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THE GENERALIZED CROFOOT TRANSFORM

REWAYAT KHAN

(Communicated by V. V. Peller)

Abstract. We introduce a generalized Crofoot transform between the model spaces correspond-
ing to matrix-valued inner functions. As an application, we obtain results about matrix-valued
truncated Toeplitz operators.

1. Introduction

The theory of completely nonunitary contractions on a Hilbert space, as developed
in [12], provides functional models for arbitrary completely nonunitary contractions. In
the particular case when the dimensions of the defect spaces of the contraction (to be
defined below) is 1 and the contraction is stable, the model space is the function space
H2 � θH2 , where H2 is the Hardy–Hilbert space and θ is an inner function. These
spaces are often called shortly model spaces and have been the object of extensive
study in the last decades. In particular, a direction of study initiated in [11] deals with
the so-called truncated Toeplitz operators, which are compression to model spaces of
multiplication operators. The Crofoot transform, introduced in [6], is a useful tool
for transferring properties between model spaces and between the associated spaces of
truncated Toeplitz operators.

A more general type of model space is obtained when the scalar inner function is
replaced by a matrix-valued inner function Θ . Then the space KΘ = H2(E)�ΘH2(E) ,
with E a finite dimensional Hilbert space. In this context, matrix valued truncated
Toeplitz operators and their properties has been formally introduced in [9].

The current paper introduces the generalization of the Crofoot transform to the
model spaces associated to matrix-valued inner functions. As an application, we in-
vestigate the behaviour of the space of matrix-valued truncated Toeplitz operators with
respect to this transformation.

The structure of the paper is the following. After a section of general prelim-
inaries about spaces of vector and matrix valued functions, we give a primer of the
properties of the vector-valued model spaces and models operators. The generalized
Crofoot transformation and its link to matrix valued truncated Toeplitz operators is de-
fined in Section 3. In Section 4 we investigate the case when the matrix-valued inner
function is complex symmetric.
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One should note that the generalized Crofoot transform that we introduce is related
to the study of perturbations of contractions as appearing in [1, 2, 3, 7]. However, we
work here in a concrete framework and we obtain explicit results for all the transforma-
tions involved.

2. Preliminaries

Let C denote the complex plane, D = {z ∈ C : |z| < 1} the unit disc, T = {z∈ C :
|z| = 1} the unit circle. Throughout the paper Cd will denote d dimensional complex
Hilbert space, and L (Cd) the algebra of bounded linear operators on Cd , which may
be identified with d×d matrices.

The space L2(Cd) is defined, as usual, by

L2(C) =
{

f : T → C
d : f (eit ) =

∞

∑
−∞

ane
int : an ∈ C

d ,
∞

∑
−∞

‖an‖2 < ∞
}
,

endowed with the inner product

〈 f ,g〉L2(Cd) =
1
2π

2π∫
0

〈 f (eit ),g(eit)〉
Cd dt.

The Hardy space H2(Cd) is the subspace of L2(Cd) formed by the functions with
vanishing negative Fourier coefficients; it can be identified with a space of Cd -valued
functions analytic in D , from which the boundary values can be recovered almost ev-
erywhere through radial limits.

Let S denote the forward shift operator (S f )(z) = z f (z) on H2(Cd) ; it is the
restriction of Mz , the multiplication with the variable z , to H2(Cd) . Its adjoint (the
backward shift) is the operator

(S∗ f )(z) =
f (z)− f (0)

z
.

An inner function will be an element Θ ∈ H2(L (Cd) whose boundary values
are almost everywhere unitary operators (equivalently, isometries or coisometries) in
L (Cd) . All niner functions in the sequel are assumed to be pure, that is ‖Θ(0)‖ < 1.

The model space associated to Θ , denoted by KΘ , is defined by KΘ = H2(Cd)�
ΘH2(Cd) ; the orthogonal projection onto KΘ will be denoted by PΘ . The properties
of the model space are familiar to many analysts in the scalar case. On the other hand,
the vector valued version is less widely known (despite playing an important role in the
Sz.-Nagy–Foias theory of contractions [12]).

The model space KΘ is a vector valued reproducing kernel Hilbert space; its re-
producing kernel function, which takes values in L (Cd) , is

kΘ
λ (z) =

1

1−λz
(I−Θ(z)Θ(λ )∗).
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This means that for any x ∈ Cd we have kΘ
λ x ∈ KΘ , and, if f ∈ KΘ , then

〈 f ,kΘ
λ x〉KΘ = 〈 f (λ ),x〉

Cd .

We will also have the occasion to consider a related family of functions, namely

k̃Θ
λ (z) =

1
z−λ

(Θ(z)−Θ(λ )).

The model operator SΘ ∈ L (KΘ) is defined by the formula

(SΘ f )(z) = PΘ(z f ), f ∈ KΘ. (2.1)

The adjoint of SΘ is given by

(S∗Θ f )(z) =
f (z)− f (0)

z
;

it is the restriction of the left shift in H2(Cd) to the S∗ -invariant subspace KΘ . The
action of SΘ is more precisely described if we introduce the following subspaces of KΘ
(the defect spaces of SΘ in the terminology of [12]):

D∗ =
{1

z
(Θ(z)−Θ(0))x : x ∈ C

d
}

D = {(I−Θ(z)Θ(0)∗)x : x ∈ C
d}.

(2.2)

The action of SΘ on D⊥ , D and of S∗Θ on D⊥∗ , D∗ , are given by the formula’s below:

(S∗Θ f )(z) =

{
f (z)
z for f ∈ D⊥,

− 1
z

(
Θ(z)−Θ(0)

)
Θ(0)∗x for f =

(
I−Θ(z)Θ(0)∗

)
x ∈ D;

(SΘ f )(z) =
{

z f (z) for f ∈ D⊥∗ ,
−(

I−Θ(z)Θ(0)∗
)
Θ(0)x for f = 1

z

(
Θ(z)−Θ(0)

)
x ∈ D∗.

(2.3)

We will use the following standard notation. If T ∈ L (E) is a contraction, then

the operators DT = (I−T ∗T )
1
2 and DT ∗ = (I−TT ∗)

1
2 are called the defect operators

and DT = DT E and DT ∗ = DT ∗E are called the defect spaces of T .

3. Generalized Crofoot transform

Let Θ(λ ) : Cd −→ Cd be a pure inner function and W a fixed strict contraction
acting on C

d .

PROPOSITION 3.1. The function Θ′ defined in terms of inner function Θ and
strict contraction W given by

Θ
′
(λ ) = −W +DW∗(I−Θ(λ )W∗)−1Θ(λ )DW (3.1)

is a pure inner function.
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Proof. Consider

Θ′(eit)Θ′∗(eit) = [−W +DW∗(I−Θ(eit)W ∗)−1Θ(eit)DW ]

[−W ∗ +DW Θ(eit)∗(I−WΘ(eit)∗)−1DW∗ ]

= WW ∗ −WDW Θ∗(I−WΘ∗)−1DW∗ −DW∗(I−ΘW∗)−1ΘDWW ∗

+DW∗(I−ΘW∗)−1ΘD2
W Θ∗(I−WΘ∗)−1DW ∗

= WW ∗ −DW∗WΘ∗(I−WΘ∗)−1DW∗ −DW∗(I−ΘW∗)−1ΘW ∗DW ∗

+DW∗(I−ΘW∗)−1ΘD2
W Θ∗(I−WΘ∗)−1DW ∗

= WW ∗ −DW∗ [WΘ∗(I−WΘ∗)−1− (I−ΘW∗)−1ΘW ∗

+(I−ΘW∗)−1ΘD2
W Θ∗(I−WΘ∗)−1]DW ∗ ,

We have

WΘ∗(I−WΘ∗)−1 − (I−ΘW∗)−1ΘW ∗ +(I−ΘW∗)−1ΘD2
W Θ∗(I−WΘ∗)−1

= WΘ∗(I−WΘ∗)−1− (I−ΘW∗)−1ΘW ∗

+(I−ΘW∗)−1Θ(I−W ∗W )Θ∗(I−WΘ∗)−1

= WΘ∗(I−WΘ∗)−1− (I−ΘW∗)−1ΘW ∗

+(I−ΘW∗)−1(I−WΘ∗)−1 +(I−ΘW∗)−1ΘW ∗WΘ∗(I−WΘ∗)−1

= WΘ∗(I−WΘ∗)−1− (I−ΘW∗)−1(I−WΘ∗)−1

+(I−ΘW∗)−1ΘW ∗ +(I−ΘW∗)−1ΘW∗WΘ∗(I−WΘ∗)−1

= [WΘ∗ − (I−ΘW∗)−1](I−WΘ∗)−1

+(I−ΘW∗)−1ΘW ∗(I−WΘ∗)(I−WΘ∗)−1

+(I−ΘW∗)−1ΘW ∗WΘ∗(I−WΘ∗)−1

= [WΘ∗ − (I−ΘW∗)−1](I−WΘ∗)−1

+(I−ΘW∗)−1[ΘW ∗(I−WΘ∗)+ ΘW∗WΘ∗](I−WΘ∗)−1

= [WΘ∗ − (I−ΘW∗)−1](I−WΘ∗)−1

+(I−ΘW∗)−1ΘW ∗(I−WΘ∗)−1

= [WΘ∗ − (I−ΘW∗)−1 +(I−ΘW∗)−1ΘW ∗](I−WΘ∗)−1

= [WΘ∗ − (I−ΘW∗)−1(I−ΘW∗)](I−WΘ∗)−1

= (WΘ∗ − I)(I−WΘ∗)−1 = −(I−WΘ∗)(I−WΘ∗)−1 = −I.

Therefore
Θ′(eit)Θ′∗(eit) = WW ∗ +D2

W∗ = I,

and so Θ′ is inner. We leave to the reader to check that Θ′ is pure. �

REMARK 3.2. The function Θ can be obtained from Θ′ as

Θ(λ ) = W +DW∗(I + Θ′(λ )W ∗)−1Θ′(λ )DW .
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Let KΘ be the model space corresponding to inner function Θ and KΘ′ be model

space corresponding to Θ′
. We introduce now the generalized Crofoot transformation

between these spaces.

THEOREM 3.3. (Generalized Crofoot transformation) Let W be a strict contrac-
tion, Θ a pure inner function, and suppose Θ′ is defined by (3.1). Then the map JW

defined by
JW f = DW ∗(I−Θ(λ )W∗)−1 f

is a unitary operator from KΘ to KΘ′ .

To prove Theorem 3.3 we first prove the following proposition:

PROPOSITION 3.4. Let y ∈ E and λ ∈ D , then

JW (kΘ
λ (I−WΘ(λ )∗)−1DW ∗y) = kΘ′

λ y, JW (k̃Θ
λ (I−W ∗Θ(λ ))−1DW y) = k̃Θ′

λ y. (3.2)

Proof. We have

(I−Θ′(z)Θ′(λ )∗)y

= y− (−W +DW∗(I−Θ(z)W ∗)−1Θ(z)DW )

(−W ∗ +DW Θ(λ )∗(I−WΘ(λ )∗)−1DW∗)y

= (I−WW ∗)y+WDW Θ(λ )∗(I−WΘ(λ )∗)−1DW ∗y

+DW∗(I−Θ(z)W∗)−1Θ(z)DWW ∗y

−DW∗(I−Θ(z)W∗)−1Θ(z)D2
W Θ(λ )∗(I−WΘ(λ )∗)−1DW∗y

= D2
W ∗y+DW∗WΘ(λ )∗(I−WΘ(λ )∗)−1DW ∗y

+DW∗(I−Θ(z)W∗)−1Θ(z)W ∗DW ∗y

−DW∗(I−Θ(z)W∗)−1Θ(z)D2
W Θ(λ )∗(I−WΘ(λ )∗)−1DW∗y

= DW ∗ [I +WΘ(λ )∗(I−WΘ(λ )∗)−1 +(I−Θ(z)W∗)−1Θ(z)W ∗

− (I−Θ(z)W∗)−1Θ(z)D2
W Θ(λ )∗(I−WΘ(λ )∗)−1]DW∗y

= DW ∗(I−Θ(z)W ∗)−1[(I−Θ(z)W ∗)

+ (I−Θ(z)W∗)WΘ(λ )∗(I−WΘ(λ )∗)−1

+ Θ(z)W ∗ −Θ(z)D2
W Θ(λ )∗(I−WΘ(λ )∗)−1]DW ∗y

= DW ∗(I−Θ(z)W ∗)−1[I +(I−Θ(z)W∗)WΘ(λ )∗(I−WΘ(λ )∗)−1

−Θ(z)D2
W Θ(λ )∗(I−WΘ(λ )∗)−1]DW ∗y

= DW ∗(I−Θ(z)W ∗)−1[I +(I−Θ(z)W∗)WΘ(λ )∗(I−WΘ(λ )∗)−1

−Θ(z)(I−WW ∗)Θ(λ )∗(I−WΘ(λ )∗)−1]DW ∗y

= DW ∗(I−Θ(z)W ∗)−1[I +WΘ(λ )∗(I−WΘ(λ )∗)−1

−Θ(z)W ∗WΘ(λ )∗(I−WΘ(λ )∗)−1−Θ(z)Θ(λ )∗(I−WΘ(λ )∗)−1
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+ Θ(z)W ∗WΘ(λ )∗(I−WΘ(λ )∗)−1]DW∗y

= DW ∗(I−Θ(z)W ∗)−1[I−WΘ(λ )∗ +WΘ(λ )∗

−Θ(z)Θ(λ )∗](I−WΘ(λ )∗)−1DW ∗y

= DW ∗(I−Θ(z)W ∗)−1[I−Θ(z)Θ(λ )∗](I−WΘ(λ )∗)−1DW ∗y

= JW (I−Θ(z)Θ(λ )∗)(I−WΘ(λ )∗)−1DW∗y.

It follows that JW (kΘ
λ (I−WΘ(λ )∗)−1DW∗y) = kΘ′

λ y.
For the other equality, we have

k̃Θ′
λ y =

1
z−λ

(Θ′(z)−Θ′(λ ))y

=
1

z−λ
[−W +DW∗(I−Θ(z)W ∗)−1Θ(z)DW +W

−DW∗(I−Θ(λ )W∗)−1Θ(λ )DW ]y

=
1

z−λ
[DW ∗(I−Θ(z)W∗)−1Θ(z)DW −DW∗(I−Θ(λ )W∗)−1Θ(λ )DW ]y

=
1

z−λ
DW ∗ [(I−Θ(z)W∗)−1Θ(z)− (I−Θ(λ )W∗)−1Θ(λ )]DW y

=
1

z−λ
DW ∗ [(I−Θ(z)W∗)−1Θ(z)− (I−Θ(z)W ∗)−1Θ(λ )+ (I−Θ(z)W∗)−1Θ(λ )

− (I−Θ(λ )W∗)−1Θ(λ )]DW y

=
1

z−λ
DW ∗(I−Θ(z)W∗)−1[Θ(z)− (I−Θ(z)W ∗)(I−Θ(λ )W∗)−1Θ(λ )]DW y

=
1

z−λ
DW ∗(I−Θ(z)W∗)−1[Θ(z)− (I−Θ(λ )W∗)−1Θ(λ )

+ Θ(z)W∗(I−Θ(λ )W∗)−1Θ(λ )]DWy

=
1

z−λ
DW ∗(I−Θ(z)W∗)−1[Θ(z)−Θ(λ )(I−W∗Θ(λ ))−1

+ Θ(z)W∗Θ(λ )(I−W∗Θ(λ ))−1]DW y

=
1

z−λ
DW ∗(I−Θ(z)W∗)−1[Θ(z)(I−W∗Θ(λ ))−Θ(λ )

+ Θ(z)W∗Θ(λ )](I−W∗Θ(λ ))−1DW y

=
1

z−λ
DW ∗(I−Θ(z)W∗)−1[Θ(z)−Θ(λ )](I−W∗Θ(λ ))−1DW y

= DW∗(I−Θ(z)W ∗)−1
( 1

z−λ
(Θ(z)−Θ(λ ))

)
(I−W∗Θ(λ ))−1DW y

= JW (k̃Θ
λ (I−W∗Θ(λ ))−1DW y. �

Proof of Theorem 3.3. First we claim that JWKΘ ⊂KΘ′ . To show that JW f belong
to KΘ′ for every f ∈ KΘ , we must show that JW f is orthogonal to every function of

the form Θ′
g where g ∈ H2(E) . This follows from the following computation. Note
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here we use the fact that Θ(eit)Θ∗(eit) = Θ∗(eit)Θ(eit) = I almost everywhere on T .

〈JW f ,Θ
′
g〉 = 〈DW ∗(I−Θ(eit)W ∗)−1 f ,Θ

′
g〉

= 〈 f ,(I −WΘ(eit)∗)−1DW∗Θ
′
g〉

= 〈 f ,(I −WΘ(eit)∗)−1DW∗ [−W +DW∗(I−Θ(eit)W ∗)−1Θ(eit)DW ]g〉
= 〈 f , [−(I −WΘ∗)−1DW ∗W +(I−WΘ∗)−1D2

W∗(I−ΘW∗)−1ΘDW ]g〉
= 〈 f , [−(I −WΘ∗)−1WDW +(I−WΘ∗)−1D2

W∗(I−ΘW∗)−1ΘDW ]g〉
= 〈 f ,(I −WΘ∗)−1[−W +D2

W∗Θ(I−W∗Θ)−1]DW g〉
= 〈 f ,(I −WΘ∗)−1[−W(I−W∗Θ)(I−W ∗Θ)−1 +D2

W∗Θ(I−W ∗Θ)−1]DW g〉
= 〈 f ,(I −WΘ∗)−1[−W(I−W∗Θ)+ (I−WW ∗)Θ](I−W∗Θ)−1DW g〉
= 〈 f ,(I −WΘ∗)−1[−W +WW ∗Θ + Θ−WW ∗Θ](I−W∗Θ)−1DW g〉
= 〈 f ,(I −WΘ(eit)∗)−1[Θ(eit)−W ](I−W∗Θ(eit))−1DWg〉
= 〈 f ,(I −WΘ(eit)∗)−1(I−WΘ(eit)∗)Θ(eit)(I−W∗Θ(eit))−1DWg〉
= 〈 f ,Θ(eit )(I−W∗Θ(eit))−1DWg〉
= 0,

because the function Θ(eit)(I −W ∗Θ(eit))−1DW g ∈ ΘH2(E) . Hence it follows that
JWKΘ ⊂ KΘ′ .

Now define the operator J
′
W : KΘ′ −→ KΘ by

J
′
W g = DW ∗(I + Θ′W ∗)−1g, ∀g ∈ KΘ′ . (3.3)

First we show that J
′
WKΘ′ ⊂KΘ . For this purpose we will prove that J

′
Wg is orthogonal

to Θh for any g ∈ KΘ′ and any h ∈ H2(E) . We have

〈J ′
W g,Θh〉= 〈DW ∗(I + Θ′W ∗)−1 f ,Θg〉 = 〈 f ,(I +WΘ′∗)−1DW ∗Θg〉

= 〈 f ,(I +WΘ′∗)−1DW ∗ [W +DW∗(I + Θ′)W ∗)−1Θ′DW ]g〉
= 〈 f ,(I +WΘ′∗)−1[DW ∗W +D2

W∗(I + Θ′W ∗)−1Θ′DW ]g〉
= 〈 f ,(I +WΘ′∗)−1[WDW +D2

W∗(I + Θ′W ∗)−1Θ′DW ]g〉
= 〈 f ,(I +WΘ′∗)−1[W +D2

W∗Θ′(I +W∗Θ′)−1]DWg〉
= 〈 f ,(I +WΘ′∗)−1[W (I +W∗Θ′)+D2

W∗Θ′](I +W∗Θ′)−1DW g〉
= 〈 f ,(I +WΘ′∗)−1[W (I +W∗Θ′)+ (I−WW ∗)Θ′](I +W∗Θ′)−1DWg〉
= 〈 f ,(I +WΘ′∗)−1[W +WW ∗Θ′ + Θ′ −WW ∗Θ′](I +W∗Θ′)−1DWg〉
= 〈 f ,(I +WΘ′∗)−1[Θ′ +W ](I +W ∗Θ′))−1DW g〉
= 〈 f ,(I +WΘ′∗)−1(I +WΘ′∗)Θ′(I +W∗Θ′)−1DW g〉
= 〈 f ,Θ′(I +W∗Θ′))−1DW g〉
= 0,
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and so J
′
W KΘ′ ⊂ KΘ .

Next we prove that J
′
W is the inverse of JW . If f ∈ KΘ , then

J
′
W JW f = DW ∗(I + Θ′W ∗)−1DW ∗(I−ΘW∗)−1 f

= DW ∗ [I +(−W +DW∗(I−ΘW∗)−1ΘDW )W ∗]−1DW∗(I−ΘW∗)−1 f

= DW ∗ [I−WW ∗ +DW∗(I−ΘW∗)−1ΘW ∗DW∗ ]−1DW ∗(I−ΘW∗)−1 f

= DW ∗ [D2
W ∗ +DW∗(I−ΘW∗)−1ΘW ∗DW ∗ ]−1DW ∗(I−ΘW∗)−1 f

= DW ∗ [D−2
W ∗ +D−1

W∗W ∗−1Θ−1(I−ΘW∗)D−1
W ∗ ]DW ∗(I−ΘW∗)−1 f

= [I +W∗−1Θ−1(I−ΘW∗)](I−ΘW∗)−1 f

= [I +(ΘW∗)−1(I−ΘW∗)](I−ΘW∗)−1 f

= (I−ΘW∗)−1 f +(ΘW∗)−1 f

= (I−ΘW∗)−1 f +(ΘW∗)−1 f + f − f

= (I−ΘW∗)−1 f − (I−ΘW∗)−1 f + f = f .

For g ∈ KΘ′ we have

JW J
′
Wg = DW ∗(I−ΘW∗)−1DW ∗(I + Θ′W ∗)−1g

= DW ∗(I−ΘW∗)−1DW ∗ [I +(−W +DW∗(I−ΘW∗)−1ΘDW )W ∗]−1g

= DW ∗(I−ΘW∗)−1DW ∗ [I−WW ∗ +DW∗(I−ΘW∗)−1ΘDWW ∗]−1g

= DW ∗(I−ΘW∗)−1DW ∗ [D2
W ∗ +DW∗(I−ΘW∗)−1ΘW ∗DW ∗ ]−1g

= DW ∗(I−ΘW∗)−1DW ∗ [D−2
W ∗ +D−1

W∗W ∗−1Θ−1(I−ΘW∗)D−1
W ∗ ]g

= DW ∗(I−ΘW∗)−1[D−1
W ∗ +W∗−1Θ−1(I−ΘW∗)D−1

W∗ ]g

= DW ∗(I−ΘW∗)−1[I +W∗−1Θ−1(I−ΘW∗)]D−1
W∗g

= DW ∗(I−ΘW∗)−1(ΘW ∗)−1D−1
W∗g

= DW ∗ [(ΘW ∗)−1 +(I−ΘW∗)−1]D−1
W ∗g

= DW ∗ [I− I +(ΘW∗)−1 +(I−ΘW∗)−1]D−1
W ∗g

= DW ∗ [I− (I−ΘW∗)−1 +(I−ΘW∗)−1]D−1
W ∗g

= g.

The above computation shows that J
′
W is the inverse of JW and JWKΘ = KΘ′ .

We now show that JW is a unitary operator. By using Proposition 3.4 we obtain

〈JWkΘ
λ x,JW kΘ

μ y〉 = 〈JWkΘ
λ x,kΘ′

μ D−1
W∗(I−WΘ∗(μ))y〉

= 〈JWkΘ
λ (μ)x,D−1

W ∗(I−WΘ∗(μ))y〉
= 〈DW∗(I−Θ(μ))W∗)−1kΘ

λ (μ)x,D−1
W ∗(I−WΘ∗(μ))y〉

= 〈(I−Θ(μ)W∗)D−1
W ∗DW ∗(I−Θ(μ))W∗)−1kΘ

λ (μ)x,y〉
= 〈kΘ

λ (μ)x,y〉 = 〈kΘ
λ x,kΘ

μ y〉.
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Therefore
〈JW f ,JW g〉 = 〈 f ,g〉

for any f ,g in the linear span of kΘ
λ x , λ ∈ D , x ∈ C . The required result follows by

the density of this last set in KΘ . �

REMARK 3.5. The defect spaces of SΘ′ in terminology of [12] are given by

D ′
∗ =

{1
z
(Θ′(z)−Θ′(0))x : x ∈ C

d
}

D ′ = {(I−Θ′(z)Θ′(0)∗)x : x ∈ C
d}.

(3.4)

COROLLARY 3.6.
(i) f ∈ D∗⊥ if and only if JW f ∈ D ′⊥∗ .
(ii) g ∈ D ′⊥∗ if and only if J∗W g ∈ D∗⊥

Proof. (i) By using Proposition 3.4 we have

〈JW f , k̃Θ′
0 x〉 = 〈 f ,J∗W k̃Θ′

0 x〉 = 〈 f , k̃Θ
0 DWy〉 = 0.

(ii) Let f ∈ D ′⊥∗ and DW y = x then by Proposition 3.4 we obtain

〈J∗W g, k̃Θ
0 x〉 = 〈g,JW k̃Θ

0 x〉 = 〈g, k̃Θ′
0 y〉 = 0. �

PROPOSITION 3.7. Let f ∈ KΘ , we have

S∗Θ′ JW f = JWS∗Θ f +S∗Θ′JW f (0).

Proof. Let f ∈ KΘ , then

S∗Θ′ JW f = S∗Θ′ [DW ∗(I−Θ(z)W∗)−1 f ]

=
1
z

(
DW ∗(I−Θ(z)W∗)−1 f (z)−DW∗(I−Θ(0)W∗)−1 f (0)

)
= DW ∗

1
z

(
(I−Θ(z)W∗)−1 f (z)− (I−Θ(0)W∗)−1 f (0)

)
= DW ∗

1
z

(
(I−Θ(z)W∗)−1 f (z)− (I−Θ(z)W ∗)−1 f (0)

+ (I−Θ(z)W ∗)−1 f (0)− (I−Θ(0)W∗)−1 f (0)
)

= DW ∗(I−Θ(z)W∗)−1 1
z
( f (z)− f (0))

+DW∗
1
z
((I−Θ(z)W ∗)−1 f (0)− (I−Θ(0)W∗)−1 f (0))
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= DW ∗(I−Θ(z)W∗)−1 1
z
( f (z)− f (0))

+
1
z
(DW ∗(I−Θ(z)W ∗)−1 f (0)−DW∗(I−Θ(0)W∗)−1 f (0))

= DW ∗(I−Θ(z)W∗)−1S∗Θ f +S∗Θ′ (DW ∗(I−Θ(z)W ∗)−1 f (0))

= JW S∗Θ f +S∗Θ′JW f (0). �

LEMMA 3.8. SΘ′JW f = JW SΘ f for f ∈ D⊥∗ .

Proof. Let f ∈ D⊥ ; so f ⊥ kΘ
0 x for any x ∈ C , which by the reproducing kernel

property of kΘ
0 is equivalent to f (0) = 0. So from Proposition 3.7 it follows that

S∗Θ′ JW f = JW S∗Θ f for f ∈ D⊥. (3.5)

Now by (2.3), it follows that S∗Θ is a unitary (division by z) from D⊥ to D⊥∗ (and
similarly for Θ′ ). On the other hand, from Proposition 3.4 it follows that JW maps
(unitarily) D⊥ to D ′⊥ , and D⊥∗ to D ′∗⊥ . Using (3.5), we have the following commu-
tative diagram of unitary operators:

D⊥ D⊥
∗

D′⊥ D′
∗
⊥.

S∗
Θ

JW JW

S∗
Θ′

From the operators in above diagram as acting between these spaces, we have

S∗Θ′ JW = JW S∗Θ;

by passing to the adjoint we get

J∗W SΘ′ = SΘJ∗W ,

where the two sides act from D ′∗⊥ to D⊥ , and then multiplying on the left and on the
right with JW ,

SΘ′ JW = JW SΘ,

where the two sides act from D⊥∗ to D ′⊥ . This completes the proof. �
A characterization of matrix valued truncated Toeplitz operators is obtained (see

Theorem 5.5 in [9]) by shift invariance. A bounded operator A on KΘ is called shift
invariant if

f ,S f ∈ KΘ implies QA(S f ) = QA( f ),

where QA is associated quadratic form on KΘ defined by QA( f ) = 〈A f , f 〉 . It is well
known that SΘ f ∈ KΘ if and only if f ∈ D⊥∗ .
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THEOREM 3.9. [9] A bounded operator A on KΘ is a matrix valued truncated
Toeplitz operator if and only if A is shift invariant.

The spaces of matrix valued truncated Toeplitz operators on KΘ and KΘ′ are de-
noted respectively by TΘ and TΘ′ . The next result shows the action of the generalized
Crofoot transform.

THEOREM 3.10. TΘ = J∗WTΘ′JW .

Proof. Let A ∈ TΘ′ , then J∗WAJW ∈ J∗WTΘ′JW . We shall show that J∗W AJW ∈ TΘ .
Assume that f ∈ D⊥∗ then by Corollary 3.6 we have JW f ∈ D ′⊥∗ . By Lemma 3.8 we
obtain

QJ∗W AJW ( f ) = 〈J∗WAJW f , f 〉 = 〈AJW f ,JW f 〉
= 〈ASΘ′JW f ,SΘ′JW f 〉 = 〈AJW SΘ f ,JW SΘ f 〉
= 〈J∗WAJW SΘ f ,SΘ f 〉 = QJ∗W AJW (SΘ f ).

It shows that J∗W AJW ∈ TΘ . Therefore by Theorem 3.9 we obtain J∗WTΘ′JW ⊂ TΘ .
To prove the required equality we now prove the inclusion JWTΘJ−1

W ⊂ TΘ′ .
Assume that B ∈ TΘ then we have JWBJ∗W ∈ JWTΘJ∗W . Let f ∈ D ′⊥∗ then by

Corollary 3.6 we get J∗W f ∈ D⊥∗ and again by Lemma 3.8 we have

QJW BJ∗W ( f ) = 〈JWBJ∗W f , f 〉 = 〈BJ∗W f ,J∗W f 〉
= 〈BSΘJ∗W f ,SΘJ∗W f 〉 = 〈BJ∗W SΘ′ f ,J∗W SΘ′ f 〉
= 〈JWBJ∗W SΘ′ f ,SΘ′ f 〉 = QJW BJ∗W (SΘ′ f ).

Hence JW BJ∗W is shift invariant. Again by Theorem 3.9 we have JWTΘJ∗W ⊂TΘ′ which
implies that TΘ ⊂ J∗WTΘ′JW . The required result follows. �

4. Conjugation and Crofoot transform

A bounded linear operator T on a separable Hilbert space E is complex symmetric
if there exist an orthonormal basis for E with respect to which T has self-transpose
matrix representation. An equivalent definition also exist and involve conjugation. A
conjugation on a Hilbert space E is a conjugate-linear, isometric and involutive map.
We say that T is C -symmetric if T = CT ∗C , and complex symmetric if there exist a
conjugation C with respect to which T is C -symmetric (see [8]).

Let Γ be a conjugation on E and Θ is Γ−symmetric a.e on T . Then the map
CΓ : L2(E) −→ L2(E) defined by

CΓ f = Θe−itΓ f ,

is conjugation on L2(E) . The following lemma shows the relation, in this case, between
conjugation and model spaces.
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LEMMA 4.1. [9] Suppose that ΓΘΓ = Θ∗ a.e on T . Then CΓKΘ = KΘ .

Note that in the scalar case the inner function θ is always C-symmetric with re-
spect to usual complex conjugation, which produces the standard conjugation on the
model space Kθ .

Suppose that ΓW ∗ = WΓ and ΓΘΓ = Θ∗ , then a simple calculation shows that
ΓΘ′Γ = Θ∗′ , and the relation ΓDW ∗ = DW Γ also holds.

LEMMA 4.2. Suppose CΓ is conjugation on KΘ and C
′
Γ is conjugation on KΘ′ .

Then generalized Crofoot transformation intertwines the conjugation on KΘ with the
conjugation on KΘ′ , that is JWCΓ = C

′
ΓJW .

Proof. Let f ∈ KΘ , then we have

C
′
ΓJW f = Θ

′
e−itΓ(DW ∗(I−ΘW∗)−1 f )

= e−it [−W +DW∗(I−ΘW∗)−1ΘDW ]Γ(DW ∗(I−ΘW∗)−1 f )

= e−it [−WΓDW ∗(I−ΘW∗)−1 f +DW∗(I−ΘW∗)−1ΘDW ΓDW ∗(I−ΘW∗)−1 f ]

= e−it [−WDW Γ(I−ΘW∗)−1 f +DW∗(I−ΘW∗)−1ΘD2
W Γ(I−ΘW∗)−1 f ]

= e−it [−DW∗WΓ(I−ΘW∗)−1 f +DW∗(I−ΘW∗)−1ΘD2
W Γ(I−ΘW∗)−1 f ]

= e−itDW ∗ [−W +(I−ΘW∗)−1ΘD2
W ]Γ(I−ΘW∗)−1 f

= e−itDW ∗ [−(I−ΘW∗)−1(I−ΘW∗)W +(I−ΘW∗)−1ΘD2
W ]Γ(I−ΘW∗)−1 f

= e−itDW ∗(I−ΘW∗)−1[−(I−ΘW∗)W + ΘD2
W ]Γ(I−ΘW∗)−1 f

= e−itDW ∗(I−ΘW∗)−1[−W + ΘW∗W + Θ−ΘW∗W ]Γ(I−ΘW∗)−1 f

= e−itDW ∗(I−ΘW∗)−1(Θ−W)Γ(I−ΘW∗)−1 f

= e−itDW ∗(I−ΘW∗)−1Θ(I−Θ∗W )Γ(I−ΘW∗)−1 f ,

since (I−Θ∗W )Γ(I−ΘW∗)−1 = Γ therefore we have

C
′
ΓJW f = e−itDW∗(I−ΘW∗)−1Θ(I−Θ∗W )Γ(I−ΘW∗)−1 f

= e−itDW∗(I−ΘW∗)−1ΘΓ f

= DW ∗(I−ΘW∗)−1ΘeitΓ f

= JWCΓ f . �
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