞

∑
k=1

ϕ2(nk) < ∞.

E.g., we can choose nk such that ϕ(nk) < 1/k . Then put

a4nk =
ϕ(nk)
2nk

, (k � 1),

and a j = 0 for other values of index. Then, as in the above calculation, we easily verify
that A is a Hilbert–Schmidt operator on �2 and, moreover,

√
nan = O

(
ϕ(n)

)
, (as n → ∞).

This example shows that the decay rate 1/
√

n in the necessary condition (1) is optimal.

EXAMPLE 2. To show that the condition (1) is not sufficient consider

an =
1

(n+1)α , (n � 0),

where α < 1 is fixed. Even though we just need the case α = 1/2 at this stage, we
treat a slightly more general case to provide the motivation for an upcoming sufficient
condition. Now consider the vector

x = (1α , 2α , . . . ,nα ,0,0,0, . . .)tr.

Then
‖x‖2 = 12α +22α + · · ·+n2α 	 n2α+1,

while

Ax =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
∗
∗
...
∗
∗
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
∗
...
∗
∗
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ · · ·+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
...
1
∗
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where ∗s represent some positive numbers, and thus

‖Ax‖2 =
∞

∑
j=0

|(Ax) j|2 �
n

∑
j=1

j2 	 n3.

Here, by X(n) 	 Y (n) we mean that there are two positive constants c1 and c2 , inde-
pendent of the index n , such that the inequalities c1X(n) � Y (n) � c2X(n) uniformly
hold for all values of n . Therefore,

‖Ax‖
‖x‖ � Cn1−α → ∞.

This observation shows that the condition

an = O
( 1

nα

)
, (α < 1),

is not sufficient to ensure that A is a bounded operator on �2 . This example also raises
the following question: is the condition

an = O
(1

n

)
, (n → ∞), (2)

sufficient to ensure the boundedness of A on �2 ? We will shortly see that the answer is
affirmative, and thus we conclude that the exponent α = 1 in the expression (2) is also
sharp.

4. The sufficient condition – decreasing sequences

According to a special case of Schur’s test, if T = [ti j] is a symmetric matrix with
positive entries and there are pi > 0 and α > 0 such that

∑
i

piti j � α p j

for all j , then T is a bounded operator on �2 with ‖T‖�2→�2 � α . This criteria is
applied below to obtain a sufficient condition for the boundedness of L-matrices. We
will see that the condition provides a complete characterization in some particular cases.
We start with the special case of decreasing sequences. Then we present the general
situation.

THEOREM 1. Let A = [an] be an L-matrix such that

a0 > a1 > a2 > · · · > 0

and that

Δ := sup
n�1

2an(an +an−1)
an−1−an

< ∞.

Then A ∈ L (�2) and, moreover,

‖A‖�2→�2 � max{2a0, Δ}.
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Proof. Let p0 := 1 and

pn =
an−1−an

2anan−1
Sn−1, (n � 1), (3)

where S0 := a0 and, for n � 1,

Sn :=
a0

2n

(
1+

a1

a0

)(
1+

a2

a1

)(
1+

a3

a2

)
· · ·

(
1+

an

an−1

)
. (4)

Since each factor
1
2

(
1+

an

an−1

)
< 1,

the limit S∞ := limn→∞ Sn exists and S∞ � 0. By induction, Sn satisfies

Sn = an

n

∑
i=0

pi, (n � 0), (5)

and thus Sn−1−Sn = anpn , n � 1. Hence,

∞

∑
i=n+1

aipi = Sn−S∞ � Sn, (n � 0). (6)

Therefore, by (5) and (6), for a fixed j � 0,

∞

∑
i=0

piai j = a j

j

∑
i=0

pi +
∞

∑
i= j+1

piai � 2S j.

For j = 0, this becomes
∞

∑
i=0

piai0 � 2a0p0,

and, for j � 1, we get

∞

∑
i=0

piai j � 2S j =
(

1+
a j

a j−1

)
S j−1 =

2a j(a j−1 +a j)
a j−1−a j

p j � Δp j,

which gives
1
p j

∞

∑
i=0

piai j � max{2a0, Δ}, ( j � 0).

Therefore, by Schur’s test, A ∈ L (�2) with ‖A‖ � max{2a0, Δ} . �

5. The sufficient condition – general case

As the combination an−1−an in the denominator of expression for Δ shows, that
the sequence (an) is strictly decreasing was heavily used in the proof of Theorem 1.
For the general case, we need to find a remedy. This is done in the following, where the
role is played by the sequence δn .
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THEOREM 2. Let A = [an] be an L-matrix. Suppose that there is a sequence of
strictly decreasing positive numbers δn , n � 0 , such that

Δ := sup
n�1

(|an|+ δn−1)(|an|+ δn)
δn−1− δn

< ∞.

Then A ∈ L (�2) and, moreover,

‖A‖�2→�2 � max{δ0 + |a0|, Δ}.

Proof. Since
∥∥[an]

∥∥
�2→�2 �

∥∥[|an|]
∥∥

�2→�2 , without loss of generality, we assume
that an � 0, for all n � 0. Let p0 := 1 and

pn :=
δn−1− δn

δn +an

n−1

∑
i=0

pi, (n � 1).

By induction, it is straightforward to see that

pn =
δn−1− δn

(δn +an)δn−1
Sn−1, (n � 1),

where S0 := δ0 and

Sn :=
(

δ0 +a1

δ1 +a1

)(
δ1 +a2

δ2 +a2

)
· · ·

(
δn−1 +an

δn +an

)
δn, (n � 1).

Equivalently, Sn satisfies

Sn = δn

n

∑
i=0

pi, (n � 0). (7)

The sequence Sn also satisfies the recurrence relation

Sn−1−Sn = anpn, (n � 1). (8)

Hence, as in the previous case, the sequence Sn is positive decreasing and

S∞ := lim
n→∞

Sn

exists and S∞ � 0. As a matter of fact, we can show that under some mild condi-
tions S∞ = 0, e.g., δn = O(an) suffices. But, this is not needed below. The difference
equation (8) also implies

∞

∑
i=n+1

aipi = Sn−S∞ � Sn, (n � 0). (9)
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Now, we are ready to apply Schur’s test. Hence, by (7) and (9), for a fixed j � 0,

∞

∑
i=0

piai j = a j

j

∑
i=0

pi +
∞

∑
i= j+1

piai �
a j

δ j
S j +S j

= (δ j +a j)
S j

δ j
.

For j = 0, this becomes
∞

∑
i=0

piai0 � (δ0 +a0)p0.

For j � 1, we get

∞

∑
i=0

piai j � (δ j +a j)
S j

δ j
= (δ j +a j)

(
δ j−1 +a j

δ j +a j

)
S j−1

δ j−1

=
(δ j−1 +a j)(δ j +a j)

δ j−1− δ j
p j � Δp j.

In Short,
1
p j

∞

∑
i=0

piai j � max{δ0 +a0, Δ}, ( j � 0).

Therefore, by Schur’s test, A ∈ L (�2) and ‖A‖ � max{δ0 +a0, Δ} . �

6. The decay 1/nα

In section 3, we started the discussion on the condition an = O(1/nα) . Using
Theorem 2 we can complete the picture as follows. For the boundedness of L-matrix
A = [an] , the condition an = O(1/nα) is⎧⎨

⎩
necessary if α = 1

2 ,

neither necessary nor sufficient if 1
2 < α < 1,

sufficient if α = 1.

The necessary condition was shown at the beginning of section 3. Moreover, Examples
1, and 2 reveal that the condition an = O(1/nα) , 1

2 < α < 1, is neither necessary nor
sufficient. It remains to verify the last part. We state it as a simple corollary of Theorem
2.

COROLLARY 1. Let A = [an] be an L-matrix, such that

an = O
(1

n

)
, (n → ∞).

Then A ∈ L (�2) .
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Proof. By assumption, there is a constant M > 0 such that

|an| � M
n+1

, (n � 0).

Put

δn =
M

n+1
, (n � 0).

Then, for n � 1,

(|an|+ δn−1)(|an|+ δn)
δn−1− δn

�
( M

n+1 + M
n )( M

n+1 + M
n+1)

M
n − M

n+1

=
2(2n+1)M

n+1
� 4M < ∞.

Hence, by Theorem 2, A is a bounded operator on �2 . �
In particular, Corollary 1 ensures that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

1
3

1
4 · · ·

1
2

1
2

1
3

1
4 · · ·

1
3

1
3

1
3

1
4 · · ·

1
4

1
4

1
4

1
4 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ L (�2),

which is a known result. However, in this special case, we can precisely determine the
norm.

COROLLARY 2. For the L-matrix As = [ 1
n+s ] , where s � 1

2 , we have

‖A‖�2→�2 = 4.

Proof. Upper bound: by Theorem 1, we have

‖As‖ � max

{
2
s
, 4− 2

n+ s
(n � 1)

}
= 4.

Lower bound: we use the inequality

‖As‖ � ‖Ax‖
‖x‖ ,

where x is properly chosen. In fact, using the notations in the proof of Theorem 1, we
set

x = xm := (p0, p1, p2, · · · , pm,0,0, · · ·)tr ,
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and then let m → ∞ . Write

(y0,y1,y2, · · · , · · ·)tr := Asxm.

Then, for 0 � n � m−1, we have

yn = an

n

∑
j=0

p j +
m

∑
j=n+1

a j p j

while, for n � m ,

yn = an

m

∑
j=0

p j.

Therefore, according to (5), we can simplify yn as

yn =

⎧⎨
⎩

2Sn−Sm if 0 � n � m−1,

an
am

Sm if n � m.

This observation implies

‖Asxm‖2 =
m−1

∑
n=0

(2Sn−Sm)2 +
S2

m

a2
m

∞

∑
n=m

a2
n.

and thus

‖Asxm‖2 � 4
m−1

∑
n=0

S2
n−4Sm

m−1

∑
n=0

Sn. (10)

To effectively use (10), we need to find Sn , n � 0. For the matrix A , S0 = 1
s and for

n � 1, by (4),

Sn =
a0

2n

(
1+

a1

a0

)(
1+

a2

a1

)(
1+

a3

a2

)
· · ·

(
1+

an

an−1

)

=
1

2ns

(
1+

s
s+1

)(
1+

s+1
s+2

)
· · ·

(
1+

s+n−1
s+n

)

=
(s+ 1

2)(s+ 3
2) · · · (s+ 2n−1

2 )
s(s+1)(s+2) · · · (s+n)

=
Γ(s)Γ(s+n+ 1

2 )
Γ(s+ 1

2)Γ(s+n+1)
.

Hence, by (3),

pn =
1
2
Sn−1 =

Γ(s)Γ(s+n− 1
2)

2Γ(s+ 1
2 )Γ(s+n)

	 1√
n
, (n � 1), (11)

where Stirling’s formula was used. By a combinatorial identity

m−1

∑
n=0

Sn = 2(m+ s)Sm−2.
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As a matter of fact, such a precise identity is no needed. According to (11), Sn =
O(1/

√
n) and thus ∑m−1

n=0 Sn = O(
√

m) . This is enough for us. Note that in the precise
identity above, we also have 2(m+ s)Sm−2 = O(

√
m) .

Therefore, we can write (10) as

‖Asxm‖2 � 16‖xm‖2−8(m+ s)S2
m−16 = 16‖xm‖2 +O(1).

As the last observation, by (11),

‖xm‖2 =
m

∑
j=0

p j 	
m

∑
j=1

1√
j
	√

m → ∞.

Finally, since ‖xm‖→ ∞ , we conclude that

‖As‖ � lim
m→∞

‖Axm‖
‖xm‖ = 4. �

7. Concluding remarks

1. For the L-matrix As = [ 1
n+s ] , since a0 = 1

s , we certainly have

‖As‖�2→�2 > 4, (0 < s <
1
4
).

On the other hand, Corollary 2, says

‖As‖�2→�2 = 4, (s � 1
2
).

We have not being able to determine the behavior of ‖As‖�2→�2 for small val-
ues of s , in particular in between 1/4 and 1/2. An interesting question is to
determine the constant s0 , where s0 is defined by

s0 := inf{s : ‖As‖�2→�2 = 4}.
At this stage, we just know that 1

4 � s0 � 1
2 , even thoughwith some more accurate

calculations it is possible to slightly modify the end points. However, it seems
that the current technics are not powerful enough to detect s0 .

2. In this note, we just considered the �2 norm. What happens if we consider A as
a mapping between different �p spaces?

3. Does the norm of As still remain constant, e.g., for an interval [spq,∞) , when
we treat As as an operator mapping �p to �q ? How does spq depend on the
parameters p and q?

4. Lacunary L -matrices were considered in Example 1. In general case, is it possi-
ble to estimate their norm at least as mappings on �2 ?
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