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ON THE DRAZIN INVERSE AND M-P
INVERSE FOR SUM OF MATRICES

YINGYING QIN, ZHIPING XIONG" AND WANNA ZHOU

(Communicated by I. M. Spitkovsky)

Abstract. Drazin inverse and M-P inverse have many important applications in the aspects of
theoretic research of operator and statistics. In this article, we will exhibit under suitable con-
ditions a neat relationship between the Drazin inverse of A + B and the Drazin inverses of the
individual terms A and B. Furthermore, with the same thread, we will give an expression of the
M-P inverse of A+ B in terms of only the M-P inverses of matrices A and B.

1. Introduction

Throughout this article, C"™*" denotes the set of all m x n matrices over the com-
plex field C, I; denotes the identity matrix of order K and Oy,x, is the m X n matrix
of all zero entries (if no confusion occurs, we will drop the subscript). For a matrix
AeC™" A*, R(A) and r(A) denote the conjugate transpose, the range space and the
rank of the matrix A, respectively.

If A is an n x n complex matrix, then the Drazin inverse of A denoted by AP | is
the unique matrix X satisfying the relations [1]

A =A%) XAX =X, AX =XA,

where k = Ind(A), the index of A, is the smallest nonnegative integer for which r(A¥) =
r(A¥1). In particular, when Ind(A) = 1, the matrix X is called the group inverse of
A, and is denoted by X = A%. If A is nonsingular, then it is easily seen that Ind(A) =0
and AP =A"1,

Let A € C™*", the M-P inverse, denoted by X = AT of A is defined to be the
unique solution of the following four Penrose equations [2]

(1) AXA=A, (2)XAX =X, (3) (AX)" = AX, (4) (XA)* = XA.

In particular, when A is nonsingular, then it is easily seen that AT = A=, We refer the
reader to [3, 4] for basic results on the Drazin inverse and the M-P inverse of matrices.
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The concepts of Drazin inverse and M-P inverse were shown to be very useful in
various applied mathematical settings. For example, applications to singular differential
or difference equations, Markov chains, cryptography, iterative method or multibody
system dynamics, and so on, which can be found in [3, 4, 5, 6, 7, &].

Although the theories of Drazin inverse and M-P inverse had have a substantial
development over the past several decades, there are lots of fundamental problems on
these inverses of matrices that need further investigation. One such problem is con-
cerned with the Drazin inverse or the M-P inverse for sum of matrices. Suppose A and
B are a pair of matrices with the same size. In many situations, one wants to know
the expressions of (A4 B)? and (A + B)" and its properties. For example, under what
conditions do the following equations hold?

(A+BP =AP+B°, (A+B)*=A%+B%, (A+B) =AT+B"

The Drazin inverse or the M-P inverse for sum of matrices was introduced by
Penrose [2]. It has quite important applications in numerical linear algebra and applied
fields [3, 4, 8], such as linear control theory [9], matrix theory [10, 11], statistics [12],
projection algorithms [13] and perturbation analysis of matrix [14]. Moreover, as one
of the fundamental research problems in matrix theory, the Drazin inverse or the M-P
inverse for sum of matrices is a very useful tool in many algorithms for the computation
of the generalized parallel sum of A and B. The generalized parallel sum originally
arose in an attempt to generalize a network synthesis procedure of Duffin [15] and
has been studied in the scalar case by Erickson [16]. Suppose that A,B € C"™*", then
we define the generalized parallel sum of A and B by the formula A(A + B)PB or
A(A+B)'B. One such problem concerns with the Drazin inverse or the M-P inverse of
A+B.

The Drazin inverse or the M-P inverse for sum of matrices yields a class of inter-
esting problems that are fundamental in statistic and matrix theory, see [3, 4, 8]. They
have attracted considerable attentions and some interesting results have been obtained
by Cline [17], Radoslaw and Krezsztof [18], Minamide [19], Tian [20], Xiong and Qin
[21, 22] and others see [23, 24, 25]. In this article, we provide a complete solution to the
problem of relationship between the Drazin inverse of A+ B and the Drazin inverses
of A and B, and present a equivalent condition for equation (A + B)P = AP + BP.
The same question is also discussed for the M-P inverses of A, B and A+ B. To our
knowledge, there is no article discussed these in the literature.

As the main tools in our discussion, we first mention the following three lemmas,
which will be used in this paper.

LEMMA 1.1. [3] Let A € C"™" and Ind(A) = k. Then
AP = AKAPHOYT AR and r(AY) = r(AR), 1> k. (1.1)

LEMMA 1.2. [26] Let A € C"™*" has the block representations A = (U, V) . Then

- t_ KU'(I-VCT)
AT=(UY) = (p*KUT(l—VCT)JrcT ’ (12)
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where C = (I-UU)V, p=U"V(I—C'C) and K = (I1+pp*)~".

LEMMA 1.3. [27] Suppose matrices A, B, C and D satisfy the following condi-
tions:

R(B) CR(A) and R(C*) C R(A") (1.3)
R(C) CR(D) and R(B*) C R(D"). (1.4)
Then
r(A)+r(D—CA'B)=r (2‘ g) (1.5)
r(D)+r(A—BD'C) =r (é g) : (1.6)

LEMMA 1.4. [28] Let A € C"™", B e C™* and C € C**!. Then the reverse
orderlaw (ABC)" = C'BTA" holds if and only if A, B and C satisfy the following rank
equality:

BB*B 0] BC
r|{ O —DD*D DC*C | =r(D)+r(B), (1.7)
AB AA*D O

where D = ABC.

LEMMA 1.5. [28] Suppose A; € C5%li| i =1,2,---.n and B; € C*lit1, j =
1,2,---,n—1, satisfy

Bi=AXiAir1, i=1,2,--- .n—1 for some X;. (1.8)
Then
R(Bl) gR(Al)7 R(B;k) gR( ;'kJrl)v i= 1727"'7’1_17 (19)

and the M-P inverse of the n x n block matrix
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may be repressed as

F(l,n)  F(l,n—1) F(1,2) F(1,1)
(2,n)  F(2,n—1) F(2,2) O
Ji= : S : , (1.10)
Fn—1,n)F(n—1,n—1) O o
F(n,n) o o o

where

F(i,j) = (=1 "A]BAl, | Biy1---Al_ 1B AT 1<i<j<n

2. Drazin inverse for sum of matrices

In this section, we will present some conditions for the equality of (A + B)P =
AP 4 BP . The relative results are included in the following three lemmas.

LEMMA 2.1. Suppose A; € C"™™, i=1,2,3 and k=max{Ind(A;),1,Ind(A1A2A3)},
i=1,2,3. Then the M-P inverse of the 5 X 5 block matrix

o 0o 0 0 I
2k
0 0 0 AFTAL
M=|[0 o0 A¥" AL o |, 2.1)
0 AT AkAk 0 0
L, AA o o0 o

may be repressed as

M(1,5) M(1,4) M(1,3) M(1,2) M(1,1)
M(2,5) M(2,4) M(2,3) M(2,2) O
M'=|M@3,5 M(3,4) M(3,3) O o |, (2.2)
M(4,5) M(4,4) O 0 0
M(5,5) O 0 0 0

where M(i, j) in (2.2) can be expressed as the formulas (1.10) in Lemma 1.5. In par-
ticular,

M(1,5) = PM'Q = (=171 (1,) AT (AT )T AjAS (A ) TASAS (A3 1) AL (7,,)
= APADAD. (2.3)

where P = (I,, O, O, O, O) and Q = (I,, O, O, O, O)*.
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Proof. From (2.1) and the definition of Drazin inverse, we have

A = Ly(ADY AR R(AY) C R, R((AD) S RIATF),  @4)
AL = AP (4R, Rt C ROATY)

R((A}AS)") CR((AFFH!)), (2.5)

ASAS = AT (AD)HH (AR AT, R(ABAY) € R(AT),
R((A5A5)") C R((AFH1)), (2.6)
Af = AT AR, R(AY) CRATHY), R((AY) CR(). @)

Combining the formulas (2.4)—(2.7), with the formulas (1.8)—(1.9) in Lemma 1.5,
we have the results in Lemma 2.1. In particular, from Lemma 1.1, we have

AP = Ab(A?hTAE =123,
then the last equality in (2.3) holds. [J

From the structure of M in (2.1) and the formula (1.1) in Lemma 1.1, we have
r(Af) = r((APY AT < (AP <r(Af), 1=1,2,3. (2.8)

By the formulas (2.8) and the structure of M in (2.1) ,we at once see that it has the
following simple properties, which will be used in the sequel.

LEMMA 2.2. Let M, P and Q be given as in Lemma 2.1 and let k = max{Ind(A;),
1, Ind(A)}, A=A AAs. Then

r(M) = 2m+ r(AY) + r(A%) + r(AY), (2.9)
R(Q) € R(M )and R(P*) CR(M"), (2.10)
R(QA) C R(M) and R(P*A*) C R(M*). (2.11)
Proof. Let
I, —A¥ 0 0 O In O 0 0 0
oI, 00O O I, —(APYH1(ARY+1AH 0 0
D=0 o 1,00|,D=|00 L, 00|,
0O 0 01,0 00 0 I, O
0O 0 001, 00 0 oI,
I, 0 O 0] 0
O1l,O0 0 0
D;=|oor, —(A2D)k+1(A3D)k+1A§k+l o |,
00O In 0
000 0 Ly
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I,0OO0OO O 0
01,00 0O 0
Di=|1001,0 O . Ds=|o0|, (2.12)
0 0 O I, —(AR)k! 0
0000 I, I
we have
O 0 0 0 I I
o o o0 A¥'o 0
MD\D,DsDy=| 0 O A} 0 0| and MD\D,DsDsDs= | O | =Q
oA 0o o0 o 0
I, O O O O 0
(2.13)
Since D;, i = 1,2,3,4 are nonsingular, then combining the formulas (2.8) with
(2.13), we have
r(M) = r(MDDyD3Dy) = 2m + r(AX) 4 r(A%) + r(4%), (2.14)
and
R(QA) CR(Q) = R(MDD,D3D4Ds) C R(M). (2.15)
On the other hand, let
In OO0 OO L 0 00 0
~A8L, 0 0 O 0 In 00O
Si;=]1 0 01,0 0O 0 —AFTH (AR (ADY+ 1, 0 O |,
O 001I,O0 0 0 01,0
O 00O0Il, 0] 0 001,
I, O 0 0 0
0 1, 0 0 0
S35=|00 L 00|,
0 0 —APFH (AP (AR L, O
0 0 01,
,OO O O
01,0 0 O
Ss=(oon, 0 0], S5=(0,0,00,1,), (2.16)
ooo I, O
0 0 0 —(APY1p,
we have
O 0 0 0 I,
o o0 o0 A¥o
S48 M= [0 0 A 0 O and S55483S1M=P.  (2.17)
oA 0 o0 o
I, O O O O
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From formulas (2.17) , we have
R(P*A*) C R(P*) = R((S554538,8\M)*) = R(M*S}55858;5%) C R(M*). (2.18)

Combining the formulas (2.14), (2.15) with (2.18), we have the results in Lemma
22. O

From Lemma 2.1 and Lemma 2.2, a necessary and sufficient condition can be
given for the forward order law (A1A,A3)P = APADAD .

LEMMA 2.3. Suppose A; € C"™™, i=1,2,3, A=A 1A2A3, k=max{Ind(A;), 1,
Ind(A)} and X = A?AQA? . Then the following statements are equivalent:

(1) AP _:A(;Ixc ﬁxfkgbzfj =APADAY = X;

@ 7 (T ) =) ) ) )
where E; = (0, O, O, I,), E; = (0, O, O, I,,)* and

0O 0 AFAK
0 A Ak o
AL ARAS 0 0
A0 o0 o

N:

Proof. From the formulas (2.1)—(2.3) in Lemma 2.1, we have

X =APADAD = PMTQ (2.19)
and
(0 E
M= <E2 N). (2.20)

It is obvious that AP = (A;A4,A3)P = APADAD = X holds if and only if
0=r(AP —X) = r(AP — PM'Q). (2.21)

Now using the matrices in (2.21), we construct a 3 x 3 block matrix as follows:

M O Q0
G= |0 —A1AF ). (2.22)
P AF o

It follows from Lemma 2.2 that

R (ﬁ) CR <A04 —A?k"'l) ) (2.23)

R [(p, Ak)*} CR (1‘2 (—A20k+1)*) . (2.24)
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Hence by the rank formulas in Lemma 1.3, we have

r(G) =r (1\51 _A?k-H) +r | (P, AY) <A04 _A?k-&-l)T (ﬁ)

= r(M) + r(A*T) 4 r(PMTQ — AR (APT1)TAR). (2.25)

Combining (2.25), Lemma 1.1 with Lemma 2.2, we have
AP = AK(AZHYT AR and p(AR) = r((APYFHAZHL) < (A% < r(A%) (2.26)
and
r(G) = 2m+ r(AX) + r(A5) + r(A%) + r(A%) + r(AP — PMT Q). (2.27)

On the other hand, substituting the complete expression of M in (2.12) and then
calculating the rank of G will produce the following result

OE O I, o O o I,
EEN O O O N —EA*O0
V(G) =r 0 O _A2k+1 Ak =r 19) _AkE1 _A2k+l 0
I, 0 A 0O L, O o O
_A2k+1 AkE1
—2m+tr ( Bak N (2.28)

Combining (2.21), (2.27) and (2.28) will yield the results in Lemma 2.3. [

According to Lemma 2.1, Lemma 2.2 and Lemma 2.3, we immediately obtain the
following key result in this article.

THEOREM 2.1. Suppose A € C"™™, B C™™ and k= max{Ind(A), Ind(B), 1,
Ind(A+ B)} satisfy the following condition

—(A+B)** 0 0 (A+B)
19) A2k+1 0 Ak
0 10) BZkJrl Bk
(A+Bk Ak B 0

= r[(A+B)"] + r(A") +r(BY). (2.29)

Then
(A+B)P = AP + BP,

Proof. Tt is obvious that

wior=wo(58)(65) (LO)] () e
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By Lemma 2.3 with (A] = (Im Im) , Ay = (A 0) , Az = (Im 0) and A =

00
A1AA3), we have

In 1y (A O\ (1, O\1° (1. 1.\" (A O\" (1, O\" -
oo)\os)\i,o)| “\oo) \oB) \u,0 @.31)

if and only if
—(A+B* o000 0 0O O0O0O((A+BfO
0 ooo 0 O 00 O O
0 ooo o O I,0 I, O
0 ooo o O I,0 I, O
. 10) 00 0A* o A0 o0 o0
10) 000 0O B¥'Bro o0 o0
0 ol,1, Ax B oo 0O O
0 ooo 0O O 00 O O
A+B* oOol,1, 0 O 00 O O
0 ooo 0 O 00 O O

= 2m -+ r[(A+ B)} + r(A) + r(B)
—(A+B)*' 0 0 —(A+B)

10) A2k+l 0] Ak
=T 0 o B¥+  pk = r[(A+B)"]+ r(A") + r(BY).
—(A+B)k Ak BF 0
—(A+B)*!' 0 0 (A+B)
10) A2k+1 0] Ak i i L
=7r 0 0 B2k+l Bk ZV[(A+B)]+r(A)+F(B )
(A+B)k Ak Bt 0
(2.32)
On the other hand, it is obvious that
D
(55 (55),
D
AO AP O
(0 B) = (0 BD) (2.34)

and

D
GZ 8) - G’" 8) . (2.35)
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Finally from (2.30)—(2.35), we obtain that if the rank equality (2.29) holds, then
D
(4+8)7 = (In, 0) [(0 0) (03 moll \o
Lo 1\ (A O\" (1, O\" (1.
00 OB L, O 0
Ln I\ (AP O\ (I, O\ (I
-0 (5%5) (o) (29) (5)

COROLLARY 2.1. Suppose A € C"™*"™ and B € C"™™ satisfy the following con-
dition
—(A+B)* 0 0 A+B
0O A0 A
0O OB B
A+B A B O

=r(A+B)+r(A)+r(B).

Then
(A+B)$ = AS 4 BS.

3. M-P inverse for sum of matrices

In this section, we will present a relationship between the M-P inverse (A + B)'
and the M-P inverses A" and B. The relative results are included in the following
theorem and corollaries.

THEOREM 3.1. Let A € C"™", B C"™" and D = A+ B. Then the following
statements are equivalent:

() (A+B)F=1AT4+1B%;

AA*A O 0o A
O BB'B. O B
0O o0 —-ipbp'DD
A B D O

2) r =r(A)+r(B)+r(D).

Proof. With [ for an identity matrix of appropriate size, it is easy to verify that

(A+B) = [(1, ) (g g) (;)T 3.1)
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From Lemma 1.4, we know that the following reverse order law:

[(1’ ! (g g) G)]T - G)T (2 Z)T (1.0)’ (32)

holds if and only if

AA*A O o A
O BB'B O B
0 O —-DD*D 2D
A B 2D O

= r(D)+ r(A) +r(B). (3.3)

On the other hand, from Lemma 1.2 and the definition of M-P inverse, we have

I T
<1> = (%1, %1), (3.4)
LN = %1 (3.5)
(’ ) - EI .
and
Ao\" /AT o
(03) :<0 BT>' (3.6)

Combining the formulas (3.1)-(3.6), we have

o= [0 (8] () (55) 0o o

if and only if

AA*A O 0 A
O BB*B 0 B
o o -
A B D 0

=r(A)+rB)+r(D). O (3.8)

REMARK 1. Although the conditions in Theorem 3.1 seems very special, such
examples do exist in matrices. For example, let A = —B, we can verify that the results
in Theorem 3.1 is correct.

COROLLARY 3.1. Let A € C"™", B€ C"™" and D = A+ B. Then the following
statements are equivalent:

() (JA+1B)T=1AT+1B%;

AA*A O o A
O BB'B O B
O O -iDD'DD
A B D O

2) r =r(A)+r(B)+r(D).
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Proof. By Theorem 3.1 with (A = 1A and B = 1B), we know that the following
equalities

I LNt Lyl L/l N 1 1 1,1
(—A+—B> - (—A) +—(—B) = AN+ 22BN = 3AT+ 3BT (3.9)

27" 27) T a2 4\2 2
hold, if and only if
(3AGAG4a) o 0 A
. 0 (3B)(3B)*(3B) . o 1 L
10 10 —z(z(A+B))§§(A+B))*(5(A+B)) 3 (A+B)
3A 3B 5(A+B) 0]
1 1 1
AA*A O o0 A
O BB*B o0 B
erl o o “1pp'DD =r(A)+r(B)+r(D). (3.10)
A B D (0]
O

COROLLARY 3.2. Let A € C"™", B€ C"™" and D = A+ B. Then the following
statements are equivalent:

() (JA+41B)"=A"+B";

AA*A O o A
O BB'B O B
0O o0 -ipDp'DD
A B D O

2) r =r(A)+r(B)+r(D).

Proof. By Theorem 3.1 with (A = ;A and B = {B), we know that the following
equalities

<1A+ lB)T _1 (1A>T+1<13>T - %(4A'*)+%(4BT) —AT 1B (31D

47 "47) T a\4 4\4
hold, if and only if
(34)(34)*(34) o o 3A
. 0 (3B)(§B)*(;B) . o 1 1 1B
10 10 —z(z(A+B))§1(A+B))*(1(A+B)) 7(A+B)
7A 1B 1(A+B) 0]
1 1 1
- r(—A) +r<ZB> —I—r(Z(A—i—B))
AA*A O 0O A
O BB'B O B
srlo, 0 —%DD*DD =r(A)+r(B)+r(D). (3.12)
A B D O
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COROLLARY 3.3. Let A € C"™" and B € C"**. Then the following statements
are equivalent:

LA
P (3AT).

(1) (A, B) ::<§BT)’

Q)rcmﬁABWBBEAAA%

A B 3A 3B ) =74 B).

Proof. By Theorem 3.1 with (A = (A, O) and B = (O, B), we know that the
following equalities

(4.8)" = (4,0) +(0.B) = 1 (4.0) + 1 (0. B)

2020

LAT
1A
;BT) (3.13)
hold, if and only if
AA*AO0O0 O 0 0 AO
.| 0 ooBsB 0 0 OB
O 00 O -—1(AA*A+BB*A) —i(AA’B+BB*B) A B
A 00 B A B 00
=r(A, 0)+r(0,B)+ (A, B). (3.14)

Let I for some identity matrix of appropriate size and

AA*A O 0 0 AO
-_| o BBB 0 0 OB
| 0 0 -1(AA*A+BB*A) —1(AA*B+BB*B)A B |’
A B A B 00
I 0 0000 ! 0000
O I 0000
0O 1000
0O 0 1000
W= ,=| 0 or100],
0O 0 0100
0O 0010
0 0 0010 —AA000 I
O-BBOOO I
10-10 1000
01 00 010-I
B=1looro0|"™ |oor1 0| (3.15)
000 I 000 I
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Then
AA*fAO0O O 0 0 AO
O OO0 BB'B 0 0 OB
O 00 O —1(AA*A+BB*A) —1(AA*B+BB'B) A B
A 00 B A B 00
= r(T ) +r(B)
AA*A O 0 0 A
=r( 0 —BB*B —(AA*A+ BB*A) —1(AA*B+BB’B) A | 112) +r(B)
B A B 0
_ * “B * * 1 * *
_ ( AA*A BB —1(AA*A+BB*A) —L(AA"B+ BB B))+r(B)+r(A)
A B
- *A BB*B AA*A + BB*A AA*B + BB*B
= ( 4A AB )—I—r(B)—i—r(A)
AA*A BB*B AA*A + BB*A AA*B + BB*B
(M . w7 )+ r(8) 410

B ( AA*A BB*B BB*A AA*B

“'\LaA B 34 3B>+r(B)+r(A)' (3.16)

From the formulas (3.13), (3.14) and (3.16), we have the results in Corollary
O
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