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UNIFORMLY EXPONENTIAL DICHOTOMY FOR

STRONGLY CONTINUOUS QUASI GROUPS

SUTRIMA SUTRIMA ∗ , MARDIYANA MARDIYANA AND RIRIN SETIYOWATI

Abstract. A strongly continuous quasi group (C0 -quasi group) is established as an extension of
a C0 -quasi semigroup on a Banach space. The fundamental properties of the C0 -quasi groups
are derived from the properties of C0 -quasi semigroups. It is identified a sufficient condition
for an infinitesimal generator of a C0 -quasi group. The infinitesimal generator of a C0 -quasi
group generates a non-autonomous the abstract Cauchy problem that is well-posed. Uniformly
exponential stability of the C0 -quasi groups and the C0 -quasi semigroups on a Banach space X
can be identified by the associated evolution semigroups on the spaces Lp(R,X) and Lp(R+,X) ,
1 � p < ∞ , respectively. The sufficient and necessary conditions, called Dichotomy Theorem,
for the uniformly exponential dichotomy of the C0 -quasi groups and the C0 -quasi semigroups
are characterized by the associated evolution semigroups. The hyperbolicity of the evolution
semigroups is used in the characterization. Dichotomy Theorem can also be identified by a
Green’s function induced by the associated evolution semigroup. Moreover, the infinitesimal
generator of the associated evolution semigroup becomes the main subject in establishment of
the sufficiency and necessity for the uniformly exponential stability of the C0 -quasi semigroups.
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