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THE G–DRAZIN INVERSES OF SPECIAL OPERATOR MATRICES
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Abstract. An element a in a Banach algebra A has g-Drazin inverse provided that there exists
b ∈ A such that b = bab , ab = ba , a− a2b ∈ A qnil . In this paper we give a computational

formula for the g-Drazin inverse of operator matrix

(
E I
F 0

)
which was posed by Campbell in

the research on singular differential equations.

1. Introduction

Let A be a Banach algebra with an identity. An element a in a Banach algebra
A has g-Drazin inverse provided that there exists some b ∈ A such that b = bab ,
ab = ba , a− a2b ∈ A qnil . Such b is unique, if exists, and we denote it by ad . Here,
A qnil is the set of all quasinilpotents in A , i.e.,

a ∈ A qnil ⇔ lim
n→∞

‖ an ‖ 1
n = 0 ⇔ 1+ λa∈ A −1 for any λ ∈ C.

We always use A d to stand for the set of all g-Drazin invertible elements in A . We
say a has Drazin inverse aD if the preceding quasinilpotent is replaced by the set of all
nilpotent elements in A .

Let E,F be bounded linear operators and I be the identity operator over a Ba-
nach space X . It is attractive to investigate the Drazin and g-Drazin invertibility of

the operator matrix M =
(

E I
F 0

)
. It was firstly posed by Campbell that the solutions

to singular systems of differential equations is determined by the Drazin invertibility
of the preceding special matrix M (see [2]). In 2005, Castro-González and Dopazo

gave the representations of the Drazin inverse for a class of operator matrix

(
I I
F 0

)

(see [3]). In 2011, Bu et al. investigate the Drazin inverse of the preceding operator
matrix M under the condition EF = FE (see [1]). Afterwards, Patricio and Hartwig
studied the g-Drazin invertibility of such special operator matrix M under the condi-
tions FπEFFd = 0, FπFE = EFFπ (see [8]). Here, Fπ = I −FFd is the spectral
idempotent of F . In 2016, Zhang investigated the g-Drazin invertibility of M under
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the conditions FdEFπ = 0, FπFE = 0 and FπEFd = 0, EFFπ = 0 (see [9, Theorem
2.6, Theorem 2.8]).

The motivation of this paper is to further study the g-Drazin invertibility of this
special operator matrix M . We shall present new conditions under which an operator
matrix over a Banach algebra has g-Drazin inverse, and we thereby apply to determine
the g-Drazin invertibility of M under new conditions FdEFπ = 0, EFFπ = 0. The
representations of Md are given as well.

Throughout the paper, all Banach algebras of bounded linear operators are com-
plex. Let M2(A ) be the Banach algebra of all 2×2 matrices over the Banach algebra
A . We denote by C the field of all complex numbers. N stands for the set of all natural
numbers.

2. 2×2 block matrices

In this section we consider the g-Drazin inverse of block matrix in a Banach alge-
bra which will be used in the sequel. We begin with

LEMMA 2.1. (see [9, Lemma 2.2]) Let

x =
(

a 0
c b

)
, y =

(
b c
0 a

)
∈ M2(A )

Then

xd =
(

ad 0
z bd

)
and yd =

(
bd z
0 ad

)
,

where z = (bd)2
( ∞

∑
i=0

(bd)icai
)
aπ +bπ( ∞

∑
i=0

bic(ad)i
)
(ad)2−bdcad.

LEMMA 2.2. (see [9, Lemma 2.5]) Let a,d ∈ A d and b,c ∈ A . If abc = 0 ,

bd = 0 and bc ∈ A qnil , then M :=
(

a b
c d

)
∈ M2(A )d . In this case,

Md =
(

φ1a φ1b
ωa+ ψ1 dd + ωb

)
,

where

φn =
∞
∑
j=0

(bc) j(ad)2 j+2n;

ψn =
∞
∑
j=0

(dd)2 j+2n(cb) jc;

ω =
∞
∑
i=0

(cb+d2)ic(ad)2i+3 +
∞
∑
i=0

dπd2i+1cφi+2

−
∞
∑
i=0

d2(cb+d2)iψ1(ad)2i+3 +
∞
∑
i=0

ψi+2a2i+1aπ

−
∞
∑
i=0

(dd)2i+3c(a2 +bc)iaπ −
∞
∑
i=0

(dd)2i+1c(bc)iφ1 −ψ1ad .
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We are ready to prove:

THEOREM 2.3. Let a,d ∈A d and b,c ∈A . If adb = 0 , dcb = 0 , caaπ = 0 and

cb ∈ A qnil , then M :=
(

a b
c d

)
∈ M2(A )d . In this case, Md =

(
α β
γ δ

)
, where

α =
∞
∑
i=0

(bcaπ +a2aπ)ibz2i+2 +
∞
∑
i=0

(bcaπ +a2aπ)ib(dd)2i+3caπ

+
∞
∑
i=0

∞
∑
j=0

a2i+1aπb(cb) jz2 j+2i+3 +
∞
∑
i=0

∞
∑
j=0

a2i+1aπb(cb) j(dd)2 j+2i+4caπ ,

β =
∞
∑
i=0

(bcaπ +a2aπ)ib(dd)2i+2 +
∞
∑
i=0

∞
∑
j=0

a2i+1b(cb) j(dd)2 j+2i+3,

γ =
∞
∑
i=0

(cb)iz2i+1 +
∞
∑
i=0

(cb)i(dd)2i+2caπ ,

δ =
∞
∑
i=0

(cb)i(dd)2i+1

and

z1 = dπ
∞
∑
i=0

dic(ad)i+2−ddcad ,

zm+1 = z1(ad)m +ddzm for any m ∈ N.

Proof. Let p =
(

aad 0
0 1

)
∈ M2(A ) . Then p2 = p . By hypothesis, we have the

Pierce decomposition of M relatively to the idempotent p :

σ(M) =
(

A B
C D

)
p
,

where

A =
(

a2ad 0
caad d

)
, B =

(
0 0

caπ 0

)
,

C =
(

0 b
0 0

)
, D =

(
aaπ 0
0 0

)
.

We easily check that

ABC =
(

a2ad 0
caad d

)(
0 0
0 cb

)
= 0,

BD =
(

0 0
caπ 0

)(
aaπ 0
0 0

)
= 0,

BC =
(

0 0
caπ 0

)(
0 b
0 0

)
=

(
0 0
0 cb

)
∈ M2(A )qnil.

By Lemma 2.1, A has g-Drazin inverse and Dd = 0. In light of Lemma 2.2, we have

σ(M)d =
(

Φ1A Φ1B
ΩA+ Ψ1 ΩB

)
p
,
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where

Φn =
∞

∑
j=0

(BC) j(Ad)2 j+2n,

Ψn =
∞

∑
j=0

(Dd)2 j+2n(CB) jC = 0

and

Ω =
∞

∑
i=0

(CB+D2)iC(Ad)2i+3 +
∞

∑
i=0

D2i+1CΦi+2.

Obviously, we have

(BC) j =
(

0 0
0 (cb) j

)
.

Choose

z1 = dπ
∞
∑
i=0

dic(ad)i+2−ddcad ,

zm+1 = z1(ad)m +ddzm for any m ∈ N.

Then we verify that

(Ad)m =
(

(ad)m 0
zm (dd)m

)
.

Also we have

(CB+D2)i =
(

((bc+a2)aπ)i 0
0 0

)
,

D2i+1C =
(

0 a2i+1b
0 0

)
.

Hence,

(BC) j(Ad)2 j+1 =
(

0 0
(cb) jz2 j+1 (cb) j(dd)2 j+1

)
,

(BC) j(Ad)2 j+2B =
(

0 0
(cb) j(dd)2 j+2caπ 0

)
,

(CB+D2)iC(Ad)2i+2 =
(

((bc+a2)aπ)ibz2i+2 ((bc+a2)aπ)ib(dd)2i+2

0 0

)
,

D2i+1C(BC) j(Ad)2 j+2i+3 =
(

a2i+1aπb(cb) jz2 j+2i+3 a2i+1aπb(cb) j(dd)2 j+2i+3

0 0

)
,

(CB+D2)iC(Ad)2i+3B =
(

((bc+a2)aπ)ib(dd)2i+3caπ 0
0 0

)
,

D2i+1C(BC) j(Ad)2 j+2i+4B =
(

a2i+1aπb(cb) j(dd)2 j+2i+4caπ 0
0 0

)
,
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By virtue of [9, Lemma 2.1], we have

Md = Φ1A+ Φ1B+ ΩA+ ΩB

=
∞
∑
j=0

(BC) j(Ad)2 j+1 +
∞
∑
j=0

(BC) j(Ad)2 j+2B

+
∞
∑
i=0

(CB+D2)iC(Ad)2i+2 +
∞
∑
i=0

∞
∑
j=0

D2i+1C(BC) j(Ad)2 j+2i+3

+
∞
∑
i=0

(CB+D2)iC(Ad)2i+3B+
∞
∑
i=0

∞
∑
j=0

D2i+1C(BC) j(Ad)2 j+2i+4B

By direct computation, Md =
(

α β
γ δ

)
, where α,β ,γ,δ as preceding written. �

COROLLARY 2.4. Let a,d ∈ A d and b,c ∈ A . If ddc = 0 , abc = 0 , bddπ = 0

and bc ∈ A qnil , then M :=
(

a b
c d

)
∈ M2(A )d . In this case, Md =

(
α β
γ δ

)
, where

α =
∞
∑
i=0

(bc)i(ad)2i+1,

β =
∞
∑
i=0

(bc)iy2i+1 +
∞
∑
i=0

(bc)i(ad)2i+2bdπ ,

γ =
∞
∑
i=0

(cbdπ +d2dπ)ic(ad)2i+2 +
∞
∑
i=0

∞
∑
j=0

d2i+1c(bc) j(ad)2 j+2i+3,

δ =
∞
∑
i=0

(cbdπ +d2dπ)icy2i+2 +
∞
∑
i=0

(cbdπ +d2dπ)ic(ad)2i+3bdπ

+
∞
∑
i=0

∞
∑
j=0

d2i+1dπc(bc) jy2 j+2i+3 +
∞
∑
i=0

∞
∑
j=0

d2i+1dπc(bc) j(ad)2 j+2i+4bdπ

and

y1 = aπ
∞
∑
i=0

aib(dd)i+2 −adbdd ,

ym+1 = y1(dd)m +adym for any m ∈ N.

Proof. Applying Theorem 2.3 to the matrix

(
d c
b a

)
, we see that it has g-Drazin

inverse. Clearly, we have

M =
(

0 1
1 0

)(
d c
b a

)(
0 1
1 0

)
.

Then

Md =
(

0 1
1 0

)(
d c
b a

)d (
0 1
1 0

)
.

By direct computation, we complete the proof. �
We demonstrate Theorem 2.3 by the following numerical example.



156 H. CHEN AND M. SHEIBANI

EXAMPLE 2.5. Let M =
(

a b
c d

)
, where

a =
(

0 0
1 0

)
, b =

(
1 0
−1 0

)
,

c =
(

0 0
1 0

)
, d =

(
1 0
1 0

)
∈ M2(C).

Then M has g-Drazin inverse. In this case,

Md =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 1 0
0 0 2 0

⎞
⎟⎟⎠ .

Proof. By the computation, we have adb = 0, dcb = 0, caaπ = 0 and cb =(
0 0
1 0

)
∈ M2(C)qnil.

In view of Theorem 2.3, Md =
(

α β
γ δ

)
.

Since ad = 0, we see that z1 = dπ
∞
∑
i=0

dic(ad)i+2 − ddcad = 0; hence, zm+1 =

z1(ad)m + ddzm = 0 for any m ∈ N . As bc = a2 = 0, we have α = bdc = 0. Also

β = (1+a)bd =
(

1 0
0 0

)
and γ = (1+cb)dc = 0. Moreover, δ = (1+cb)d =

(
1 0
2 0

)
.

Then

Md =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 1 0
0 0 2 0

⎞
⎟⎟⎠ . �

3. Special operator matrices

Let E,F be bounded linear operators and I be the identity operator over a Banach
space X . In this section we come now to the demonstration of our main result for the g-

Drazin inverse of the operator matrix

(
E I
F 0

)
. For future use, we record the following

elementary result.

LEMMA 3.1. Let E,F and EFFd have g-Drazin inverses. If FdEFπ = 0 and
EFFπ = 0 , then FFdE , EFπ have g-Drazin inverses and

(FFdE)d = FFdEdFFd , (EFπ)d = FπEdFπ .
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Proof. By hypothesis, we have FFdEFFd =FFdE , FFdEFπ = 0 and FπEFπ =
EFπ . Let e = FFd . Then we have the Pierce composition of E relatively to the
idempotent e :

σ(E) =
(

FFdE 0
FπEFFd EFπ

)
e
.

By using Cline’s formula, FFdE has g-Drazin inverse. In light of [4, Theorem 2.3],
EFπ has g-Drazin inverse. By using [4, Theorem 2.3] again, we have

σ(Ed) =
(

(FFdE)d 0
∗ (EFπ)d

)
e
.

Therefore
(FFdE)d = FFdEdFFd ,(EFπ)d = FπEFπ ,

as asserted. �

THEOREM 3.2. Let E,F and EFFd have g-Drazin inverses. If FdEFπ = 0 and

EFFπ = 0 , then M =
(

E I
F 0

)
has g-Drazin inverse. In this case, Md =

(
Λ Σ
Γ Δ

)
,

where

Λ =
∞
∑
i=0

(FFπ)iX2i+1 +
∞
∑
i=0

FiFπ(EdFπ)2i+1,

Σ =
∞
∑
i=0

(FFπ)iY2i+1 +
∞
∑
i=0

FiFπ(EdFπ)2i+2,

Γ =
∞
∑
i=0

Fi+1FπX2i+2 +
∞
∑
i=0

Fi+1Fπ(EdFπ)2i+2,

Δ =
∞
∑
i=0

Fi+1FπY2i+2 +
∞
∑
i=0

Fi+1Fπ(EdFπ)2i+3

and

Z1 =
∞
∑
i=0

(
FπEπFπ(EFπ)iEFFd FπEπFπ(EFπ)i

0 0

)

×
(

0 Fd

FFd −FFdEFd

)i+2

−
(

0 FπEdFπEFd

0 0

)
,

Zm+1 = Z1

(
0 Fd

FFd −FFdEFd

)m

+
(

FπEdFπ 0
0 0

)
Zm;

Xm = (Zm)11, Ym = (Zm)12 for any m ∈ N.

Proof. Let e =
(

FFd 0
0 I

)
. Then we have the Pierce decomposition of M rela-

tively to the idempotent e : σ(M) =
(

a b
c d

)
e
, where

a = eMe, b = eM(I− e), c = (I− e)Me, d = (I− e)M(I− e).
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Since FdEFπ = 0, we have FFdEFFd = FFdE(I−Eπ) = FFdE −F(FdEFπ)
= FFdE. Thus we easily check that

a =
(

FFdE FFd

F2Fd 0

)
, b =

(
0 0

FFπ 0

)
,

c =
(

FπEFFd Fπ

0 0

)
, d =

(
EFπ 0

0 0

)
.

We see that a has group inverse and

ad = a# =
(

0 Fd

FFd −FFdEFd

)
.

We note that the identity of the the corner ring containing eMe is e , and so

aπ = e−aad

=
(

FFd 0
0 I

)
−

(
FFdE FFd

F2Fd 0

)(
0 Fd

FFd −FFdEFd

)

=
(

0 0
0 Fπ

)
.

In light of Lemma 3.1, FFdE,EFπ have g-Drazin inverses and (FFdE)d = FFdEd ,
(EFπ)d = EdFπ . We compute that

ab = 0, dcb = 0, caaπ = 0, cb =
(

FFπ 0
0 0

)
is quasinilpotent.

According to Theorem 2.3, M has g-Drazin inverse, and we have Md =
(

α β
γ δ

)
,

where α , β , γ and δ are given in Theorem 2.3.
Clearly, we have

aaπ = 0, bcaπ =
(

0 0
0 FFπ

)
.

Moreover, we have

dd =
(

FπEdFπ 0
0 0

)
, dπ =

(
FπEπFπ 0

0 0

)
.

Choose

Z1 = dπ
∞
∑
i=0

dic(ad)i+2 −ddcad , Zm+1 = Z1(ad)m +ddZm;

Xm = (Zm)11, Ym = (Zm)12.

Then Zm =
(

Xm Ym

∗ ∗
)

for all m ∈ N .
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Hence,

α =
∞
∑
i=0

(
0 0

Fi+1Fπ 0

)
Z2i+2 +

∞
∑
i=0

(
0 0
0 Fi+1Fπ(EdFπ)2i+3

)
.

Also we have

ab(cb) j(dd)2i+2 j+3 =
(

FFdE FFd

F2Fd 0

)(
0 0

F j+1Fπ(EdFπ)2i+2 j+3 0

)
= 0,

and so

β =
∞

∑
i=0

(
0 0

Fi+1Fπ(EdFπ)2i+2 0

)
.

We easily see that

caπ =
(

0 Fπ

0 0

)
.

Hence,

γ = Z1 +(dd)2caπ +
∞
∑
i=1

(cb)iZ2i+1 +
∞
∑
i=1

(cb)i(dd)2i+2caπ

= Z1 +
(

0 Fπ(EdFπ)2

0 0

)
+

∞
∑
i=1

(
FiFπ 0

0 0

)
Z2i+1

+
∞
∑
i=1

(
0 FiFπ(EdFπ)2i+2

0 0

)
.

Moreover, we have

δ =
∞
∑
i=0

(cb)i(dd)2i+1

=
∞
∑
i=0

(
FiFπ(EdFπ)2i+1 0

0 0

)
.

By [10, Lemma 2.1], we have Md =
(

Λ Σ
Γ Δ

)
, where Λ , Σ , Γ and Δ are above given,

as desired. �

COROLLARY 3.3. Let E,F and EFFd have g-Drazin inverses. If FdEFπ = 0

and EFFπ = 0 , then M =
(

E F
I 0

)
has g-Drazin inverse. In this case,

Md =
(

Δ +EΣ Γ+EΛ−ΔE−EΣE
Σ Λ−ΣE

)
,

where Λ,Σ,Γ and Δ are given as in Theorem 3.2.

Proof. Obviously, we have

(
E F
I 0

)
=

(
0 I
I −E

)−1 (
E I
F 0

)(
0 I
I −E

)
,
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and so (
E F
I 0

)d

=
(

E I
I 0

)(
E I
F 0

)d (
0 I
I −E

)
.

Applying Theorem 3.2 to the matrix

(
E I
F 0

)
, we complete the proof. �

Let E,F and G be bounded linear operators over a Banach space X . We now
derive

COROLLARY 3.4. Let E,GF and EGF(GF)d have g-Drazin inverses. If (GF)dE

(GF)π = 0 and EGF(GF)π = 0 , then M =
(

E G
F 0

)
has g-Drazin inverse.

Proof. In view of Theorem 3.2, the operator matrix

(
E I

GF 0

)
has g-Drazin in-

verse. We easily see that

(
E I

GF 0

)
=

(
I 0
0 G

)(
E I
F 0

)
,

it follows by Cline’s formula (see [7, Theorem 2.1]) that

(
E I
F 0

)(
I 0
0 G

)
has g-Drazin

inverse. That is,

(
E G
F 0

)
has g-Drazin inverse, as asserted. �

For any complex matrix, the Drazin inverse and g-Drazin inverse coincide with
each other. Thus the preceding results are also valid for computing Drazin inverses.
The following numerical example illustrates Theorem 3.2.

EXAMPLE 3.5. Let M =
(

E I
F 0

)
, where

E =
(

1 0
−1 0

)
, F =

(
0 0
1 0

)
∈ M2(C).

Then M has Drazin inverse. In this case,

MD =

⎛
⎜⎜⎝

1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0

⎞
⎟⎟⎠ .

Proof. By the computation, we have FDEFπ = 0 and EFFπ = 0. Construct
Xm,Ym as in Theorem 3.2, we easily see that Xm = Ym = 0. Since ED = E2 = E and
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F2 = 0, we have

Λ = FπEDFπ +FFπ(EDFπ)3 =
(

1 0
0 0

)
,

Σ = Fπ(EDFπ)2 +FFπ(EDFπ)4 =
(

1 0
0 0

)
,

Γ = FFπ(EDFπ)2 =
(

0 0
1 0

)
,

Δ = FFπ(EDFπ)3 =
(

0 0
1 0

)
.

Therefore

MD =

⎛
⎜⎜⎝

1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0

⎞
⎟⎟⎠ ,

as desired. �

Acknowledgement. The authors would like to thank the referee for his/her careful
reading of the paper. The detailed remarks and corrections help to improve the paper
so much. Huanyin Chen was supported by the Natural Science Foundation of Zhejiang
Province, China (No. LY21A010018).

RE F ER EN C ES

[1] C. BU, K. ZHANG AND J. ZHAO, Representation of the Drazin inverse on solution of a class singular
differential equations, Linear & Multilinear Algebra 59 (2011), 863–877.

[2] S. L. CAMPBELL,The Drazin inverse and systems of second order linear differential equations, Linear
& Multilinear Algebra 14 (1983), 195–198.
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