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THE G-DRAZIN INVERSES OF SPECIAL OPERATOR MATRICES
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Abstract. An element @ in a Banach algebra .7 has g-Drazin inverse provided that there exists
b € o such that b = bab, ab = ba, a—a*b € @7 . In this paper we give a computational

formula for the g-Drazin inverse of operator matrix <£ (I)> which was posed by Campbell in

the research on singular differential equations.

1. Introduction

Let ./ be a Banach algebra with an identity. An element @ in a Banach algebra
o/ has g-Drazin inverse provided that there exists some b € o/ such that b = bab,
ab=ba, a—a*h € 7" Such b is unique, if exists, and we denote it by a . Here,
/M s the set of all quasinilpotents in <7, i.e.,

a € M = lim | a" ||%:0<:>1+)La6£7’1 forany A € C.

We always use <7 to stand for the set of all g-Drazin invertible elements in <7 . We
say a has Drazin inverse a” if the preceding quasinilpotent is replaced by the set of all
nilpotent elements in o7 .

Let E,F be bounded linear operators and / be the identity operator over a Ba-
nach space X. It is attractive to investigate the Drazin and g-Drazin invertibility of
E I
FO
to singular systems of differential equations is determined by the Drazin invertibility
of the preceding special matrix M (see [2]). In 2005, Castro-Gonzélez and Dopazo

the operator matrix M = ) . It was firstly posed by Campbell that the solutions

. . . 11
gave the representations of the Drazin inverse for a class of operator matrix < F 0)

(see [3]). In 2011, Bu et al. investigate the Drazin inverse of the preceding operator

matrix M under the condition EF = FE (see [1]). Afterwards, Patricio and Hartwig

studied the g-Drazin invertibility of such special operator matrix M under the condi-

tions FTEFFY =0, F*FE = EFF™ (see [8]). Here, F* =1 — FF? is the spectral

idempotent of F. In 2016, Zhang investigated the g-Drazin invertibility of M under
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the conditions FYEF™ =0, F*FE =0 and F*EF? =0, EFF™ =0 (see [9, Theorem
2.6, Theorem 2.8]).

The motivation of this paper is to further study the g-Drazin invertibility of this
special operator matrix M. We shall present new conditions under which an operator
matrix over a Banach algebra has g-Drazin inverse, and we thereby apply to determine
the g-Drazin invertibility of M under new conditions F!EF™ =0, EFF™ = 0. The
representations of M“ are given as well.

Throughout the paper, all Banach algebras of bounded linear operators are com-
plex. Let M, (/) be the Banach algebra of all 2 x 2 matrices over the Banach algebra
o/ . We denote by C the field of all complex numbers. N stands for the set of all natural
numbers.

2. 2 x 2 block matrices

In this section we consider the g-Drazin inverse of block matrix in a Banach alge-
bra which will be used in the sequel. We begin with

LEMMA 2.1. (see [9, Lemma 2.2]) Let
a0 bc
x_(dJ, _(0)6%@@
d d
d __ a® 0 d__ b Z
x—(zbd) andy-(oad>,

=3

where z = (b%)?( E (b%)ica')a™ + b ( 3, bic(a?)') (a)?* — blca’.
i=0 i=0

Then

LEMMA 2.2. (see [9, Lemma 2.5]) Let a,d € </ and b,c € <. If abc =0,

bd =0 and bc € 7", then M := (Z Z) € My(<7 ). In this case,

i 9a b
wa+y d*+wb )’

where
9n = 3 (be)i (a2,
j=0
Yo = X (a2 (ch)lc;
j=0
o = 2(6‘]9—1—(12) ( d)2i+3+ Zdﬂd2i+lc¢i 5

_ 2 d2(0b+d2)il[/ ( d)21+3_|_ z Vit 2a21+1 b4
i=0 i=0

-y (dd)2i+3c(a2+bc) ( )21+1C(bc) o) — Wlad.

i=0

HMSN
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We are ready to prove:
THEOREM 2.3. Let a,d € &/ and b,c € /. If a®b =0, dcb =0, caa™ =0 and

; ab . af
cbh € M then M = (c d) € My(Z). In this case, M = (Y 5) , where

o= go(bca +a*a™) bz + zo(bca + a2a®)b(d4) 23 cam
: 3 T (e e T T @bl
B= > (bcd™ + a*a™) b(d?)?+2 + zo zoa21+1b(cb) (d?)2+2i+3,
0 i=0,j
Y= j (cb) zait1 +lzo(cb) [(dh)? 2™

i=0

(Cb) (dd)2z+1

MS

i=0

and ~
71 =d* Y dic(a®)*? —dca?,
i=0

Imt+1 = Zl(ad)m +diz, forany meN.

d
Proof. Let p = (ag (1) € My(<7). Then p*> = p. By hypothesis, we have the

Pierce decomposition of M relatively to the idempotent p:

o= (¢p) -

where Ny
a~a* 0 00
A_<caadd)’ B_<ca”0)’

0b
c=(g0) o=

a*a® 0\ (00
ABC = (caadd ch) =0,
00 aa”™ 0
BD_(Cd”O)( 0 0)_0’

{00\ [(0b) (00 i
BC= (ca”O) (00) _<ch> € M)

By Lemma 2.1, A has g-Drazin inverse and D = 0. In light of Lemma 2.2, we have

®A OB
d _ 1 1
o(M)" = (QA+‘P1 QB) !

We easily check that
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where
®, = Y (BC) (A1,
Jj=0
¥, = Y (D) (CB)/C=0
j=0
and

Q=Y (CB+D*C(A")* 3+ DD,
=0 i=0

(BC) = (8 (cg)j).

71 =d" Y dic(a®)? —dlca?,
i=0
Zmr1 = 21(a®)" +d%, forany m € N.

wr = )

(CB+ D% = (((bc—l—az)a”)i 0),

Obviously, we have

Choose

Then we verify that

Also we have

0 0
; 0 ¥ +1p
2i+1
brre= (0 0 )

Hence,
(BC)! (A2 = ((cb)jozzj+1 (Cb)j(gd)2j+1> )

adn2g 0 0
J(Ad\2j+2p _ ' '
(BC) (A ) B <(Cb)j(dd)21+2can 0) )
(CB+ D) C(A%)2+2 — (((bc+a2)a”)ibzzi+2 ((bc+a2)a”)ib(dd)2i+2>
0 0 ’
DMﬂMNMMMg<ﬂ%W@%mmﬂW%WW%mmv
0 0 ’

. . 2\ i d\2i+3 . 1T
(CB+D?)C(A)* B = <((bc+“ Ja >0b(d) “ 8>,

D¥HLC(BC)Y (A4)2i+2i+4p = (a2i+1anb(cb)j(dd)2j+2i+4ca7r 0)
0 0/’
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By virtue of [9, Lemma 2.1], we have

M? = ®A+D B+ QA+ QB

= 3 (BC)Y (AN + Z (BC)/(A?)>7*2B
Jj=0

=+ 020: (CB+D2)ic(Ad)21+2+ z z DZH—Ic(Bc) (Ad)21+21+3
i=0 i=0j=0

+

I

(CB+D2)ic(Ad)21+3B+ z z DZH—Ic(Bc) (Ad)2j+21+4B
i=0j=0

By direct computation, M? = (? g) , where o, 3,7,0 as preceding written. [J

COROLLARY 2.4. Let a,d € 7% and b,c € o . Ifddc =0, abc =0, bdd™ =

and bc € /M| then M := (a Z) € My(/)?. In this case, M? = (‘; l;) , where

(bc)i( d)2i+1

B= Z(bc)yz,+1+2(bc)( d\2it2pgm

(=)

XH

Y= Z(cbdﬂ' d2d”) ( )21+2_|_ z z 4% t1e (bc) ( )2]+21+3
=0 i=0,=0
-2

(chd™ + d2d™ )i cysisa + § (chd™ + d2d™Yic(a®)%+3pd™

T
=}
8

+3 3 d¥ld%e (bc)’Y2/+2z+3+ S 3 ddre(be)i (@) par
i=0j=0 i=0j=0
and
_a 2 a b(dd)z+2 dbdd
Ym+1 = yl(dd) +a Ym forany m € N.

Proof. Applying Theorem 2.3 to the matrix (Z 2) , we see that it has g-Drazin
inverse. Clearly, we have

w=(10) (50 (Vo)
w=(a) (3) (3)

By direct computation, we complete the proof. [

Then

We demonstrate Theorem 2.3 by the following numerical example
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EXAMPLE 2.5. Let M = (Ccl Z) , where

“:<(1)8)’ b:<_118)’
c— (‘1)8) d= (}8) € My(C).

Then M has g-Drazin inverse. In this case,

0010
0000
0010
0020

M4 =

Proof. By the computation, we have ab=0, deb =0, caa® =0 and cb =
00 .
gnil
(l O) € M (C)amt,
In view of Theorem 2.3, M9 = ( ? g ) )

Since a? = 0, we see that z; = d™ i dic(a®)*? —d?ca’ = 0; hence, 7,11 =

i=0
zl(ad)m +d4z, =0 for any m € N. As bc = a* =0, we have oo = bdc = 0. Also
B=(14+a)bd= <(1) 8) and y= (1+cb)dc=0. Moreover, 6 = (1+cb)d = (é 8) .

Then
0010
¢ 10000
M= 0010 |~ -

0020

3. Special operator matrices
Let E,F be bounded linear operators and / be the identity operator over a Banach
space X . In this section we come now to the demonstration of our main result for the g-
. . (EI .
Drazin inverse of the operator matrix < ) . For future use, we record the following

FO
elementary result.

LEMMA 3.1. Let E,F and EFF¢ have g-Drazin inverses. If FIEF™ =0 and
EFF™ =0, then FF'E, EF” have g-Drazin inverses and

(FFUE) = FFIEIFFY,  (EF™)¢ =F"EIF™,
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Proof. By hypothesis, we have FFYEFF? = FFYE, FFYEF™ =0 and F*EF™ =
EF™. Let e = FFY. Then we have the Pierce composition of E relatively to the

idempotent e:
FFE 0
o(E) = (F”EFFd EF”)E'

By using Cline’s formula, FF?E has g-Drazin inverse. In light of [4, Theorem 2.3],
EFT has g-Drazin inverse. By using [4, Theorem 2.3] again, we have

o ((FFIE)Y 0
G(E )_ < * (EFTE)d e'
Therefore
(FFUE) = FFUEIFF? (EF™)? = FTEF™,

as asserted. [

THEOREM 3.2. Let E,F and EFF? have g-Drazin inverses. If FEEF™ =0 and

EI AX
T o ~ L . d
EFF™ =0, then M = (F 0) has g-Drazin inverse. In this case, M* = (1_, A) ,
where

(FFTE)ZX2I+1 + 2 F! FTE(EdFTE)2l+1
l 0

X (FFT) YVaiy1+ z F'FT(E4F™)% 2,

™M >
|

I
'M sl

gl
o

r = Fz+1F7rX2 +2+ z Fz+1Fn(Ean)2t+2
z 0

A= 2 Fl+1F7tY2i+2+ z Fl+1F7t(EdF7t)2l+3

i=0 i=0
and _ '
st F”E”F”(EF”)’EFFd FTE"F™(EF™)
Zy =% 0 0

(0 FCNT (0FTEFTER
FF? —FFIEF? 0 0 ,
0 F! " (FTEIFT
Zm1 =24 (FFd —FFdEFd> + 0 0 Zm;
Xn= Zn)1, Ym=(Zn)1n forany meN.
FF10 , .
Proof. Let e = 0 1) Then we have the Pierce decomposition of M rela-

tively to the idempotent e: o(M) = (Z Z) , Where
e

a=eMe, b=eM(I—e), c=(I—eMe, d=(I—eM(—e).
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Since FIEF™ =0, we have FF'EFF¢ = FFYE(l — E™) = FF'E —F(FEFT)

= FF?E. Thus we easily check that

_ (FFIE FF? p( 00
“=\FFd 0 ) “\FFro0)"
_ (F"EFFY F™ J— (EFTO0
‘= 0o 0) Lo o)

We see that a has group inverse and

gt 0 Fd
—% T\ FF! —FFIEF9 )"

We note that the identity of the the corner ring containing eMe is e, and so

T —e¢—qa?

_ (FF?0\ (FFIEFF? 0 F4
“\L 0 I F2Fd 0 FF! —FFIEF4

(o)

a

In light of Lemma 3.1, FF?E,EF™ have g-Drazin inverses and (FF?E)? = FFIE?,

(EF™)? = EYF™. We compute that

FF™ 0

_ _ m_ _
ab=0, dcb=0, caa" =0, cb-( 0 0

According to Theorem 2.3, M has g-Drazin inverse, and we have M = (

where o, 3, ¥ and O are given in Theorem 2.3.
Clearly, we have

00
T _ T_
aa” =0, bca" = (OFF”)'

Moreover, we have

44— FTEIF™ 0 g5 (FTETFT0
- 0 0) - 0o 0)°

Choose N
Zy=d* ¥ dic(a®)*? —dical, Zy.1=Zi(a)"+dZy;
i=0

Xn=(Zn)11;, Y= (Zn)12

Then Z,, = (im{i"> for all m € N.

) is quasinilpotent.

af
)

).
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Hence,

st 0 0 st 0
o= 'Z‘O (Fi+lF7r O) ZZH—Z + 2 <0 F1+1F7T(EdF7t)2l+3>

I i=0

Also we have
. FFIE FF? 0 0
b(Cb) (dd)2 ARARES ( F2Fd 0 ) (Fj+lF7T(EdF7t)2i+2j+3 0) =0,

and so

— 0 0
ﬂ = 20 <Fi+lF7t(EdF7r)2i+2 O) .

. (OF7
ca —(00 .

Y= Zl +(dd) ca” —+ z (Cb>lZZl+l 4 z (Cb) (dd)2l+2ca
i= i=1

B 0 F*(EYF™)? F'F™ 0

n(pd pm\2i+2
+Z<OFF(EF)+)'

We easily see that

Hence,

Moreover, we have

B i FiFﬂ(EdFﬂ)2i+l 0
I 0 0/

AX

d _
By [10, Lemma 2.1], we have M“¢ = (FA

) , where A, 2, T" and A are above given,

as desired. [
COROLLARY 3.3. Let E,F and EFF have g-Drazin inverses. If FCEF™ =

and EFF™ =0, then M = ( 10 ) has g-Drazin inverse. In this case,

yd — (ATELT+EA—AE—EYE
= A—3E ’

where A,X,T" and A are given as in Theorem 3.2.

Proof. Obviously, we have

(16)-(%) (F0) (5 %)
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(o) =(a) (o) (0.

Applying Theorem 3.2 to the matrix <g é) , we complete the proof. [J

and so

Let E,F and G be bounded linear operators over a Banach space X. We now
derive

COROLLARY 3.4. Let E,GF and EGF(GF)? have g-Drazin inverses. If (GF)?E

(GF)™ =0 and EGF(GF)™ =0, then M = (E G

F 0) has g-Drazin inverse.

Proof. In view of Theorem 3.2, the operator matrix ( GE F (I)> has g-Drazin in-

(6r0)=(06) (Fo):

it follows by Cline’s formula (see [7, Theorem 2.1]) that <E ! ) ( [0 ) has g-Drazin

verse. We easily see that

FO 0G

. . EG ..
inverse. That is, ( Fo ) has g-Drazin inverse, as asserted. [

For any complex matrix, the Drazin inverse and g-Drazin inverse coincide with
each other. Thus the preceding results are also valid for computing Drazin inverses.
The following numerical example illustrates Theorem 3.2.

EXAMPLE 3.5. Let M = <£ (I)) , where

E:(_llg) F:(?g) € M(C).

Then M has Drazin inverse. In this case,

1010
0000
0000
1010

MP =

Proof. By the computation, we have FPEF* =0 and EFF™ = 0. Construct
Xm,Ym as in Theorem 3.2, we easily see that X,, =Y, = 0. Since EP =FE?2=F and
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F2 =0, we have
D (D)3 10
A =F"E°FT" 4+ FF™(E°F™)° = 00 )
(D rn\2 n(Drn\4 10
Y =FY"EPF")*+FF"(E°F™")* = 00 )
r = rreErree = (09
10
A = FF™(EPF™)? = 00}
10
Therefore
1010
D 0000
M” = 0000 |’
1010

as desired. [
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