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RANKS OF COMMUTATORS OF TRUNCATED TOEPLITZ
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Abstract. We study the rank of commutator [Aη ,A∗
η ] of truncated Toeplitz operators Aη and A∗

η
with several type of inner symbols η on the model space Hθ with finite Blaschke product θ .

1. Introduction

Let D be the unit disk and T be the unit circle. We let H2 be the classical Hardy
space on D which can be identified with a closed subspace of L2 . Here, Lp := Lp(T,σ)
denotes the usual Lebesgue space on T where σ is the normalized Lebesgue measure
on T . A function θ ∈ H2 is said to be inner if |θ (z)| = 1 a.e. on T. To each non-
constant inner function θ , we associate the model space Hθ defined by

Hθ = H2�θH2

which is a nontrivial invariant subspace for the backward shift operator on H2 . When
θ is a finite Blaschke product (see Section 2 for its definition) with order N , that is,
ordθ = N , then dimHθ = N (see Lemma 4), so in this case, Hθ is a finite dimensional
space. Let Pθ be the Hilbert space orthogonal projection from L2 to Hθ . Given a
function ϕ ∈ L∞ , the truncated Toeplitz operator (briefly, TTO) Aϕ with symbol ϕ is
defined on Hθ by

Aϕ f = Pθ (ϕ f )

for functions f ∈ Hθ . Then Aϕ is a bounded linear operator on Hθ and clearly A∗
ϕ =

Aϕ .
Truncated Toeplitz operators are compressions of multiplication operators to model

subspaces of the Hardy space H2 ; they represent a far reaching generalization of clas-
sical Toeplitz matrices. Although particular case had appeared before in the literature,
the general theory has been initiated in the seminal paper [11]. Since then, truncated
Toeplitz operators have constituted an active area of research. We mention only a few
papers: [1, 2, 3, 5, 6, 12, 13]; see also the recent survey [9] and the references within.
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In a recent paper [4], the rank of complex skew symmetric operators has been
studied and, as a consequence, the following result about the rank of a commutator of
two TTOs has been known. For two bounded operators S and T on a Hilbert space, we
let [S,T ] = ST −TS be the commutator of S and T .

THEOREM 1. Let θ be a non-constant inner function and ϕ ,ψ ∈ L∞ . If [Aϕ ,Aψ ]
has finite rank on Hθ , then the rank of [Aϕ ,Aψ ] must be even.

In view of this result, one might ask whether for any non-constant inner function
θ and integer N � 1, there is a commutator of two TTOs on Hθ whose rank is 2N
exactly. At the same paper, it has been proved that this is true on model spaces cor-
responding to monomials by showing [AzN ,A∗

zN ] has rank exactly 2N on Hzn when
2N � n ; see Proposition 7 of [4]. Motivated by this result, it is natural to ask the
following question.

QUESTION 2. For finite Blaschke product θ and inner function η , what is the
rank of the commutator [Aη ,A∗

η ] on finite dimensional space Hθ ?

In this paper, we consider the model space corresponding to general finite Blaschke
product θ and then study the rank of the commutator [Aη ,A∗

η ] induced by several types
of inner functions η .

Suppose dimHθ = N . Note that [Aη ,A∗
η ] is self adjoint. If the dimension of

ker[Aη ,A∗
η ] = L is known, then the rank of [Aη ,A∗

η ] is N − L . So it is important to
characterize the kernel of [Aη ,A∗

η ] . Along this idea, we show that when 2ordη � ordθ ,
the rank of [Aη ,A∗

η ] equals to 2ordη ; see Theorem 7 in Section 3. This result extends
Proposition 7 of [4] mentioned above, and also is closely related to kernels of Toeplitz
operators on the Hardy space and the multipliers between certain model spaces; see
Remark 8.

It is difficult to characterize the rank of [Aη ,A∗
η ] when 2ordη > ordθ . So we

consider some special cases. We first consider certain inner symbols η which has a
nontrivial common inner divisor with θ ; see Theorems 11 and 12 in Section 3. We also
consider finite Blaschke product η which has no nontrivial common inner divisor with
θ and obtain a rank inequality; see Theorem 15 in Section 3.

The paper is organized as follows. In Section 2 we just give several lemmas which
will be used in the proofs of the main results. In Section 3 we present the main results
and their proofs, also some corollaries are given. At Section 4, we give two examples
relating to results obtained in Sections 3.

2. Preliminaries

Given ψ ∈ L∞ , we recall the classical Toeplitz operator Tψ with symbol ψ defined
on H2 by Tψ f = P(ψ f ) for f ∈H2 where P is the orthogonal projection from L2 onto
H2 which can be given by

Pg(w) =
∫

T

g(ζ )

1−wζ
dσ(ζ ), w ∈ D
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for functions g ∈ L2 . Note that T ∗
ψ = Tψ . For ϕ ∈ H∞ and inner θ , it is easy to check

that T ∗
ϕ Hθ ⊂ Hθ and hence

A∗
ϕ f = T ∗

ϕ f (1)

for functions f ∈ Hθ . Also, it is easy to verify that for ϕ ,ψ ∈ H∞ , AϕAψ = Aϕψ on
Hθ .

Given an inner function θ , it is well known that the orthogonal projection Pθ
admits the following integral representation

Pθ f (w) =
∫

T

f (ζ )
1−θ (w)θ (ζ )

1−wζ
dσ(ζ ), w ∈ D

and hence Pθ f = P f −θP(θ f ) for functions f ∈ L2 . In particular, we have

T ∗
θ f =

f −Pθ f
θ

(2)

for every f ∈ H2 . See Chapter 5 of [8] for details and related facts.
We start with the following kernel description of a certain commutator of TTOs

which will be useful. In the following, rankT and kerT denote the rank and kernel
respectively of a bounded operator T on a Hilbert space.

LEMMA 3. Let θ ,η be two inner functions and f ∈Hθ . If Aη is the TTO defined
on Hθ , then f ∈ ker [Aη ,A∗

η ] if and only if

η f −ηPη f −Pθ(η f )+PηPθ (η f ) ∈ ηθH2.

Proof. By (1) and (2), we see

AηA∗
η f = AηT ∗

η f = Aη
f −Pη f

η
= Pθ ( f −Pη f )

and similarly

A∗
ηAη f = A∗

ηPθ (η f ) = T ∗
η Pθ (η f ) =

Pθ (η f )−PηPθ (η f )
η

for functions f ∈ Hθ . Thus, f ∈ ker [Aη ,A∗
η ] if and only if

f −Pη f − Pθ (η f )−PηPθ (η f )
η

∈ θH2,

which gives the desired assertion. The proof is complete. �

Given λ ∈ D , let

bλ (z) =
λ − z

1−λz

be the Möbius transformation of D . For any finite points λ1, · · · ,λN in D , the inner
function B defined by B := ∏N

n=1 bλn is called a finite Blaschke product of order N
and we write ordB = N . For finite Blaschke products, we have the following explicit
description of the corresponding model space which is taken from Corollary 5.18 of
[8].
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LEMMA 4. Let a1, · · · ,am ∈ D be distinct points and k1, · · · ,km be positive inte-

gers. Put B = ∏m
j=1 b

kj
a j and N = ∑m

j=1 k j . Then we have

HB =
N−1

∑
j=0

C · z j

∏m
n=1(1−anz)kn

.

In particular, we have dimHB = N .

The following lemma is also useful in our study.

LEMMA 5. Let θ ,η be finite Blaschke products of order N,L respectively. Write
θ = ∏N

n=1 bαn and η = ∏L
n=1 bβn . Put

M = { f ∈ Hθ : η f ∈ Hθ}, K = { f ∈ M : η f ∈ M}.
Then the following statements hold.

(a) M �= {0} if and only if L < N . In which case, we have

M = ∏L
n=1(1−βnz)

∏N
n=1(1−αnz)

N−L−1

∑
j=0

C · z j. (3)

(b) K �= {0} if and only if 2L < N . In which case, we have

K = ∏L
n=1(1−βnz)2

∏N
n=1(1−αnz)

N−2L−1

∑
j=0

C · z j.

Proof. Since the proof of (b) is similar to that of (a), we only prove (a). First
suppose M �= {0} and denote E as the set on the right side of (3). Let g ∈ Hθ be
nonzero for which ηg ∈ Hθ . By Lemma 4, we may write

ηg =
∑N−1

j=0 c jz j

∏N
n=1(1−αnz)

∈ Hθ

for some constants c j and hence

1

∏N
n=1(1−αnz)

∏L
n=1(1−βnz)

∏L
n=1(βn− z)

N−1

∑
j=0

c jz
j = g ∈ ∑N−1

j=0 C · z j

∏N
n=1(1−αnz)

.

Hence
∏L

n=1(1−βnz)
∏L

n=1(βn− z)

N−1

∑
j=0

c jz
j ∈

N−1

∑
j=0

C · z j

and then
∑N−1

j=0 c jz j

∏L
n=1(βn − z)

must be a polynomial. Since ∑N−1
j=0 c jz j �= 0, we have N−1 � L and hence N > L , as

desired. In this case, we have
N−1

∑
j=0

c jz
j =

( L

∏
n=1

(βn − z)
)N−1−L

∑
j=0

d jz
j
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for some constants d j and hence

g = ∏L
n=1(1−βnz)

∏N
n=1(1−αnz)

N−L−1

∑
j=0

d jz
j ∈ E.

Thus M ⊂ E . On the other hand, if N > L , we see E ⊂ Hθ and

ηE = ∏L
n=1(βn− z)

∏N
n=1(1−αnz)

N−L−1

∑
j=0

C · z j ⊂ Hθ

by Lemma 4, so E ⊂ M holds. Consequently, we have M �= {0} and (3). The proof is
complete. �

For the set K introduced in Lemma 5, it is easy to see that

K = { f ∈ Hθ : η2 f ∈ Hθ}. (4)

For two inner functions u and v , we have

Huv = Hu ⊕uHv; (5)

see Lemma 5.10 of [8] for example. We say that two inner functions are relatively
prime if they have no nontrivial common inner divisors.

LEMMA 6. Let θ ,η be finite Blaschke products which are relatively prime. If Aη
is the TTO defined on Hθ , then the following statements hold.

(a) Aη is invertible on Hθ .

(b) dimPθ Hη = min{ordθ , ordη} .

(c) dimPθHη ηHθ = min{ordθ ,ordη} .

(d) PηHθ : Hθ → ηHθ is one-to-one and onto.

Proof. Let f ∈Hθ . If Aη f = 0, then η f = θh for some h∈H2 . Since θ and η
are relatively prime, we see f ∈ θH2 and hence f = 0. So Aη is one-to-one and then
onto because dimHθ is finite by Lemma 4.

To prove (b), we first study the case when ord η � ord θ . Suppose g ∈ Hη be
nonzero such that Pθ g = 0. Then g = θg1 for some g1 ∈ H2 . Since g ∈ Hη , the
number of zeros of g counting multiplicity in D is less than or equal to ord η −1. But
the total number of zeros of g = θg1 counting multiplicity in D is greater than or equal
to ord θ . Then ord θ � ord η − 1, which is a contradiction because ord η � ord θ .
Therefore Pθ : Hη → Hθ is one-to-one and dim PθHη = dim Hη = ord η .

Next, we study the case ord θ <ord η . Let M = { f ∈ Hη : θ f ∈ Hη} . Then
Hη = (Hη �θM)⊕θM and dim M = ord η −ordθ by Lemma 5. If g ∈ Hη �θM
satisfy Pθg = 0, then g = θg1 for some g1 ∈ H2 and g1 = T ∗

θ g ∈ Hη . Thus g1 ∈ M ,
g ∈ θM and g = 0. Thus Pθ (Hη � θM) and Hη � θM have the same dimensions.
Therefore

dimPθHη = dim(Hη �θM) = dimHη −dimM = ordθ ,

thus (b) follows.
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Now, to prove (c), we first see the case ord θ � ord η . Let f ∈ Hθ be nonzero
satisfying PθHη η f = 0. Then η f ∈Hθη = Hθ ⊕θHη and then η f ∈Hθ . Note that
the total number of zeros of η f in D counting multiplicity is greater than or equal to
ord η . Since η f ∈ Hθ , the total number of zeros of η f in D counting multiplicity is
less than or equal to ord θ −1. Hence ord η � ord θ −1. This contradiction shows that
PθHη : ηHθ → θHη is one-to-one and hence dim PθHη ηHθ = dim ηHθ = ord θ .

Next, we study the case when ord θ > ord η . Let M = { f ∈ Hθ : η f ∈ Hθ} .
Then Hθ = M⊕ (Hθ �M) and dim M = ord θ− ord η by Lemma 5. Since ηM ⊂
Hθ , we have PθHη ηHθ = PθHη η(Hθ �M) . Let h∈Hθ �M such that PθHη ηh = 0.
Since ηh ∈ Hθη and Hθη = Hθ ⊕ θHη , we have ηh ∈ Hθ and so h ∈ M . As a
result, h = 0 and PθHη : η(Hθ �M) → θHη is one-to-one. Therefore we see

dimPθHη ηHθ = dimPθHη η(Hθ �M)

= dim(Hθ �M)
= ordθ −dimM = ordη,

so we have (c).
Finally, in order to prove (d), let h ∈ Hθ satisfy PηHθ h = 0. Since h ∈ Hθη =

Hη ⊕ηHθ , we have h ∈ Hη . Since θ ,η are relatively prime, h ∈ Hθ ∩Hη = {0} ,
so PηHθ : Hθ →ηHθ is one-to-one. Since dim Hθ = dim ηHθ , PηHθ : Hθ →ηHθ
is onto. The proof is complete. �

We remark in passing that (a) of Lemma 6 remains still valid for general inner
functions η as long as η and θ are relatively prime.

3. Main results and the proofs

The following theorem shows that on a general finite dimensional model space,
for any suitable even integer 2L and any finite Blaschke product η with order 2L , the
rank of [Aη ,A∗

η ] is exactly 2L.

THEOREM 7. Let θ ,η be finite Blaschke products of order N,L respectively.
Write θ = ∏N

n=1 bαn and η = ∏L
n=1 bβn . If 2L � N , then

ker [Aη ,A∗
η ] = ∏L

n=1(βn− z)(1−βnz)
∏N

n=1(1−αnz)

N−2L−1

∑
j=0

C · z j.

Moreover, the rank of [Aη ,A∗
η ] is 2L.

Proof. By Lemma 3, we first note that for f ∈Hθ , f ∈ ker [Aη ,A∗
η ] if and only if

η f −Pθ(η f )−ηPη f +PηPθ (η f ) ∈ ηθH2. (6)

Let f ∈ ker [Aη ,A∗
η ] . Since η f −Pθ (η f ) ∈ θH2 , (6) shows ηPη f −PηPθ (η f ) ∈ θH2 .

We shall show that

ηPη f = PηPθ (η f ). (7)
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By Lemma 4, we may write

Pη f =
∑L−1

j=0 c jz j

∏L
n=1(1−βnz)n

, PηPθ (η f ) =
∑L−1

j=0 d jz j

∏L
n=1(1−βnz)n

for some constants c j and d j . Note that

ηPη f −PηPθ (η f )

=
1

∏L
n=1(1−βnz)n

[( L

∏
n=1

(βn− z)n

(1−βnz)n

)N−1

∑
j=0

c jz
j −

N−1

∑
j=0

d jz
j
]

=
p

∏L
n=1(1−βnz)2n

where

p :=
L

∏
n=1

(βn− z)n
N−1

∑
j=0

c jz
j −

L

∏
n=1

(1−βnz)
n

N−1

∑
j=0

d jz
j.

Since ηPη f −PηPθ (η f ) ∈ θH2 , we have p ∈ θH2 either. Note deg p � 2L−1 < N .
Since p/θ ∈ H2 , we have p = 0 and (7) follows from the observation above.

Now, by (6) and (7), we see η f −Pθ (η f ) ∈ ηθH2. Clearly, since η f −Pθ (η f ) ⊥
ηθH2 , we have η f −Pθ (η f ) = 0 and hence η f ∈ Hθ . Since two functions in (7) are
orthogonal each other, both are zero and hence Pη f = 0. On the other hand, one can
see that a function f ∈Hθ satisfying η f ∈ Hθ and Pη f = 0 satisfies (6). Thus, by an
observation above, we see that for f ∈ Hθ , f ∈ ker [Aη ,A∗

η ] if and only if

η f ∈ Hθ and Pη f = 0. (8)

By the above, it is easy to show that ker [Aη ,A∗
η ] = ηK , where K is defined by (4).

Thus using Lemma 5 we obtain the desired kernel identity, which then gives the rank
of [Aη ,A∗

η ] is N − (N − 2L) = 2L since [Aη ,A∗
η ] is self adjoint. The proof is com-

plete. �
We remark in passing that Theorem 7 is closely related to kernels of Toeplitz

operators on H2 and the multipliers between certain model spaces as shown in the
following remark. See [7] or [10] for details of multipliers between two model spaces.

REMARK 8. Recall K given by (4). Note η2 f ∈ kerTθ if and only if f ∈ kerTθη2 .
Since Hθ = kerTθ , we see K = kerTθη2 . By Theorem 7 above and Theorem 4.2 of
[10], we see that

ker [Aη ,A∗
η ] = η kerTθη2 = ηM (zη2,θ )

where M (zη2,θ ) is the set of all multipliers from Hzη2 into Hθ . Therefore,

rank [Aη ,A∗
η ] = N−dimkerTθη2 = N−dimM (zη2,θ ).

For two inner functions η ,θ , Proposition 6.3 of [5] shows that [Aη ,A∗
η ] = 0 on

Hθ if and only if Aη = λ I on Hθ for some λ ∈D , which is equivalent to that λ −η =
θh for some h ∈ H2 by Theorem 3.1 of [11]. Noting

bλ ◦η =
λ −η
1−λη

= θ
h

1−λη
,
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we see η = bλ ◦ (θζ ) , where ζ := h/(1− λ η) is an inner function. Conversely, if
η = bλ ◦ (θζ ) for some λ ∈ D and ζ inner, we see that Aη and A∗

η induce the rank
zero commutator on Hθ .

COROLLARY 9. Let λ ∈ D \ {0} . Let θ and B be finite Blaschke products with
2ordB � ordθ and η = B ·bλ ◦ (θζ ) or η = B−1 ·bλ ◦ (θζ ) for some inner function
ζ . Then rank [Aη ,A∗

η ] = 2ordB.

Proof. Since

bλ ◦ (θζ )−λ =
λ −θζ
1−λθζ

−λ = −θζ
1−|λ |2
1−λθζ

∈ θH2,

we first have Abλ ◦(θζ ) = λ I on Hθ by Theorem 3.1 of [11]. If η = B ·bλ ◦ (θζ ) , we
see

Aη = ABAbλ ◦(θζ ) = λAB

and thus [Aη ,A∗
η ] = |λ |2[AB,A∗

B], which has rank 2ordB by Theorem 7. Also, if η =
B−1 ·bλ ◦ (θζ ) , then Bη = bλ ◦ (θζ ) and

AηAB = ABAη = Abλ ◦(θζ ) = λ I,

which means AB is invertible on Hθ and Aη = λA−1
B . Hence

[Aη ,A∗
η ] = |λ |2(A−1

B A∗−1
B −A∗−1

B A−1
B )

= |λ |2A−1
B A∗−1

B (ABA∗
B −A∗

BAB)A∗−1
B A−1

B

= |λ |2A−1
B A∗−1

B [AB,A∗
B]A∗−1

B A−1
B ,

which has rank 2ordB by Theorem 7 again. The proof is complete. �

The following corollary is also interesting.

COROLLARY 10. Let η and ζ be two finite Blaschke products and θ = ηζ . If
Aη is TTO defined on Hθ , then rank [Aη ,A∗

η ] = 2 min{ordη ,ordζ} .

Proof. Since − f +ηP(η f )+ζP(ζ f ) is orthogonal to θH2 for every f ∈Hθ , it
follows from the proof of Lemma 3 and applications of PΘg = Pg−ΘP(Θg) for inner
function Θ and g ∈ L2 that

[Aη ,A∗
η ] f = Pθ

(− f + ηP(η f )+ ζP(ζ f )
)

= − f + ηP(η f )+ ζP(ζ f )
= (Pθ −Pη −Pζ) f

(9)

for all f ∈ Hθ . Noting the above is symmetric with respect to η and ζ , we have
[Aη ,A∗

η ] = [Aζ ,A∗
ζ ] on Hθ .

Without loss of generality we assume ordζ � ordη . Then we have 2ordζ �
ordθ , so by Theorem 7 we get rank [Aζ ,A∗

ζ ] = 2ordζ , to obtain the desired. The proof
is complete. �
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In the following, we want to care for the Question 2 when 2ordη > ordθ . For
this end, suppose θ is a finite Blaschke product and η is an inner function such that
θ ,η have a nontrivial common inner divisor. We then study the rank of the commutator
induced by Aη and A∗

η on Hθ in certain special cases. We notice that Corollary 10 is
also a case when ordη > ordζ .

In the proofs, we shall use several TTOs defined on different model spaces. So
we redefine the notation of TTOs to avoid some confusion. Given two inner functions
η ,θ , we shall use the notation Aθ

η to denote the TTO defined on Hθ by Aθ
η f = Pθ (η f )

for f ∈ Hθ . So the TTO Aη defined on Hθ is just Aθ
η . Given three inner functions

θ ,η and ζ , we can easily see by using an application of (2)

Aθζ
ηζ f = ζAθ

η f , f ∈ Hθ . (10)

First we study a special case.

THEOREM 11. Let η1 be a finite Blaschke product and η2 be an inner function
which is relatively prime with η1 . Let θ = η2

1 and η = η1η2 . If Aη is the TTO defined
on Hθ , then rank [Aη ,A∗

η ] = ordθ .

Proof. Note that Hθ = Hη1 ⊕η1Hη1 by (5). Since AηA∗
η = 0 and

A∗
ηAη = A∗

ηAη1η1
η1η2 = A∗

η2
Aη1

η2

on Hη1 by (10), we see [Aη ,A∗
η ]Hη1 = A∗

η2
Aη1

η2
Hη1 . On the other hand, since η1 and

η2 are relatively prime, we see Aη1
η2

Hη1 = Hη1 by Lemma 6(a) and

[Aη ,A∗
η ]Hη1 = A∗

η2
Hη1 = Aη1∗

η2
Hη1 = Hη1 .

Also, we note that A∗
ηAηη1 f = A∗

ηPθ (η2
1 η2 f ) = 0 and AηA∗

ηη1 f = AηA∗
η2

f for every
f ∈ Hη1 . Hence

AηA∗
ηη1Hη1 = AηA∗

η2
Hη1 = AηHη1 = Aη1η1

η1η2
Hη1 = η1A

η1
η2

Hη1 = η1Hη1 .

Therefore [Aη ,A∗
η ]η1Hη1 = η1Hη1 and

[Aη ,A∗
η ]Hθ = [Aη ,A∗

η ]Hη1 ⊕ [Aη ,A∗
η ]η1Hη1 = Hη1 ⊕η1Hη1 = Hθ ,

which gives the desired result. The proof is complete. �
When θ is a finite Blaschke product and the common inner divisor of θ ,η is also

a finite Blaschke product, we have the more exact result.

THEOREM 12. Let θ1,η1 be finite Blaschke products which are relatively prime.
Let η2 be an inner function which is relatively prime with θ1 . Put θ = θ1η1 and
η = η1η2 . Let Aη be the TTO defined on Hθ . Then the following statements hold.

(a) If ordθ1 > ordη1 , then rank [Aη ,A∗
η ] � 2ordη1 .

(b) If ordθ1 � ordη1 , then rank [Aη ,A∗
η ] = 2ordθ1 .

(c) If η2 = bα(θ1ζ ) for some α ∈ D\ {0} and ζ is inner, then we have

rank [Aη ,A∗
η ] = 2min{ordθ1,ordη1}.
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Proof. First note that Hθ = Hη1 ⊕η1Hθ1 = Hθ1 ⊕θ1Hη1 by (5). Fix g ∈ Hη1 .
Since η1Pη1Hθ1

(θ1g) ∈ Hθ1 , we have by (10)

AηA∗
η(θ1g) = AηA∗

η
(
Pη1(θ1g)⊕Pη1Hθ1

(θ1g)
)

= AηA∗
ηPη1Hθ1

(θ1g)

= AηPθ [η2(η1Pη1Hθ1
(θ1g))]

= AηAθ1∗
η2

(
η1Pη1Hθ1

(θ1g)
)

= η1A
θ1
η2

Aθ1∗
η2

(
η1Pη1Hθ1

(θ1g)
)
.

Since A∗
ηAη θ1g = 0, it follows that

[Aη ,A∗
η ]θ1Hη1 = η1A

θ1
η2

Aθ1∗
η2

(η1Pη1Hθ1
θ1Hη1) ⊂ η1Hθ1 . (11)

On the other hand, we have dim η1Pη1Hθ1
θ1Hη1 = min{ordθ1,ordη1} by Lemma 6(c)

and then
dim[Aη ,A∗

η ]θ1Hη1 = min{ordθ1,ordη1} (12)

by Lemma 6(a).
Now fix h ∈ Hθ1 . Then by the similar argument above, we see

A∗
ηAηh = A∗

ηPθ η1η2h = A∗
ηPθ η1

(
Pθ1η2h⊕Pθ1Hη1

η2h
)

= A∗
ηPθ η1Pθ1η2h = A∗

ηη1A
θ1
η2

h = Aθ1∗
η2

Aθ1
η2

h ∈ Hθ1

and hence
A∗

ηAηHθ1 = Aθ1∗
η2

Aθ1
η2

Hθ1 = Hθ1 (13)

because Aθ1∗
η2

Aθ1
η2

is invertible on Hθ1 by Lemma 6(a). Also, since η1Pη1Hθ1
h ∈ Hθ1 ,

we have by (10)

AηA∗
ηh = AηA∗

η
(
Pη1h⊕Pη1Hθ1

h
)

= AηA∗
ηPη1Hθ1

h

= AηPθ η2(η1Pη1Hθ1
h)

= AηAθ1∗
η2

(η1Pη1Hθ1
h)

= η1A
θ1
η2A

θ1∗
η2 (η1Pη1Hθ1

h).

It follows from (a) and (d) of Lemma 6 that

AηA∗
ηHθ1 = η1Hθ1 . (14)

Now we shall prove (a), (b) and (c). If ordθ1 > ordη1 , then by (11), (14), (12),
(13) and we have

dim [Aη ,A∗
η ]Hθ = dim [Aη ,A∗

η ](Hθ1 ⊕θ1Hη1)

� dimPη1 [Aη ,A∗
η ]Hθ1 +dim [Aη ,A∗

η ]θ1Hη1

= dimPη1A
∗
ηAηHθ1 +ordη1

= dimPη1Hθ1 +ordη1

= 2ordη1
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where the last equality follows from Lemma 6 (b), which proves (a).
Also, if ordθ1 � ordη1 , we have dim [Aη ,A∗

η ]θ1Hη1 = ordθ1 by (12). Thus (11)
implies [Aη ,A∗

η ]θ1Hη1 = η1Hθ1 . In this case, we have Hθ1 ∩η1Hθ1 = {0} (see the
proof of Theorem 10 (c)). It follows from (13) and (14) that

dim [Aη ,A∗
η ]Hθ = dim [Aη ,A∗

η ](Hθ1 ⊕θ1Hη1)

= dim(Hθ1 + η1Hθ1)
= dimHθ1 +dimη1Hθ1

= 2ordθ1,

which proves (b).
Finally, if η2 = bα(θ1ζ ) for some α ∈D\{0} and ζ inner, we have by the remark

mentioned just before Corollary 9, Aθ1
η2

= αI on Hθ1 . So, by the observation before
the proof of (a), we see

[Aη ,A∗
η ]θ1Hη1 = |α|2Pη1Hθ1

θ1Hη1

and

[Aη ,A∗
η ]Hθ1 = |α|2(Pη1Hθ1

− I)Hθ1 = −|α|2Pη1Hθ1 .

It follows from (b) and (c) of Lemma 6 that

dim [Aη ,A∗
η ]Hθ = dimPη1Hθ1

θ1Hη1 +dimPη1Hθ1 = 2min{ordθ1,ordη1},
so (c) follows as desired. The proof is complete. �

REMARK 13. Having Theorem 12, we have a few remarks in passing. We assume
the same assumption as in Theorem 12.

(i) By the proof, it is not difficult to see that the equality holds in (a) of Theorem
12 if and only if

[Aη ,A∗
η ]Hθ1 ∩η1Hθ1 ⊂ [Aη ,A∗

η ]θ1Hη1 .

(ii) There is an example such that the inequality holds in (a) of Theorem 12. For
example, suppose that η2 is a Blaschke product and ordθ1 − ordη1 � 2ordη2 . Then
we have

2ordη = 2ordη1 +2ordη2

� 2ordη1 +ordθ1−ordη1

= ordθ = dimHθ

and then by Theorem 7,

rank [Aη ,A∗
η ] = 2ordη > 2ordη1.

The inequality rank [Aη ,A∗
η ] > 2ordη1 holds even when ordθ1−ordη1 < 2ordη2 , see

Case 3 after Example 17 in Section 4.
(iii) Under the same assumption as in (c), we obtain that

Pη1Hθ1
[Aη ,A∗

η ]Hθ1 = {0}.
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Indeed, since Aθ1
η2

= αI on Hθ1 , we have

Pη1Hθ1
[Aη ,A∗

η ] f = Pη1Hθ1
AηA∗

η f −Pη1Hθ1
A∗

ηAη f

= η1A
θ1
η2

Aθ1∗
η2

(η1Pη1Hθ1
f )−Pη1Hθ1

Aθ1∗
η2

Aθ1
η2

f

= |α|2(Pη1Hθ1
f −Pη1Hθ1

f
)

= 0

for all f ∈ Hθ1 .

As an immediate consequence of Theorem 12, we have the following.

COROLLARY 14. Let θ1,η1 be finite Blaschke products which are relatively prime.
Let η2 be an inner function which is relatively prime with θ1 . Put θ = θ1η1 and η =
η1η2 . Let Aη be the TTO on Hθ . If ordθ1 = ordη1 +1 , then rank [Aη ,A∗

η ] = 2ordη1.

Proof. Since rank [Aη ,A∗
η ] � ordθ = ord θ1+ ord η1 = 2 ord η1 +1, Theorem 1

implies rank [Aη ,A∗
η ] � 2ordη1. It follows from Theorem 12(a) that

2ordη1 � rank [Aη ,A∗
η ] � 2ordη1,

which gives the desired result. The proof is complete. �

Finally, we study the case when finite Blaschke product η has no nontrivial com-
mon inner divisor with θ satisfying ordη < ordθ < 2ordη and obtain a rank inequal-
ity. In this case, the rank of [Aη ,A∗

η ] may take any even number between 2(ordθ −
ordη) and 2ordθ , see Example 18 in Section 4.

In the proof, we will use || f || = (
∫
T
| f |2dσ)

1
2 for f ∈ L2 .

THEOREM 15. Let θ ,η be finite Blaschke products which are relatively prime.
Let Aη be the TTO defined on Hθ . If ordη < ordθ < 2ordη , then

rank [Aη ,A∗
η ] � 2(ordθ −ordη).

Proof. Let N = ordθ , L = ordη . Write θ = ∏N
n=1 bαn , η = ∏L

n=1 bβn . Put M =
{ f ∈ Hθ : η f ∈ Hθ} . Then Lemma 5 shows dimM = N−L and

{ f ∈ M : η f ∈ M} = {0}. (15)

Letting X = Hθ �M and Y = Hθ �ηM , we see

Hθ = M⊕X = Y ⊕ηM (16)

and
dimX = dimY = N−dimM = N−N +L = L. (17)

Since ηM ⊥ ηX , we have ηM ⊥ AηX and then AηX ⊂ Y . Also, since Y ⊥ ηM , we
have A∗

ηY ⊥ M and so A∗
ηY ⊂ X . Since θ and η are relatively prime, Lemma 11 (a)

shows
Aη : X → Y and A∗

η : Y → X are one-to-one and onto. (18)
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Using (16) and (18), we see

[Aη ,A∗
η ]η f = η f −A∗

ηAη(PMη f ⊕PXη f )

= η f −PMη f −A∗
ηAηPXη f

= PXη f −A∗
ηAηPXη f ∈ X

for every f ∈ M . Thus

[Aη ,A∗
η ]ηM ⊂ X . (19)

If PXηg = 0 for some g ∈ M , then ηg ∈ M and g = 0 by (16). It follows that PX :
ηM → X is one-to-one and hence dimPXηM = N −L . It is easy to see ‖Aηh‖ < ‖h‖
for every h ∈ X with h �= 0. It follows that

‖[Aη ,A∗
η ]η f‖ � ‖PXη f‖−‖A∗

ηAηPXη f‖
� ‖PXη f‖−‖AηPXη f‖
> 0

for every f ∈ M , which means [Aη ,A∗
η ]|ηM is one-to-one. Hence

dim [Aη ,A∗
η ]ηM = dimηM = N−L. (20)

On the other hand, we see by (18)

[Aη ,A∗
η ]g = AηA∗

ηg−A∗
ηAη(PMg+PXg)

= AηA∗
ηg−PMg−A∗

ηAηPXg

= PM(AηA∗
ηg−g)⊕ (PXAηA∗

ηg−A∗
ηAηPXg)

∈ M⊕X

for every g ∈ Y . Put

Q1 = {g ∈ Y : AηA∗
ηg−g∈ X}

and Q2 = Y �Q1 . Then we have Y = Q1 ⊕Q2 and

[Aη ,A∗
η ]Q1 ⊂ X . (21)

If PM[Aη ,A∗
η ]g = 0 for some g ∈ Q2 , then PM(AηA∗

ηg−g) = 0 and then AηA∗
ηg−g∈

X . Hence g ∈ Q1 and g = 0, which means PM[Aη ,A∗
η ]|Q2 is one-to-one. So, (21)

shows

dimPM[Aη ,A∗
η ]Y = dimPM[Aη ,A∗

η ]Q2 = dimQ2.

Thus X∩ [Aη ,A∗
η ]Q2 = {0} and dim[Aη ,A∗

η ]Q2 = dimQ2 . This, together with (19) and
(21), implies

rank [Aη ,A∗
η ] = dim

(
[Aη ,A∗

η ]ηM +[Aη ,A∗
η ]Q1 +[Aη ,A∗

η ]Q2
)

= dim
(
[Aη ,A∗

η ]ηM +[Aη ,A∗
η ]Q1

)
+dim [Aη ,A∗

η ]Q2

= dim
(
[Aη ,A∗

η ]ηM +[Aη ,A∗
η ]Q1

)
+dimQ2.

Put

R1 =
{
g ∈ Q1 : [Aη ,A∗

η ]g ∈ [Aη ,A∗
η ]ηM

}
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and R2 = Q1 �R1 . Then Q1 = R1 ⊕R2 . By the similar arguments as we have done
above and (20), we get

dim
(
[Aη ,A∗

η ]ηM +[Aη ,A∗
η ]Q1

)
= dim [Aη ,A∗

η ]ηM +dim [Aη ,A∗
η ]R2

= N−L+dimR2

= N−L+dimQ1−dimR1.

Therefore, we have by (17)

rank [Aη ,A∗
η ] = N−L+dimQ1 +dimQ2−dimR1

= N−L+dimY −dimR1

= N−dimR1.

Now, in order to complete the proof, it suffices to show that

dimR1 � 2L−N. (22)

First note that Q1 = {g ∈ Y : [Aη ,A∗
η ]g ∈ X}. By (19) we have

R1 = {g ∈Y : [Aη ,A∗
η ]g ∈ [Aη ,A∗

η ]ηM}.
and M ⊥ [Aη ,A∗

η ]ηM . Thus [Aη ,A∗
η ]M ⊥ ηM and then [Aη ,A∗

η ]M ⊂Y . It follows that
M ⊥ [Aη ,A∗

η ](Y � [Aη ,A∗
η ]M) and hence

[Aη ,A∗
η ](Y � [Aη ,A∗

η ]M) ⊂ X .

On the other hand, for a nonzero f ∈ [Aη ,A∗
η ]M , we have [Aη ,A∗

η ] f /∈ X . Indeed, if
[Aη ,A∗

η ] f ∈ X , then [Aη ,A∗
η ] f ⊥ M and f ⊥ [Aη ,A∗

η ]M , thus f = 0. Thus we have

R1 = {g ∈ Y � [Aη ,A∗
η ]M : [Aη ,A∗

η ]g ∈ [Aη ,A∗
η ]ηM}. (23)

By (15), we have that

‖[Aη ,A∗
η ] f‖ = ‖AηA∗

η f − f‖
� ‖ f‖−‖AηA∗

η f‖
for every nonzero f ∈ M . Hence dim [Aη ,A∗

η ]M = dim M = N−L and

dim(Y � [Aη ,A∗
η ]M) = dimY −dim [Aη ,A∗

η ]M

= 2L−N.

This, together with (23), gives (22) as desired. The proof is complete. �

Combining Theorem 15 with Theorem 1, we obtain the following simple applica-
tion as before.

COROLLARY 16. Let θ ,η be finite Blaschke products being relatively prime. Let
Aη be the TTO defined on Hθ . If ordθ = 2ordη −1 , then

rank [Aη ,A∗
η ] = 2(ordη −1).
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4. Two examples

In this section, we give two examples which will be related to results obtained in
the previous section. For a point a ∈ D , let

Ka(z) =
1

1− az
, z ∈ D.

EXAMPLE 17. Let α1, · · · ,α4 be nonzero distinct points in D and θ = ∏4
n=1 bαn .

Let η be an inner function and Aη be the TTO defined on Hθ . Then the following
statements hold.

(a) If η(α1) = η(α2) = η(α3) �= η(α4) , then rank [Aη ,A∗
η ] = 2.

(b) If η(α1) = η(α2) �= η(α3) and η(α4) , then rank [Aη ,A∗
η ] = 4.

Proof. First we note that Hθ = ∑4
n=1 CKαn . For each n , we write AηKαn =

∑4
j=1 cn jKα j for some cn j ∈ C .

We first prove (a). Let g ∈Hθ and write g = ∑4
n=1 dnKαn ∈Hθ for some dn ∈ C .

Since A∗
ηKa = η(a)Ka for all a∈ D , one can see that g ∈ ker [Aη ,A∗

η ] if and only if the
following two conditions hold;

d4c41 = d4c42 = d4c43 = 0, (24)

d1c14 +d2c24 +d3c34 = 0. (25)

Notice that one of c41,c42,c43 is not zero, otherwise AηKα4 = c44Kα4 . Since

c44Kα4(α1) = AηKα4(α1) = 〈AηKα4 ,Kα1〉 = η(α1)Kα4(α1)

and
c44Kα4(α4) = AηKα4(α4) = 〈AηKα4 ,Kα4〉 = η(α4)Kα4(α4),

we have η(α1) = c44 = η(α4) , which is a contradiction. Hence one of c41,c42,c43

is not zero and then d4 = 0 by (24). Then, considering d1,d2,d3 satisfying (25) and
taking d4 = 0, we have nonzero g in ker [Aη ,A∗

η ] . Also, we have

[Aη ,A∗
η ]Kα4 =

4

∑
j=1

(
η(α4)c4 j − c4 jη(α j)

)
Kα j �= 0.

Since the rank of [Aη ,A∗
η ] is one of 0, 2, 4 by Theorem 1, the observation above shows

that the rank of [Aη ,A∗
η ] must be 2, as desired.

Now, in order to prove (b), we let g = ∑4
n=1 dnKαn ∈ Hθ as before. By direct

computations using A∗
ηKa = η(a)Ka again, one can see that g ∈ ker [Aη ,A∗

η ] if and
only if the following four conditions hold;

d3c31[η(α3)−η(α1)]+d4c41[η(α4)−η(α1)] = 0,

d3c32[η(α3)−η(α1)]+d4c42[η(α4)−η(α1)] = 0,

d1c13[η(α1)−η(α3)]+d2c23[η(α1)−η(α3)]+d4c43[η(α4)−η(α3)] = 0,

d1c14[η(α1)−η(α4)]+d2c24[η(α1)−η(α4)]+d3c34[η(α3)−η(α4)] = 0.
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Now we claim that c13c24 �= c14c23 and c31c42 �= c32c41 . Then, the above shows that all
d j equals 0, so ker [Aη ,A∗

η ] = {0} and [Aη ,A∗
η ]Hθ = Hθ , which will give the desired

result.
Since

AηKαn(αm) =
4

∑
j=1

cn jKα j (αm)

and
AηKαn(αm) = 〈AηKαn ,Kαm〉 = η(αm)Kαn(αm)

for 1 � n,m � 4, we have the following linear equations

4

∑
j=1

cn jKα j (αm) = η(αm)Kαn(αm) (26)

for m = 1, · · · ,4. Set

|G| :=

∣∣∣∣∣∣∣∣

Kα1(α1) Kα2(α1) Kα3(α1) Kα4(α1)
Kα1(α2) Kα2(α2) Kα3(α2) Kα4(α2)
Kα1(α3) Kα2(α3) Kα3(α3) Kα4(α3)
Kα1(α4) Kα2(α4) Kα3(α4) Kα4(α4)

∣∣∣∣∣∣∣∣
.

By the proof of Proposition 7 of [4], we have following identity;

det

⎛
⎜⎜⎜⎜⎝

1
1−a1b1

1
1−a2b1

· · · 1
1−anb1

1
1−a1b2

1
1−a2b2

· · · 1
1−anb2

...
...

. . .
...

1
1−a1bn

1
1−a2bn

· · · 1
1−anbn

⎞
⎟⎟⎟⎟⎠

=
( n

∏
j=1

1
(1−a jb j)

) n−1

∏
k=1

∏
i>k

(ai −ak)(bi−bk)
(1−aibk)(1−akbi)

(27)

for every b j ∈ D and distinct points a j ∈ D . So |G| �= 0. By solving equation (26) and
using simple calculations, we can see

c24 =
1
|G|

∣∣∣∣∣∣∣∣

Kα1(α1) Kα2(α1) Kα3(α1) η(α1)Kα2(α1)
Kα1(α2) Kα2(α2) Kα3(α2) η(α1)Kα2(α2)
Kα1(α3) Kα2(α3) Kα3(α3) η(α3)Kα2(α3)
Kα1(α4) Kα2(α4) Kα3(α4) η(α4)Kα2(α4)

∣∣∣∣∣∣∣∣
=

1
|G|

[
(η(α4)−η(α1))Kα2(α4)|A|− (η(α3)−η(α1))Kα2(α3)|B|

]

where

|A| =
∣∣∣∣∣∣
Kα1(α1) Kα2(α1) Kα3(α1)
Kα1(α2) Kα2(α2) Kα3(α2)
Kα1(α3) Kα2(α3) Kα3(α3)

∣∣∣∣∣∣ ,

|B| =
∣∣∣∣∣∣
Kα1(α1) Kα2(α1) Kα3(α1)
Kα1(α2) Kα2(α2) Kα3(α2)
Kα1(α4) Kα2(α4) Kα3(α4)

∣∣∣∣∣∣ .
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Also, by the similar argument above, we can see

c13 =
1
|G|

∣∣∣∣∣∣∣∣

Kα1(α1) Kα2(α1) η(α1)Kα1(α1) Kα4(α1)
Kα1(α2) Kα2(α2) η(α1)Kα1(α2) Kα4(α2)
Kα1(α3) Kα2(α3) η(α3)Kα1(α3) Kα4(α3)
Kα1(α4) Kα2(α4) η(α4)Kα1(α4) Kα4(α4)

∣∣∣∣∣∣∣∣
=

1
|G|

[
(η(α1)−η(α4))Kα1(α4)|C|− (η(α1)−η(α3))Kα1(α3)|D|

]

where

|C| =
∣∣∣∣∣∣
Kα1(α1) Kα2(α1) Kα4(α1)
Kα1(α2) Kα2(α2) Kα4(α2)
Kα1(α3) Kα2(α3) Kα4(α3)

∣∣∣∣∣∣ ,

|D| =
∣∣∣∣∣∣
Kα1(α1) Kα2(α1) Kα4(α1)
Kα1(α2) Kα2(α2) Kα4(α2)
Kα1(α4) Kα2(α4) Kα4(α4)

∣∣∣∣∣∣ .

Similarly, we also check

c14 =
1
|G|

[
(η(α4)−η(α1))Kα1(α4)|A|− (η(α3)−η(α1))Kα1(α3)|B|

]
,

c23 =
1
|G|

[
(η(α1)−η(α4))Kα2(α4)|C|− (η(α1)−η(α3))Kα2(α3)|D|

]
.

Now, by comparing quantities above, one can see that c13c24 �= c14c23 if and only if
|A||D| �= |B||C| . On the other hand, we see from (27)

|A||D| = |bα2(α1)|4|bα3(α2)|2|bα4(α2)|2
(1−|α1|2)2(1−|α2|2)2(1−|α3|2)(1−|α4|2)

and

|B||C| = |bα2(α1)|4|bα3(α2)|2|bα4(α2)|2
(1−|α1|2)2(1−|α2|2)2|1−α3α4|2 .

Since α3 �= α4 if and only if (1− |α3|2)(1− |α4|2) �= |1−α3α4|2 , the above shows
|A||D| �= |B||C| and hence c13c24 �= c14c23 , as desired.

Using the same arguments above together with assumption α1 �= α2 , we can see
that c31c42 �= c32c41 either. The proof is complete. �

In more special cases of Example 17, we reprove several results what we have
obtained in this paper. We will consider six cases in which η is a finite Blaschke
product with ordη = 3.

Case 1. If η(α1) = η(α2) = η(α3) = 0 �= η(α4) , then θ = ηbα4 . By Example 17 (a),
we have

rank [Aη ,A∗
η ] = 2 = 2ordbα4 ,

which is a special case of Theorem 10 (c) or Theorem 12 (b).
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Case 2. If η(α1) = η(α2) = η(α3) �= η(α4) = 0, then θ = θ1bα4 and η = bα4η2

where θ1 = ∏3
n=1 bαn and η are relatively prime. Noting ordθ1 > ordbα4 and Example

17 (a) gives
rank [Aη ,A∗

η ] = 2 = 2ordbα4 ,

we see that Theorem 12 (a) is sharp.

Case 3. If η(α1) = η(α2) �= η(α3) , η(α4) = 0 and ∏3
n=1 η(αn) �= 0, then θ =

θ1bα4 ,η = bα4η2 where θ1 and η are relatively prime. Because ordθ1 > ordbα4 and
Example 17 (b) induces

rank [Aη ,A∗
η ] = 4 > 2ordbα4 ,

we see that inequality can occur in Theorem 12 (a).

Case 4. If η(α1) = η(α2) �= η(α3) = η(α4) = 0, then θ = θ1η1 and η = η1η2 where
η1 = bα3bα4 and θ1 and η are relatively prime. Noting ordθ1 = ordη1 and Example
17 (b) tells

rank [Aη ,A∗
η ] = 2ordθ1,

this is a special case of Theorem 12 (b).

Case 5. If η(α1) = η(α2) = η(α3) �= η(α4) and ∏4
n=1 η(αn) �= 0, then θ and η are

relatively prime. Since ordη < ordθ < 2ordη and Example 17 (a) yields

rank [Aη ,A∗
η ] = 2 = 2(ordθ −ordη),

this case gives the sharpness in Theorem 15.

Case 6. If η(α1) = η(α2) �= η(α3) and η(α4) , ∏4
n=1 η(αn) �= 0, then θ and η are

relatively prime. Noting ordη < ordθ < 2ordη and Example 17 (b) gives

rank [Aη ,A∗
η ] = 4 > 2(ordθ −ordη),

we have the inequality in Theorem 15.
Also, in conjunction with Theorem 15, we have the following example.

EXAMPLE 18. Choose L < N < 2L such that there is a nonnegative integer N1

satisfying 2(N +N1 −L) � N . Let θ ,θ1 be finite Blaschke products with ordθ = N
and ordθ1 = N1 . Fix α ∈ D\ {0} and let bα ◦ (θθ1) = ηζ such that ordη = L . Then
bα ◦ (θθ1) and θ are relatively prime and ordbα ◦ (θθ1) = N +N1 . If Aη and Aζ are
TTOs on Hθ , we can see by the similar argument as in the proof of Corollary 9

rank [Aη ,A∗
η ] = rank [Aζ ,A∗

ζ ].

Since 2(N +N1−L) � N , Theorem 7 says

rank [Aζ ,A∗
ζ ] = 2ordζ = 2(N +N1−L)

and hence
rank [Aη ,A∗

η ] = 2(N +N1−L) � 2(N−L).

For example, if N = 10 and L = 9, then we may take N1 as 0,1,2,3 or 4.
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