oerators
nd
atrices
Volume 15, Number 1 (2021), 85-103 doi:10.7153/0am-2021-15-06

RANKS OF COMMUTATORS OF TRUNCATED TOEPLITZ
OPERATORS ON FINITE DIMENSIONAL SPACES

YONG CHEN, KEI JI IZUCHI AND YOUNG JOO LEE

(Communicated by S. McCullough)

Abstract. We study the rank of commutator [A; ,A,*T] of truncated Toeplitz operators An and A}
with several type of inner symbols 1] on the model space .7# with finite Blaschke product 6.

1. Introduction

Let D be the unit disk and T be the unit circle. We let H> be the classical Hardy
space on D which can be identified with a closed subspace of L*. Here, L? := L”(T, o)
denotes the usual Lebesgue space on T where ¢ is the normalized Lebesgue measure
on T. A function 6 € H? is said to be inner if |0(z)| = 1 a.e. on T. To each non-
constant inner function 6, we associate the model space 7 defined by

My =H*S OH?
which is a nontrivial invariant subspace for the backward shift operator on H>. When
0 is a finite Blaschke product (see Section 2 for its definition) with order N, that is,
ord@ = N, then dim .7 = N (see Lemma 4), so in this case, .73 is a finite dimensional
space. Let Py be the Hilbert space orthogonal projection from L?> to 7. Given a

function ¢ € L™, the truncated Toeplitz operator (briefly, TTO) A, with symbol ¢ is
defined on %3 by

Aof =Po(0f)

for functions f € #p. Then Ay is a bounded linear operator on .#p and clearly Ay, =
Ag.

Truncated Toeplitz operators are compressions of multiplication operators to model
subspaces of the Hardy space H?; they represent a far reaching generalization of clas-
sical Toeplitz matrices. Although particular case had appeared before in the literature,
the general theory has been initiated in the seminal paper [11]. Since then, truncated
Toeplitz operators have constituted an active area of research. We mention only a few
papers: [1, 2, 3, 5, 6, 12, 13]; see also the recent survey [9] and the references within.
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In a recent paper [4], the rank of complex skew symmetric operators has been
studied and, as a consequence, the following result about the rank of a commutator of
two TTOs has been known. For two bounded operators S and 7 on a Hilbert space, we
let [S,T] = ST — TS be the commutator of S and T .

THEOREM 1. Let 0 be a non-constant inner function and @,y € L. If [Ap,Ay]
has finite rank on #y, then the rank of [Ay,Ay] must be even.

In view of this result, one might ask whether for any non-constant inner function
6 and integer N > 1, there is a commutator of two TTOs on 7 whose rank is 2N
exactly. At the same paper, it has been proved that this is true on model spaces cor-
responding to monomials by showing [AZN,A:N} has rank exactly 2N on J#» when
2N < n; see Proposition 7 of [4]. Motivated by this result, it is natural to ask the
following question.

QUESTION 2. For finite Blaschke product 6 and inner function 77, what is the
rank of the commutator [An,A}] on finite dimensional space ./ ?

In this paper, we consider the model space corresponding to general finite Blaschke
product 6 and then study the rank of the commutator [A;, 7A’,‘,] induced by several types
of inner functions 7).

Suppose dim 7 = N. Note that [An,A}] is self adjoint. If the dimension of
ker[An,A}] = L is known, then the rank of [Ay,A}] is N —L. So it is important to
characterize the kernel of [AT, ,Am . Along this idea, we show that when 2ordn <ord 6,
the rank of [An,A}] equals to 2ordn ; see Theorem 7 in Section 3. This result extends
Proposition 7 of [4] mentioned above, and also is closely related to kernels of Toeplitz
operators on the Hardy space and the multipliers between certain model spaces; see
Remark 8.

It is difficult to characterize the rank of [Ap,A}] when 2ordn > ord6. So we
consider some special cases. We first consider certain inner symbols 17 which has a
nontrivial common inner divisor with 0 ; see Theorems 11 and 12 in Section 3. We also
consider finite Blaschke product 17 which has no nontrivial common inner divisor with
6 and obtain a rank inequality; see Theorem 15 in Section 3.

The paper is organized as follows. In Section 2 we just give several lemmas which
will be used in the proofs of the main results. In Section 3 we present the main results
and their proofs, also some corollaries are given. At Section 4, we give two examples
relating to results obtained in Sections 3.

2. Preliminaries

Given y € L™, we recall the classical Toeplitz operator Ty, with symbol y defined
on H? by Tyf=P(yf) for feH 2 where P is the orthogonal projection from L? onto
H? which can be given by
Pe(w) = 8(%)

Trl—wZ

do(¢), weD
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for functions g € L. Note that T, =Ty. For ¢ € H” and inner 0, it is easy to check
that T(;Z%% C % and hence

AL f =T f (1)
for functions f € J#p. Also, it is easy to verify that for @,y € H”, ApAy = Agy on
Ay .

Given an inner function 6, it is well known that the orthogonal projection Py
admits the following integral representation

w)6
Pof(w) = [ £(0) L20080) o0y, weD
1—wg
and hence Py f = Pf — OP(6f) for functions f € L. In particular, we have
—P
rgp =100 2)

for every f € H?. See Chapter 5 of [8] for details and related facts.

We start with the following kernel description of a certain commutator of TTOs
which will be useful. In the following, rank7 and ker7 denote the rank and kernel
respectively of a bounded operator T on a Hilbert space.

LEMMA 3. Let 8,1 be two inner functions and f € 7. If Ay is the TTO defined
on Hy, then f € ker[An,A}] if and only if

Nf —NPyf —Po(nf)+PyPo(nf) € NOH".

Proof. By (1) and (2), we see

* * —P
AnAnf:AnTnf:Anfninf

=Po(f —Pnf)
and similarly

AZAnf=AyPe(nf) =T Pe(nf) =
for functions f € 7. Thus, f € ker[Ap,A}] if and only if

FoPof— Py(nf) —nPnPe(nf)

which gives the desired assertion. The proof is complete. [J

Py(nf) — PpPo(1f)
n

€ 0H?,

Given A €D, let

A—z
by (z) = —
#(3) 1—-Az
be the Mobius transformation of ID. For any finite points A;,---, Ay in D, the inner

function B defined by B := Hln\’:l by, is called a finite Blaschke product of order N
and we write ord B = N. For finite Blaschke products, we have the following explicit
description of the corresponding model space which is taken from Corollary 5.18 of

[8].
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LEMMA 4. Let ay,---,a, € D be distinct points and ky,-- -, k,, be positive inte-
gers. Put B= H;f': 1 bla{’/ and N = ’,’»1:1 kj. Then we have
N—1
Hp=Y C-
j=0
In particular, we have dim ¢ = N

Zj
ey (1 —a@z)kn”

The following lemma is also useful in our study.

LEMMA 5. Let 0,1 be finite Blaschke products of order N,L respectively. Write
0 =TI)_, ba, and N =TI5_, bp,. Put
M={fe A :nfe i}, K={feM:nfeMj}.
Then the following statements hold.

(a) M #{0} ifand only if L < N. In which case, we have

B ( ﬁnZNLl
e 5 ®

(b) K # {0} ifand only if 2L < N. In which case, we have
L B2 N—2L—1
0B

L= (1-oz) 5

Proof. Since the proof of (b) is similar to that of (a), we only prove (a). First
suppose M # {0} and denote E as the set on the right side of (3). Let g € % be
nonzero for which ng € 7% . By Lemma 4, we may write

zNz—l ciz
g = ———c A
l_[n:l (l - OCnZ)

for some constants ¢; and hence

1 Hn 1 I_an i Z (C Z’
I (1= 052) Ty (B — gcjz H (1—Oth)'

Hence
BnZ Z j
LU P S e z C-2f
(ﬂn - Z i—0 !
and then Nl
)y =0 ¢z
-1 (B —2)

must be a polynomial. Since 21;’;01 cjzj #0,wehave N—1 > L and hence N > L, as
desired. In this case, we have
L N—1-L

N-1
Y cjzd = (H(ﬁn —z)) Y, di
=0 =0

n=1
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for some constants d; and hence

L 7 .\ N—L-1
(1 — .
U RS
M= (1-®z) 5
Thus M C E. On the other hand, if N > L, we see E C .7/ and

L _ .y N—L-1 '
nE:I}y:l(ﬁn —3) > C-dcA

ITh— (1 —z) =0
by Lemma 4, so E C M holds. Consequently, we have M # {0} and (3). The proof is
complete. [J

For the set K introduced in Lemma 5, it is easy to see that

K={fe A :nf € Hp}. (4)
For two inner functions u and v, we have
S = I, Duit; %)

see Lemma 5.10 of [8] for example. We say that two inner functions are relatively
prime if they have no nontrivial common inner divisors.

LEMMA 6. Let 0,1 be finite Blaschke products which are relatively prime. If Ay
is the TTO defined on y, then the following statements hold.

(a) Ay is invertible on .
(b) dimPy.77; = min{ord6, ordn}.
(c) dimPg 5N =min{ord®,ordn}.

(d) Py : Ho — NIy is one-to-one and onto.

Proof. Let f € sty. If Ayf =0, then nf = 60h for some h € H?. Since 6 and 7
are relatively prime, we see f € 6H? and hence f =0. So Ay is one-to-one and then
onto because dim.77j is finite by Lemma 4.

To prove (b), we first study the case when ord 1 < ord 6. Suppose g € J7;; be
nonzero such that Pgg = 0. Then g = 6g; for some g; € H>. Since g € s, the
number of zeros of g counting multiplicity in ID is less than or equal to ord n — 1. But
the total number of zeros of g = 6g; counting multiplicity in ID is greater than or equal
to ord 8. Then ord 6 < ord n — 1, which is a contradiction because ord n < ord 0.
Therefore Py : 54 — 3 is one-to-one and dim Py 5% = dim J¢;; = ord 1.

Next, we study the case ord 0 <ordn. Let M = {f € 76, : 0f € s }. Then
e = (76,5 0M) & OM and dim M = ord n —ord6 by Lemma 5. If g € 74, © M
satisfy Pgg = 0, then g = Og; for some g, € H and g| = Tygc . Thus g1 €M,
g€ 6M and g =0. Thus Py(s%; © OM) and #; © OM have the same dimensions.
Therefore

dim Py 73 = dim (243 © OM) = dim % — dimM = ord 6,
thus (b) follows.
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Now, to prove (c), we first see the case ord 0 < ord 1. Let f € 7 be nonzero
satisfying Po., N f =0. Then nf € Hpn = Hp S 0.7, and then 1 f € H#p. Note that
the total number of zeros of nf in D counting multiplicity is greater than or equal to
ord 1. Since nf € 7, the total number of zeros of 1 f in I counting multiplicity is
less than or equal to ord 6 — 1. Hence ord 11 < ord 6 — 1. This contradiction shows that
Py, : N9 — 0.7, is one-to-one and hence dim Py ;.7 = dim 1.7 = ord 6.

Next, we study the case when ord 0 > ordn. Let M ={f € s#p :nf € Ap}.
Then % =M @ (Hp ©M) and dim M = ord 6— ord n by Lemma 5. Since nM C
Hy, we have Py N Hy = Po (Ao OM). Let h € Ao ©M such that P nh=0.
Since Nh € gy and Hpy = Hp © 04, we have nh € Hp andso he M. As a
result, h =0 and Py, : 1(Hp © M) — 0.7 is one-to-one. Therefore we see

dimpet;fn Nty = dimPgt;fn N oM)

=dim(sH M)

=ord0 —dimM = ordn,
so we have (c).

Finally, in order to prove (d), let h € %y satisfy Py ,h = 0. Since h € Hp, =

o B NHAp, we have h € 45, . Since 0,1 are relatively prime, h € S N5 = {0},
80 Py s, : Ay — NIy is one-to-one. Since dim 7 = dim Ny, Py, - Ho — NHp
is onto. The proof is complete. [J

We remark in passing that (a) of Lemma 6 remains still valid for general inner
functions 7 as long as 1 and 6 are relatively prime.

3. Main results and the proofs

The following theorem shows that on a general finite dimensional model space,
for any suitable even integer 2L and any finite Blaschke product 1 with order 2L, the
rank of [Ay,A}] is exactly 2L.

THEOREM 7. Let 0,1 be finite Blaschke products of order N,L respectively.
Write 0 =TI\, be, and 1 =TI5_, bp,. If 2L< N, then

Hﬁ:l(ﬁn -3 _EZ) NﬁiL‘ilC 7.
Hi,v:1 (1-az) j=0
Moreover; the rank of [Ay,A}] is 2L.

ker[Ap,Ay] =

Proof. By Lemma 3, we first note that for f € /5, f € ker[An,A}] if and only if

Nf—Po(nf)—NPyf+PyPo(nf) € NOH. (6)
Let f € ker[Ay,A}]. Since nf —Py(nf) € 0H?, (6) shows NPy f —PyPy(nf) € OH.
‘We shall show that

NPy f = PyPy(nf). @)
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By Lemma 4, we may write

L—-1 Jj L'fld Jj
_ & PoPy(nf) = — =205
= Il (1= B,2)" nfons) ITi—i (1 B,2)"

for some constants c¢; and d;. Note that
NPy f = PaPo(Nf)

T, (1- B,

where
L

L N-1 _ N-1l
~T16-2 S o~ TT0 B 3 0
n—1 j=0 n—1 j=0
Since NP, f —PyPe(nf) € 6H*, we have p € OH? either. Note degp <2L—1<N.
Since p/6 € H?, we have p = 0 and (7) follows from the observation above.

Now, by (6) and (7), we see n1f — Py(nf) € nOH?. Clearly, since n.f —Po(nf) L
NOH?, we have nf — Py(nf) =0 and hence 1 f € . Since two functions in (7) are
orthogonal each other, both are zero and hence P, f = 0. On the other hand, one can
see that a function f € J% satisfying 1 f € 4 and P, f = 0 satisfies (6). Thus, by an
observation above, we see that for f € 7, f € ker[Ay 7A;‘,] if and only if

nfe iy and Pyf=0. (8)

By the above, it is easy to show that ker [An,A*;,} = nK, where K is defined by (4).

Thus using Lemma 5 we obtain the desired kernel identity, which then gives the rank

of [An,A%] is N — (N —2L) = 2L since [Ap,A}] is self adjoint. The proof is com-
plete. O

We remark in passing that Theorem 7 is closely related to kernels of Toeplitz

operators on H? and the multipliers between certain model spaces as shown in the
following remark. See [7] or [10] for details of multipliers between two model spaces.

REMARK 8. Recall K givenby (4). Note n°f € ker T ifandonly if f €kerTy ,
Since 7 = kerTy, we see K = kerTj - By Theorem 7 above and Theorem 4.2 of
[10], we see that

ker[An,A}] = nkerTy 2= n.#(zn*,0)

where . (zn?,0) is the set of all multipliers from 2 into Hp . Therefore,

rank [Ap,A} ] = N — dimker T Z—N—dimt///(znzﬁ).

For two inner functions 7,6, Proposition 6.3 of [5] shows that [Ay,A}] =0 on
S if and only if Ay = A1 on ¢ forsome A € D, which is equivalent to that A — 1 =
6h for some h € H> by Theorem 3.1 of [11]. Noting
A—1n h

byon= — =0—,
ren 1—An 1—An
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we see ) = by 0(0¢), where ¢ :=h/(1—An) is an inner function. Conversely, if
n =b; 0(0¢) forsome A € D and { inner, we see that Ay and A}, induce the rank
zero commutator on 543 .

COROLLARY 9. Let A € D\ {0}. Let 0 and B be finite Blaschke products with
2ordB < ord® and N =B-b; 0 (0) or n =B~ by 0(0() for some inner function
€. Then rank [Ap,A}] = 2ordB.

Proof. Since
_ 1— 12
byo(6f)—A= A _GC —A=-6¢ ‘_M
1-A6¢ 1-16¢
we first have A ,(g¢) = Al on Hp by Theorem 3.1 of [11]. If 1 =B-b; 0(6{), we
see

€ 0H?,

An :ABAh;LO(GC) B A,AB

and thus [Ap,Aj] = |A|*[Ag,A}], which has rank 2ord B by Theorem 7. Also, if 1 =
B~'-b; 0(0), then Bn =b; 0 (6{) and

AnAp =ApAy = Ay, o(0¢) = A,
which means Ap is invertible on /% and A, = AA;'. Hence

[An,Apl = 1217 (A5 A5 — A5 'AgY)

= |APAG Ay (ApA} — ApAR)AG Ay

= APAG Ay A AL A5
which has rank 2ord B by Theorem 7 again. The proof is complete. [

The following corollary is also interesting.

COROLLARY 10. Let 1 and { be two finite Blaschke products and 0 = n¢. If
Ay is TTO defined on Ay, then rank [Ay,A}] =2 min{ordn,ord ('}

Proof. Since —f+nP(Mf)+LP(Lf) is orthogonal to OH? forevery f € 7, it
follows from the proof of Lemma 3 and applications of Pog = Pg — ©@P(Og) for inner
function © and g € L? that

[An,A)f = Po(— f+nP(f)+CP(ES))
=—f+nPMf)+EP(CS) ®)
= (Po—Py—P;)f

for all f € 2. Noting the above is symmetric with respect to 11 and {, we have
[An,A5] = [Ag,AZ} on .

Without loss of generality we assume ord{ < ordn. Then we have 2ord{ <
ord 0, so by Theorem 7 we get rank [A; 7Az] =2ord{, to obtain the desired. The proof
is complete. [l
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In the following, we want to care for the Question 2 when 2ordn > ord6. For
this end, suppose 6 is a finite Blaschke product and 7 is an inner function such that
0,7 have a nontrivial common inner divisor. We then study the rank of the commutator
induced by A and A} on #j in certain special cases. We notice that Corollary 10 is
also a case when ordn > ord (.

In the proofs, we shall use several TTOs defined on different model spaces. So
we redefine the notation of TTOs to avoid some confusion. Given two inner functions
1, 6, we shall use the notation Ag to denote the TTO defined on 7% by Ag f=Po(nf)

for f € sy . So the TTO Ay defined on 7 is just Ag . Given three inner functions
0,71 and {, we can easily see by using an application of (2)
AN f=CASF,  feA (10)

First we study a special case.

THEOREM 11. Let My be a finite Blaschke product and 1, be an inner function
which is relatively prime with 1. Let 6 = 7712 and 1 =M M. If Ay is the TTO defined
on Ay, then rank[An,A}] =ord 6.

Proof. Note that ¢y = 3, @ m1543, by (5). Since ApAT, =0 and
* * AN * AN
ApAn = ApAniny = Ap,An,
on s, by (10), we see [An,Ap]. 7, = A; AL, . On the other hand, since 1 and
1, are relatively prime, we see A7, = 7, by Lemma 6(a) and
[An,Am%“ :A;Fh%h :Ag;*%l = %11'
Also, we note that A3 Ap1nf = A;‘,Pe(nfnzf) =0 and ApA5 M1 f = ApA7, f for every
f € s, . Hence
A'”IA;;nljﬁll :ATIA;Fh%”Il :Anf%ﬂm ZAgigéjﬁ“ = nlAgé%”ll = nl%l'
Therefore [Ay, AN, = Moy, and
[ATI’A;]% - [ATI’A;]%‘II @ [ATI’Amnl‘%‘ll =y, @My, = Hyp,
which gives the desired result. The proof is complete. [J

When 0 is a finite Blaschke product and the common inner divisor of 0,1 is also
a finite Blaschke product, we have the more exact result.

THEOREM 12. Let 01,m be finite Blaschke products which are relatively prime.
Let 1> be an inner function which is relatively prime with 6;. Put 6 = 0,1, and
N =mMn.. Let Ay be the TTO defined on . Then the following statements hold.

(a) If ord6, > ordmy, then rank[An,A}] > 2ordn;.
(b) If ord6; < ordmy, then rank [An,A}] =2o0rd 6.

(¢) If N2 = by (618) for some o € D\ {0} and & is inner, then we have
rank [Ay, A% ] = 2min{ord 6;,ordn; }.
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Proof. First note that 7y = I3, © N1, = Hp, © 0193, by (5). Fix g € 74, .
Since ﬁle(;fel (61g) € Sy, , we have by (10)
And;(812) = AnAy (Py, (618) © Pa, g (612))
— gy Poyry (012)
= AnPo[M2(M1 Py, 2, (618))]
0% /—
= AnAny (1 Poy oy, (618))
0] 5 01% (—=
= MmA A (11 Py, 5, (612))-
Since A’;,Ar, 0,¢ = 0, it follows that
[An,Ay)01 0, = AT AT (T Py oy O170,) © Mo (1

2
On the other hand, we have dim ﬁle%l 0,7¢;, = min{ord6;,ordn; } by Lemma 6(c)
and then
dim[AmA*;,}Gl,%”m = min{ord 0;,ordn; } (12)

by Lemma 6(a).
Now fix h € Jp, . Then by the similar argument above, we see
Ay Anh = A} Peninoh = A} Pan1 (Po, 2h © Po, sz, M2h)
* * 0 0% 4 0
:Anpgnlpgl mh = AnnlAnlzh = Anlz Anlzh S ‘%1
and hence o
AL An Ay, = Ay Ay Ay, = Ay, (13)
because Aglz*Ag'2 is invertible on %, by Lemma 6(a). Also, since ﬁle(;fel he Ay, ,
we have by (10)
AnAnh = An A (Po,h® Po oz h)
= AnA;Pm%I h
= AnPoT, (11 Py, 1)
0% /—
=AnAny (M Poyor 1)
01 4 01% /=
= MAnAn, (M1 Pnyt, )
It follows from (a) and (d) of Lemma 6 that
AnAl Ay, =M Hp, . (14)

Now we shall prove (a), (b) and (c). If ordf; > ordny, then by (11), (14), (12),
(13) and we have

dim [Aq, Ay 7 = dim A, A3 ](Ho, © 61.75,)
> dim Py, [Ay, A} | A, +dim[Ay, AT 16,705,
= dim Py, A} Ap Hp, +ordmy
= dim Py, Sy, + ordny
=2ordn
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where the last equality follows from Lemma 6 (b), which proves (a).

Also, if ord8; < ordny, we have dim[Ay,A}]615¢5, = ord6; by (12). Thus (11)
implies [An,A}]017,, = N1, . In this case, we have 7 MMy = {0} (see the
proof of Theorem 10 (c)). It follows from (13) and (14) that

dim [Aq, Ay 7 = dim [Ag, A3 (Ao, © 6,.,)
— dim (g, + A3
= dim J%p, + dim1n, .73,
=2ord 91 5
which proves (b).
Finally, if 112 = b (6, §) for some oz € D\ {0} and ¢ inner, we have by the remark

mentioned just before Corollary 9, Aglz = al on J, . So, by the observation before
the proof of (a), we see

[An’A;]el‘%h = ‘O“zpmjfel 617,
and
(An Aq) o, = 0P (P, — 1), = Py, Ay

It follows from (b) and (c) of Lemma 6 that
dim[Ay, A} ]y = dimPr,lyfe1 0,4, + dim Py, 7%, = 2min{ord 6;,ordn; },

so (c) follows as desired. The proof is complete. [

REMARK 13. Having Theorem 12, we have a few remarks in passing. We assume
the same assumption as in Theorem 12.

(1) By the proof, it is not difficult to see that the equality holds in (a) of Theorem
12 if and only if

Ay, AL A, N, C [Ag, AL 75,

(ii) There is an example such that the inequality holds in (a) of Theorem 12. For
example, suppose that 1, is a Blaschke product and ord 8; — ordn; > 2ordn,. Then
we have

2ordn =2ordn; +2ordmn,
<2ordn; +ord6; —ordmy
=ord 0 = dimJ%)
and then by Theorem 7,
rank [An,Ay] =2ordn > 2ordn;.

The inequality rank [AT, ,Am > 2ordn; holds even when ord 6; —ordn; < 2ordmn,, see
Case 3 after Example 17 in Section 4.
(iii) Under the same assumption as in (c), we obtain that

Pm-')%l [AWA;F‘I}‘%l = {O}
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Indeed, since Ag‘z = ol on Jtp, , we have

sz;fel [AmAmf = PTIL%IAUA;]C - Ple%IA;AUf
01 401% —=— T EN
= MAn,Any (M Py oty ) — Poyoy Ay Ay f
2
= |otf* (Po, e, f = Poiony f) =0
forall f € Jp, .

As an immediate consequence of Theorem 12, we have the following.

COROLLARY 14. Let 0y,m be finite Blaschke products which are relatively prime.
Let My be an inner function which is relatively prime with 6y. Put 0 = 6,1y and n =
MiMa. Let Ay be the TTO on . If ord 0y = ordn; + 1, then rank [An, A} ] = 2o0rd ;.

Proof. Since rank [Ap,A}] <ord@ = ord 6+ ord 17 =2 ord 1 + 1, Theorem 1
implies rank [A, ,A;] < 2ordny. It follows from Theorem 12(a) that

2ordn; < rank[Ay ,Am < 2ordny,
which gives the desired result. The proof is complete. [
Finally, we study the case when finite Blaschke product 1 has no nontrivial com-
mon inner divisor with 6 satisfying ordn] < ord@ < 2ordn and obtain a rank inequal-

ity. In this case, the rank of [An,A}] may take any even number between 2 (ord 6 —
ordn) and 2ord 6, see Example 18 in Section 4.

In the proof, we will use ||f|| = (f¢|f|*do)? for f € L2,

THEOREM 15. Let 0,1 be finite Blaschke products which are relatively prime.
Let Ay be the TTO defined on . If ordn < ord® < 2ordn, then

rank [An,A}] > 2 (ord6 —ordn).

Proof. Let N=ord0, L=ordn. Write 6 = quvzlban, n= Hﬁzlbﬁn. Put M =
{f € Hy:nfe H}. Then Lemma 5 shows dimM =N — L and

{feM:nfem}={0}. (15)
Letting X = &M and Y = J¢ © M, we see
Hyg=MeX=YdnM (16)
and
dimX =dimY =N—-dmM=N-N+L=1L. 17

Since nM L nX, we have nM 1. ApX and then AyX C Y. Also, since Y 1. nM, we
have A}Y 1L M and so ALY C X. Since 6 and 1 are relatively prime, Lemma 11 (a)
shows

Ap:X —Y and A;‘1 1Y — X are one-to-one and onto. (18)
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Using (16) and (18), we see
[An, AqInf =nf —AyAn(Punf @ Pxnf)
=nf—Punf—A Ay Pxnf
=Pnf—AjApPxnfeX
for every f € M. Thus
[An,AyINM C X. (19)

If Pxng =0 for some g € M, then ng € M and g =0 by (16). It follows that Py :
NM — X is one-to-one and hence dimPynM = N — L. It is easy to see ||[Anh|| < ||A|
for every h € X with h # 0. It follows that

I[An, AqInfll = [Pxnfll — [|A3 A Pxn f]]

z |[Bxnfl = [[AnPxn |
>0

for every f € M, which means [Ay,A}]|num is one-to-one. Hence
dim[Ay,A;InM = dimnM =N — L. (20)
On the other hand, we see by (18)
[An, Ayl = AnAL g — ApAn (Pug + Pxg)
=AnAng — Pug — AyAnPxg
= Pu(AnAyg —g) © (PxAnAyg — AZAnPxg)
EMaX
forevery g €Y. Put
O1={geY :AyAjg—gecX}
and Q> =Y & Q;. Thenwe have Y = Q; ¢ 0, and
[An,A7]01 CX. 21

If Py[An,Aj]g =0 for some g € Oy, then Py (ApAj g —g) =0 and then ApAjg—g €
X. Hence g € Q1 and g = 0, which means Py[Ay,A}]|g, is one-to-one. So, (21)
shows

dimPM[AmAmY = dimPM[An ,A;]Qz = disz.
Thus X N[An,A}]Q2 = {0} and dim[A,A}]Q> = dim Q5. This, together with (19) and
(21), implies
rank [Ay,A;] = dim ([A, A} M +[Ay, A} ]01 + [An,A}] Q)

=dim ([Ay,A5]NM + [Ay,A5]01) +dim[Ay, A} ],

=dim ([Ay,A5INM + [Ay,A5]01) +dim Qs.
Put

Rl = {g € Ql : [AnvA;(]]g € [ATIvA;(‘[]nM}
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and R, = Q1 ©R;. Then Q| = R| ©R,. By the similar arguments as we have done
above and (20), we get

dim ([An,A*;,}nM+ [An,A;‘,]Ql)
=dim[An,Ap|NM +dim[Ay, A} Ry
=N—-L+dimR,;
=N—-L+dimQ; —dimR;.

Therefore, we have by (17)
rank [Ap,A}] =N —L+dimQ; +dimQ; —dimR,;

=N—-L+dimY —dimR,

=N —dimR;.
Now, in order to complete the proof, it suffices to show that

dimR; <2L—N. (22)
First note that Q1 = {g € Y : [Ap,A}]g € X }. By (19) we have
Ri={g €Y : [Ay.A}g € [Ay. A} M},

and M | [An,AjnM . Thus [Ay,A}]M L nM and then [Ay,A}]M C Y. It follows that
M 1 [Aq,A5](Y ©[An,A}]M) and hence

[An,AQ](Y © [Ag, A} M) C X.

On the other hand, for a nonzero f € [An,A}]M, we have [Ay,A}]f ¢ X . Indeed, if
[An,A3]f € X, then [Ap,Ap]f L M and f | [An,A}]M, thus f = 0. Thus we have

Ry ={g € YO [An,A}IM : [An,A}]g € [An, A} INM}. (23)
By (15), we have that
I[An, ALl = AnAG £ —
> (11— lAnAy £
for every nonzero f € M. Hence dim [An,A}]M = dim M = N — L and
dim (Y ©[Ay,A} M) = dimY — dim [Ay, A} M
=2L—N.
This, together with (23), gives (22) as desired. The proof is complete. [J

Combining Theorem 15 with Theorem 1, we obtain the following simple applica-
tion as before.

COROLLARY 16. Let 6,1 be finite Blaschke products being relatively prime. Let
Ay be the TTO defined on sty. If ord® =2ordn — 1, then

rank [Ap, AL ] =2 (ordn — 1).
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4. Two examples

In this section, we give two examples which will be related to results obtained in
the previous section. For a point a € D, let

EXAMPLE 17. Let o, -, 04 be nonzero distinct points in D and 6 = Hi:l by, .
Let 1 be an inner function and Ay be the TTO defined on 7. Then the following
statements hold.

(a) If n(eq) =n(on) =n(03) # n(oa), then rank [An,A}] = 2.
(b) If n(a1) =n(oz) # n(o3) and n(o4), then rank[Ap, A7 ] =4.

Proof. First we note that 75 = EileKan. For each n, we write ApKy, =
2;‘-:1 cnjKq; for some cpj € C.

We first prove (a). Let g € 7 and write g = Zﬁ: 1dnKq, € F for some d, € C.
Since A} K, = n(a)K, forall a € D, one can see that g € ker[An,Aj] if and only if the
following two conditions hold;

dycqr = dycgr = dacy3 =0, (24)
dicia+drcrs +dzczs = 0. (25)

Notice that one of c41,c42,c43 is not zero, otherwise AyKy, = c44Kq, . Since

44Ky (01) = AnKo,(01) = (AnKoy, Koy ) = 1(01 ) Koy (01)
and
44Ky (04) = AnKo, (04) = (AnKoy, Koy ) = N (04) Koy (04),

we have 1 (o) = caqa = n(0y), which is a contradiction. Hence one of c41,c¢42,¢43
is not zero and then ds = 0 by (24). Then, considering d;,d>,d3 satisfying (25) and
taking d4 = 0, we have nonzero g in ker [AmA;‘,] . Also, we have

4 —_—
[An,Ay]Ke, = Y, (n(ou)es; —cajn(ay))Ke; # 0.
j=1

Since the rank of [Ar, 7A’,‘,} is one of 0, 2, 4 by Theorem 1, the observation above shows
that the rank of [A; ,Am must be 2, as desired.

Now, in order to prove (b), we let g = Ziz 1dnKo, € S5 as before. By direct
computations using A} K, = 1(a)K, again, one can see that g € ker[An,A}] if and
only if the following four conditions hold;

dscai[n(og) —n(on)] +dacar[n(o4) —n(on)] =0,

dscxa[n(og) —n(on)] +dacaz[n(ou) —n(on)] =0,
diciz[n(en) —n(os)] +dacas[n(an) — n(03)] +dacaz[n(0s) —n(0z)] =
dicia[n(en) —n(ou)] +dacoa[n(on) — n(ou)] +dscza[n(oz) —n(ou)] =
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Now we claim that c13¢24 # c14¢23 and c31¢42 # c32¢41 - Then, the above shows that all
dj equals 0, so ker[Ay,A}] = {0} and [An,A}] 7 = Hp, which will give the desired
result.

Since
4

ATIKOCn(am) = 2 C".fKaj((Xm)
j=1

and
ATIKOCn(am) = <AnKan7Kam> = n(am)Kan(am)

for 1 < n,m <4, we have the following linear equations

4
CnjKo; (Om) = 10 ) Key, (04n) (26)
=1

form=1,---,4. Set

By the proof of Proposition 7 of [4], we have following identity;
1 1 1

I—aiby 1—ab, ~~ T—ayb
1l 1 12 1 1n 1
1—aiby, 1—azby 1—anby
det _ "
1 11 (27)
lfﬁbn 1*@}7)1 I*Tnbn

(M) o @—@)(bi— by

(L =ajb;)/ jpise (1 —a@ibi) (1 —aibi)
for every b; € D and distinct points a; € D. So |G| # 0. By solving equation (26) and
using simple calculations, we can see

J=1

Ko, (01) Koy (0t1) Koy (0t1) (o) Ko, (011)
c 1 | Kg, (02) Koy (02) Koy (02) N(00)Key (02)
7G| | Koy (03) Koy (03) Koy (03) 1(03)Kay (03)
Ko, (04) Ko (04) Koy (04) M(04)Key (04)
= 157 (m o) = @) Ke ()] = (m(05) = ) Koy ) B
where
Koy (01) Koy (01) Koy (011)
Al = | Koy (02) Koy (02) Koy (02) |,
Kal (OC3) Kaz(a3) K063(a3)
Kal (al) Kaz(al) K063(a1)
|B| = | Koy (02) Koy (02) Ko (02) |-
Kal(a4) Kaz(a4) Ka3(a4)
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Also, by the similar argument above, we can see

where

Koy (o) Ko, (011) Koy (01)

|C] = | Ko, (02) Koy (02) Koy (02) |,
Ko, (03) Koy (03) Koy (03)

Koy (01) Koy (01) Koy (011)
D] = | Koy (2) Ko, (02) Koy (02) |-
Ko, (0u) Ko, (04) Koy (04)

88

Similarly, we also check

e1a = 7 ((0) = () Ko (211 = (1) = 01 Key ) ]
e = 17 [(n(04) = 1(@)Ke (@) C| () = {e5) Koy ().

Now, by comparing quantities above, one can see that cy3c4 # c14¢23 if and only if
|A||D| # |B||C|. On the other hand, we see from (27)

|bay (01)|*1ba; (02) b (02)

|Al[D] = (1— oy )2(1 = |oa2)2(1 — |03 |2) (1 — |oy|?)

and
‘baz(al)mb% (a2)‘2‘b064(a2)‘2

B||C| = — .
BlIC = T |21 = [P — el

Since o3 # oy if and only if (1 — |os|?)(1 — |ou|?) # |1 — aGoy|?, the above shows
|A||D| # |B||C| and hence c¢j3¢24 # c14¢23, as desired.

Using the same arguments above together with assumption o # o, we can see
that c31¢c4p # c32¢4; either. The proof is complete. [

In more special cases of Example 17, we reprove several results what we have
obtained in this paper. We will consider six cases in which 7 is a finite Blaschke
product with ordn = 3.

Case 1. If () =n(ow) =n(03) =0#n(o4), then 6 =Nby, . By Example 17 (a),
we have

rank [An,A}] =2 =2ordbg,,

which is a special case of Theorem 10 (c) or Theorem 12 (b).
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Case 2. If n(on) =n(ow) =n(o3) # n(ay) =0, then 6 = 01y, and N = by, M
where 0 = Hflzl bg, and n are relatively prime. Noting ord 6; > ord b, and Example
17 (a) gives

rank [Ap,A}] =2 =2ordbg,,

we see that Theorem 12 (a) is sharp.

Case 3. 1f n(ay) = n(w) #n(03), N(ay) =0 and [T>_;n(0y) # 0, then 6 =
01bg,, N = bo, 1> where 0; and 1 are relatively prime. Because ord 8; > ordb,, and
Example 17 (b) induces

rank [Ap,A}] =4 > 2ordbg,,
we see that inequality can occur in Theorem 12 (a).

Case4. If n(oy) =n(on) #n(os) =n(ou) =0, then 6 = 6;n; and 1 =112 where
Nt = bezbe, and 6; and 1 are relatively prime. Noting ord 6; = ord1); and Example
17 (b) tells

rank [An,Aj] =2ord 6,

this is a special case of Theorem 12 (b).

Case 5. 1f n(oy) = n(o) =n(03) #n(oy) and [Tt_; n(0y) #0, then 6 and 1 are
relatively prime. Since ordn < ord® < 2ordn and Example 17 (a) yields

rank [An,Ay] =2 =2(ord0 —ordn),

this case gives the sharpness in Theorem 15.

Case 6. If n(oy) =n(0n) # n(oz) and N(oy), TT2_; n(ewm) #0, then 6 and 1 are
relatively prime. Noting ordn) < ord® < 2ordn and Example 17 (b) gives
rank [An,Ay] =4 >2(ord 0 —ordn),
we have the inequality in Theorem 15.
Also, in conjunction with Theorem 15, we have the following example.

EXAMPLE 18. Choose L < N < 2L such that there is a nonnegative integer N;
satisfying 2(N+N; —L) < N. Let 0,6, be finite Blaschke products with ord® = N
and ord0; = N; . Fix oo € D\ {0} and let by 0 (66,) = n& such that ordn = L. Then
bgo(66;) and 6 are relatively prime and ordbg 0 (661) =N+ N;. If Ay and A, are
TTOs on 7, we can see by the similar argument as in the proof of Corollary 9

rank [Ay, Ay ] =rank[Ag, A7
Since 2(N + N; — L) < N, Theorem 7 says
rank[Az,Az] =20rd{ =2(N+N; — L)
and hence
rank [Ay, A} ] =2(N+N; —L) > 2(N —L).

For example, if N =10 and L =9, then we may take N; as 0,1,2,3 or 4.
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