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NONLINEAR LIE DERIVATIONS OF INCIDENCE ALGEBRAS

YUPING YANG

Abstract. Let (X ,�) be a locally finite preordered set and R a 2-torsion free commutative
ring with unity, I(X ,R) the incidence algebra of X over R . In this paper, we give an explicit
description of the structure of nonlinear Lie derivations of I(X ,R) . We prove that every nonlinear
Lie derivation of I(X ,R) is a sum of an inner derivation, a transitive induced derivation and an
additive induced Lie derivation.
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[24] P. ŠEMRL, Nonlinear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781–819.
[25] E. SPIEGEL, On the automorphisms of incidence algebras, J. Algebra, 239 (2001), 615–623.
[26] E. SPIEGEL AND C. O’DONNELL, Incidence algebras, Monographs and Textbooks in Pure and Ap-

plied Mathematics, vol. 206, Marcel Dekker, New York, 1997.
[27] R. STANLEY, Structure of incidence algebras and their automorphism groups, Bull. Amer. Math. Soc.

76 (1970), 1236–1239.
[28] Y. WANG AND Y. WANG, Multiplicative Lie n-derivations of generalized matrix algebras, Linear

Algebra Appl. 438 (2013), 2599–2616.
[29] D.-N. WANG AND Z.-K. XIAO, Lie triple derivations of incidence algebras, Comm. Algebra, 47

(2019), 1841–1852.
[30] Z.-K. XIAO, Jordan derivations of incidence algebras, Rocky Mountain J. Math. 45 (2015), 1357–

1368.
[31] Z.-K. XIAO AND F. WEI, Nonlinear Lie-type derivations on full matrix algebras, Monatsh. Math. 170

(2013), 77–88.
[32] Y.-P. YANG, Nonlinear Lie derivations of incidence algebras of finite rank, Linear Multilinear Alge-

bra, (2019) https://doi.org/10.1080/03081087.2019.1635979.
[33] W.-Y. YU AND J.-H. ZHANG, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl.

432 (2010), 2953–2960.
[34] X. ZHANG AND M. KHRYPCHENKO, Lie derivations of incidence algebras, Linear Algebra Appl.

513 (2017), 69–83.

Operators and Matrices
www.ele-math.com
oam@ele-math.com


