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TERNARY DERIVATIONS OF NEST ALGEBRAS

AJDA FOŠNER AND HOGER GHAHRAMANI

(Communicated by I. Klep)

Abstract. Suppose that X is a (real or complex) Banach space, dimX � 2 , and N is a nest
on X , with each N ∈ N is complemented in X whenever N− = N . A ternary derivation of
AlgN is a triple of linear maps (γ ,δ ,τ) of AlgN such that γ(AB) = δ (A)B+Aτ(B) for all
A,B ∈ AlgN . We show that for linear maps δ ,τ on AlgN there exists a unique linear map
γ : AlgN → AlgN defined by γ(A) = RA+AT for some R,T ∈ AlgN such that (γ ,δ ,τ) is
a ternary derivation of AlgN if and only if δ ,τ satisfy δ (A)B+ Aτ(B) = 0 for any A,B ∈
AlgN with AB = 0 . We also prove that every ternary derivation on AlgN is an inner ternary
derivation. Our results are applied to characterize the (right or left) centralizers and derivations
through zero products, local right (left) centralizers, right (left) ideal preserving maps and local
derivations on nest algebras.

1. Introduction

Let A be an (associative) algebra. A ternary derivation of A is a triple of linear
maps (γ,δ ,τ) of A such that

γ(ab) = δ (a)b+aτ(b)

for all a,b ∈ A . The set of all ternary derivations of A is denoted by Tder(A ) .
The notion of ternary derivations generalizes several classes of linear mappings; for
example, if γ = δ = τ , then γ is a derivation of A , and if γ = δ , then γ is a gen-
eralized derivation of A . If A is unital with unity 1, routine verifications show that
γ : A → A is a generalized derivation if and only if γ(ab) = γ(a)b+aγ(b)−aγ(1)b
for all a,b ∈ A . The notion of ternary derivation was introduced by Jimenéz-Gestal
and Pérez-Izquierdo in [22]. They characterized ternary derivations of the generalized
Cayley-Dickson algebras over a field of characteristic not 2 and 3. In [23], ternary
derivations of finite-dimensional real division algebras were studied. More recently,
ternary derivations of separable associative and Jordan algebras were described by
Shestakov [32]. Ternary derivatives are also defined and studied on nonassociative
algebras [33, 37]. Refer to [3, 30] for a study of the motivation for defining ternary
derivations and related content.
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328 A. FOŠNER AND H. GHAHRAMANI

In [32], the Inner ternary derivations is defined as follows: a ternary derivation
(γ,δ ,τ) of an algebra A is called an inner ternary derivation if there exist a,b,c ∈A
such that

(γ,δ ,τ) = (La +Rb,La +Rc,−Lc +Rb).

Recall that La(b) := ab := Rb(a) for any a,b ∈A , are the left and right multiplication
operators. Clearly, each inner ternary derivation is a ternary derivation. The converse
is, in general, not true (see [32]). One of the interesting problems in the theory of
derivations is to identify rings with only inner derivations. Many studies have been
performed in this regard. We may refer to [1] and the references therein for more
information. So it seems reasonable to consider the problem of innerness of ternary
derivations. In [32], innerness of ternary derivations was proved on some algebras. A
characterization for a ternary derivation to be inner on triangular algebras is given in
[3]. In this paper we show that any ternary derivation on a nest algebra is an inner
ternary derivation.

Let A be an algebra and (γ,δ ,τ) ∈ Tder(A ) . Then δ ,τ satisfy

a,b ∈ A , ab = 0 =⇒ δ (a)b+aτ(b) = 0. (Z)

The following example shows that the converse of this observation is not necessarily
true.

EXAMPLE 1.1. Let C be the field of complex numbers. Consider a C-algebra
A of the form

A :=

{⎛
⎝a b c

0 a d
0 0 a

⎞
⎠ : a,b,c,d ∈ C

}

under the usual matrix operations. A is a unital algebra with the identity matrix I . Let

X =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ and define C-linear maps δ : A → A and τ : A → A by δ (A) :=

RX(A) = AX and τ(A) := LX (A) = XA . If AB = 0, where A =

⎛
⎝a b c

0 a d
0 0 a

⎞
⎠ and B =

⎛
⎝a′ b′ c′

0 a′ d′
0 0 a′

⎞
⎠ , then aa′ = 0 and ab′+ba′ = 0. So ba′ = 0 and AXB = 0. Hence,

δ (A)B+Aτ(B) = 0.

Suppose that there is a C-linear map γ : A → A such that (γ,δ ,τ) ∈ Tder(A ) .
Therefore, γ(AB) = 2AXB for all A,B ∈ A . If A = I , then γ(B) = 2XB for all B ∈A
and if B = I , then γ(A) = 2AX for all A∈ A . Hence, AX = XA for all A∈ A . But X
does not belong to Z(A ) , the centre of A . Thus, linear maps δ ,τ on A satisfy (Z)
but there is no linear map γ on A such that (γ,δ ,τ) ∈ Tder(A ) .

Given this example and the previous discussion, the following question naturally
arises.
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QUESTION. Which algebra A has the following property: for given linear maps
δ ,τ on A satisfying (Z) , there exists a linear map γ on A such that (γ,δ ,τ) ∈
Tder(A )?

One of the interesting issues in algebra is the determination of the structure of
linear maps on algebras that act through zero products in the same way as certain
mappings, such as homomorphisms, derivations, centralizers, etc. (see, for example,
[5, 9, 12, 14, 15, 31] and the references therein). Here, one can point out the prob-
lem of characterizing linear maps δ ,τ on an algebra A which satisfy (Z) , ([2, 4, 26],
among others). Given this characterization, it is possible to obtain an answer to the
question. In [2, Theorem 2.1], it was proven that if A is a unital standard operator
algebra on a complex Banach space X with dimX � 2 and δ ,τ : A → B(X ) are
linear maps satisfying (Z) , then there exist R,S,T ∈B(X ) such that δ (A) = AS−RA ,
τ(A) = AT −SA for all A ∈A . According to this result, one can find a positive answer
to the question on standard operator algebras. In addition, it can be shown that on stan-
dard operator algebras with the above conditions every ternary derivation is an inner
ternary derivation. Using [10, Proposition 2.12] and its proof, it can be concluded that
the answer to the question is correct for zero product determined algebras. In general,
we do not know that a nest algebra is a zero product determined algebra. In this paper,
by applying operator theory methods, we show that the answer to the question is pos-
itive for nest algebras on Banach spaces under some suitable assumption. In fact, the
following theorem is the main result of the article.

THEOREM 1.2. Let X be a (real or complex) Banach space with dimX � 2 , let
N be a nest on X , with each N ∈ N complemented in X whenever N− = N , and
let δ ,τ : AlgN → AlgN be linear maps. Then δ ,τ satisfy (Z) if and only if there
exits a unique linear map γ : AlgN → AlgN defined by γ(A) = RA+AT for some
R,T ∈ AlgN such that (γ,δ ,τ) ∈ Tder(AlgN ) .

In addition to answering the question, this theorem also gives us the innerness of
ternary derivations. We have the following corollary.

COROLLARY 1.3. Let X be a (real or complex) Banach space with dimX � 2 ,
let N be a nest on X , with each N ∈ N is complemented in X whenever N− = N .
Then every ternary derivation on AlgN is an inner ternary derivation.

We observe that the nests on Hilbert spaces, finite nests and the nests having order-
type ω + 1 or 1 + ω∗ , where ω is the order-type of the natural numbers, satisfy the
condition in Theorem 1.2 and Corollary 1.3 automatically.

As a corollary of our main results we characterize linear maps δ ,τ on AlgN sat-
isfying (Z) . We also present various applications of Theorem 1.2 for determining (right
or left) centralizers and derivations through zero products, local right (left) centralizers,
right (left) ideal preserving maps and local derivations on nest algebras.

This article is organized as follows: In Section 2 we provide the definition of nest
algebras and some of the required results. In Section 3, the applications of Theorem 1.2
are presented. The last section is devoted to the proof of Theorem 1.2 and Corollary 1.3.
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2. Preliminaries and tools

Let X be a (real or complex) Banach space, let B(X ) be the Banach algebra
of all bounded linear operators on X , and let F(X ) be the ideal of all finite rank
operators in B(X ) . A nest N on X is a chain of closed (under norm topology)
subspaces of X with {0} and X in N such that for every family {Ni} of elements
of N , both

⋂
Ni and

∨
Ni (closed linear span of {Ni} ) belong to N . The nest algebra

associated to the nest N , denoted by AlgN , is the weak closed operator algebra of all
operators in B(X ) that leave members of N invariant. We say that N is non-trivial
whenever N �= {{0},X } . The ideal AlgN

⋂
F(X ) of all finite rank operators in

AlgN is denoted by AlgFN and for N ∈ N ,

N− :=
∨
{M ∈ N |M ⊂ N}.

The identity element of an algebra is denoted by I and an element P in an algebra is
called an idempotent if P2 = P . In order to prove our results we need the following
results.

LEMMA 2.1. ([21, Lemma 3.2]) Let N be a nest on a Banach space X . If
N ∈ N is complemented in X whenever N− = N , then the ideal AlgFN of finite
rank operators of AlgN is contained in the linear span of the idempotents in AlgN .

LEMMA 2.2. Let N be a nest on a Banach space X , and let N ∈ N be com-
plemented in X whenever N− = N . Then

(i)
{
T ∈ B(X ) |TF = 0 for all F ∈ AlgFN } = {0}

,

(ii)
{
T ∈ B(X ) |FT = 0 for all F ∈ AlgFN } = {0}

.

Proof. (i) Suppose that T ∈ B(X ) and TF = 0 for all F ∈ AlgFN . By [34] we

have AlgFN
SOT = AlgN . Thus there exists a net (Fγ)γ∈Γ in AlgFN converges to the

identity operator I with respect to the strong operator topology. Since the product of
B(X ) is separately SOT-continuous, it follows that TFγ −→ T in the strong operator
topology. So T = 0.

(ii) The proof is obtained by using a similar argument as in (i). �
Let N be a nest on the Banach space X . If X is a Hilbert space or N is a

finite nest or a nest having order-type ω + 1 or 1+ ω∗ , where ω is the order-type of
the natural numbers, then it is obvious that N ∈ N is complemented in X whenever
N− = N .

3. Applications

In this section, we present applications of Theorem 1.2. Throughout this section,
X is a (real or complex) Banach space, dimX � 2, and N is a nest on X with each
N ∈ N complemented in X whenever N− = N .
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Characterizing linear maps δ ,τ satisfying (Z)

Determining the structure of linear maps satisfying (Z) is a matter of interest, as
explained in the introduction. In the following corollary we characterize linear maps
δ ,τ on AlgN satisfying (Z) .

COROLLARY 3.1. Let δ ,τ : AlgN → AlgN be linear maps. Then δ ,τ satisfy
(Z) if and only if there exist R,S,T ∈ AlgN such that δ (A) = RA+AS and τ(A) =
−SA+AT for all A ∈ AlgN .

Proof. Suppose that δ ,τ satisfy (Z) . By Theorem 1.2 there exists a linear map γ :
AlgN → AlgN such that (γ,δ ,τ) ∈ Tder(AlgN ) and by Corollary 1.3, (γ,δ ,τ) is
an inner ternary derivation. Thus, there exist R,S,T ∈AlgN such that δ (A) = RA+AS
and τ(A) = −SA+AT for all A ∈ AlgN . The converse is clear. �

Taking (Z) and assuming that τ = δ , then δ acts like derivation at zero prod-
uct elements. The problem of determining the structure of linear maps behaving like
derivations at zero product elements has been extensively studied for decades. See, for
instance, [2, 4, 5, 12, 14, 26, 31] and the references therein. From Theorem 1.2, one
gets the following corollary.

COROLLARY 3.2. Assume that δ : AlgN → AlgN is a linear map. Then δ
satisfies

AB = 0 =⇒ Aδ (B)+ δ (A)B = 0 (A,B ∈ AlgN ).

if and only if there exist S,T ∈ AlgN such that δ (A) = AT − SA for all A ∈ A and
T −S ∈ Z(AlgN ) .

Proof. By Corollary 3.1, there exist R,S,T ∈ B(X ) such that

δ (A) = RA+AS = −SA+AT

for all A ∈ A . Hence, A(T −S) = (R+S)A for all A ∈ AlgN . Let A = I , we see that
T −S = R+S . Therefore, T −S ∈ Z(AlgN ) . The converse is clear. �

Let us point out that the above corollary is well known (see, for example, [11,
Proposition 2.3] and [11, Theorem 4.1]). So Corollary 3.1 is a generalization of this
result.

Characterizing (right or left) centralizers through zero products

Let A be an algebra. A linear map ρ : A → A is called a right (left) centralizer
if ρ(ab) = aρ(b) (ρ(ab) = ρ(a)b ) for each a,b ∈ A and ρ is called a centralizer if
it is both a left centralizer and a right centralizer. One of the issues to consider is to
describe the structure of linear maps that act as right (left) centralizers or centralizers at
zero product elements as follows:

ab = 0 =⇒ aρ(b) = 0,

ab = 0 =⇒ ρ(a)b = 0,

ab = 0 =⇒ aρ(b) = ρ(a)b = 0,

(1)
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where a,b ∈ A and ρ : A → A is a linear map. In [5], Brešar shows that if A is a
prime ring and ρ is an additive map on A , then ρ satisfying the second equation in (1)
if and only if ρ is a left centralizer. This problem has been explored by several authors,
([13, 27, 29, 31, 35] among others). Now we consider this problem on nest algebras.

COROLLARY 3.3. Assume that τ,δ ,ρ : AlgN → AlgN are linear maps.

(i) τ satisfies
AB = 0 =⇒ Aτ(B) = 0 (A,B ∈ AlgN )

if and only if τ(A) = AD for all A ∈ AlgN in which D ∈ AlgN .

(ii) δ satisfies
AB = 0 =⇒ δ (A)B = 0 (A,B ∈ AlgN )

if and only if δ (A) = DA for all A ∈ AlgN in which D ∈ AlgN .

(iii) ρ satisfies

AB = 0 =⇒ Aρ(B) = ρ(A)B = 0 (A,B ∈ AlgN )

if and only if ρ(A) = AD for all A ∈ AlgN in which D ∈ AlgN and AD = DA
for all A ∈ AlgN .

Proof. (i) Let Aτ(B) = 0 whenever AB = 0. Set δ = 0. Then δ ,τ satisfy (Z) .
By Theorem 1.2 there exists a linear map γ : AlgN → AlgN such that (γ,δ ,τ) ∈
Tder(AlgN ) . So γ(AB) = Aτ(B) for all A,B ∈ AlgN . Hence γ = τ and τ(AB) =
Aτ(B) for all A,B ∈ AlgN . By setting D = τ(I) ∈ AlgN we see that τ(A) = AD for
all A ∈ AlgN . The converse is clear.

(ii) The proof is obtained by using a similar argument as in (i).
(iii) It is clear from (i) and (ii). �

Local right (left) centralizers and right (left) ideal preserving maps

A linear map ψ on an algebra A is called a local right (left) centralizer if for
any a ∈ A there exists a right (left) centralizer ρa : A → A (depending on a ) such
that ψ(a) = ρa(a) . Clearly, each right (left) centralizer is a local right (left) centralizer.
The converse is, in general, not true. We say that a linear map ψ : A → A is right
(left) ideal preserving if ψ(J ) ⊆ J for any right (left) ideal J of A . Suppose
that A is a unital algebra. It is then easily verified that the linear map ψ : A → A
is right (left) ideal preserving if and only if ψ is a local right (left) centralizer. So it
is clear that any right (left) centralizer is a right (left) ideal preserving map, but the
converse is not necessarily true. It is natural and interesting to ask for what algebras
any local right (left) centralizer or any right (left) ideal preserving map is a right (left)
centralizer. Johnson [24] has proven that if A is a semisimple Banach algebra with an
approximate identity and ψ is a bounded operator on A that leaves invariant all closed
left ideals of A , then ψ is a left centralizer of A . Hadwin and Li [19] have shown
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that Johnson’s Theorem holds for all CSL algebras. In particular Hadwin, Li and their
collaborators [17, 18, 20, 29] have studied the problems of this kind in the past twenty
years for various reflexive operator algebras. This problem has also been investigated
for other algebras. We refer to [16, 25] and their references.

In the next corollary we characterize the local right centralizers and local left cen-
tralizers of the nest algebras.

COROLLARY 3.4. Let ψ : AlgN → AlgN be a linear map.

(i) ψ is a local right centralizer if and only if ψ is a right centralizer.

(ii) ψ is a local left centralizer if and only if ψ is a left centralizer.

Proof. (i) Suppose that ψ is a local right centralizer. Therefore, for any A ∈
AlgN , there is an element DA ∈ AlgN such that ψ(A) = ADA . So for A,B ∈ AlgN
with AB = 0, we have

Aψ(B) = ABDB = 0.

From Corollary 3.3(i), it follows that ψ is a a right centralizer. The converse is clear.
(ii) By using Corollary 3.3(ii) and a similar proof as (i), we obtain the desired

conclusion. �
The right ideal preserving linear maps and left ideal preserving linear maps on nest

algebras are described in the following corollary.

COROLLARY 3.5. Let ψ : AlgN → AlgN be a linear map.

(i) ψ is a right ideal preserving map if and only if ψ is a right centralizer.

(ii) ψ is a left ideal preserving map if and only if ψ is a left centralizer.

Proof. (i) Assume that ψ is a right ideal preserving map. Let A ∈ AlgN . It
is clear that A(AlgN ) is a right ideal of AlgN . It follows from the hypothesis that
ψ(A(AlgN )) ⊆ A(AlgN ) . By the fact that AlgN is unital, there exists an element
DA ∈ AlgN such that ψ(A) = ADA . So ψ is a local right centralizer and by Corol-
lary 3.4(i), it is a right centralizer. Conversely, if ψ is a right centralizer, a routine
verification shows that ψ is a right ideal preserving map.

(ii) By using Corollary 3.4(ii) and a similar proof as (i), we obtain the desired
conclusion. �

Local (generalized) derivations

A linear map δ on an algebra A is called a local (generalized) derivation if for
any a ∈A there is a (generalized) derivation δa : A → A (depending on a ) such that
δ (a) = δa(a) . There have been many papers in the literature investigating when local
(generalized) derivations are (generalized) derivations, see [5, 8, 19, 20, 25, 28, 29, 36]
and the references therein. In the following corollary, we characterize local generalized
derivations on nest algebras.
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COROLLARY 3.6. For any linear map δ : AlgN → AlgN ,The following are
equivalent:

(i) δ is a generalized derivation;

(ii) δ is a local generalized derivation;

(iii) Aδ (B)C = 0 , whenever A,B,C ∈ AlgN such that AB = BC = 0 .

Proof. According to the Corollary 3.3, all the conditions of the [29, Proposition
1.1] are satisfied, so we obtain the desired result from [29, Proposition 1.1]. �

We have the following result for the local derivations.

COROLLARY 3.7. Let δ : AlgN → AlgN be a linear map. Then δ is a local
derivation if and only if δ is a derivation.

Proof. If δ : AlgN → AlgN is a local derivation, then it is a local generalized
derivation and δ (I) = 0. By Corollary 3.6, δ is a generalized derivation with δ (I) = 0.
So δ is a derivation. The converse is clear. �

It should be noted that the condition on the nests in Corollary 3.6 is different from
the conditions on the nests in [8]. Corollary 3.6 also generalizes similar results for nest
algebras on Hilbert spaces.

4. Proofs

Proof of Theorem 1.2. Only the ’only if’ part needs to be checked. Let δ ,τ :
AlgN → AlgN be linear maps satisfy (Z) . Through the following steps we prove
that there exits a linear map γ : AlgN → AlgN defined by γ(A) = RA+AT for some
R,T ∈ AlgN such that (γ,δ ,τ) ∈ Tder(AlgN ) .

Step 1. For each A ∈ AlgN and each idempotent element P ∈ AlgN , we have

δ (AP)+APτ(I) = Aτ(P)+ δ (A)P and τ(PA)+ δ (I)PA = Pτ(A)+ δ (P)A.

Let A,P∈ AlgN where P2 = P . The operator I−P is an idempotent and AP(I−
P) = 0. By assumption we have

δ (AP)(I−P)+APτ(I−P) = 0.

Hence
δ (AP)− δ (AP)P+APτ(I)−APτ(P) = 0.

Therefore,
δ (AP)+APτ(I) = δ (AP)P+APτ(P). (2)

Since A(I−P)P = 0, it follows that

δ (A(I−P))P+A(I−P)τ(P) = 0.
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So
δ (A)P− δ (AP)P+Aτ(P)−APτ(P) = 0.

Consequently
δ (AP)P+APτ(P) = δ (A)P+Aτ(P). (3)

By comparing (2) and (3), we arrive at

δ (AP)+APτ(I) = δ (A)P+Aτ(P).

Since P(I−P)A = 0 and (I−P)PA = 0, by assumption we have

δ (P)(I−P)A+Pτ((I−P)A) = 0 and δ (I−P)PA+Qτ(PA) = 0.

From these equations we have the followings, respectively

δ (P)PA+Pτ(PA) = δ (P)A+Pτ(A)

and
δ (P)PA+Pτ(PA) = δ (I)PA+ τ(PA).

Comparing these equations, we get

δ (I)PA+ τ(PA) = δ (P)A+Pτ(A).

Step 2. For each A ∈ AlgN and F ∈ AlgFN we have

δ (AF)+AFτ(I) = Aτ(F)+ δ (A)F and τ(FA)+ δ (I)FA = Fτ(A)+ δ (F)A.

By Step 1, Lemma 2.1 and the fact that δ ,τ are linear we get the desired result.

Step 3. For all A,B ∈ A , we have

δ (AB) = Aδ (B)+ δ (A)B−Aδ (I)B.

Taking A = I in Step 2, we find that

δ (F) = τ(F)−Fτ(I)+ δ (I)F, (4)

for all F ∈ AlgFN . Since AlgFN is an ideal in AlgN , it follows from (4) that

δ (AF) = τ(AF)−AFτ(I)+ δ (I)AF

for all A ∈ AlgN and F ∈ AlgFN . From this equation and Step 2, we see that

τ(AF) = Aτ(F)+ δ (A)F − δ (I)AF (5)

for all A ∈ AlgN and F ∈ AlgFN . From (5), we get

τ(ABF) = ABτ(F)+ δ (AB)F − δ (I)ABF, (6)
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for all A,B ∈ AlgN and F ∈ AlgFN . On the other hand,

τ(ABF) = Aτ(BF)+ δ (A)BF − δ (I)ABF

= ABτ(F)+Aδ (B)F −Aδ (I)BF + δ (A)BF − δ (I)ABF (7)

for all A,B ∈ AlgN and F ∈ AlgFN . By comparing (6) and (7), we arrive at

δ (AB)F = Aδ (B)F + δ (A)BF −Aδ (I)BF

for all A,B ∈ AlgN and F ∈ AlgFN . From Lemma 2.2(i), it follows that

δ (AB) = Aδ (B)+ δ (A)B−Aδ (I)B

for all A,B ∈ AlgN .

Step 4. For all A,B ∈ AlgN , we have

τ(AB) = Aτ(B)+ τ(A)B−Aτ(I)B.

From Step 2 and (4), it follows that

τ(FA) = Fτ(A)+ δ (F)A− δ (I)FA

= Fτ(A)+ τ(F)A−Fτ(I)A, (8)

for all A ∈ AlgN and F ∈ AlgFN . Now, by using (8) for all A,B ∈ AlgN and
F ∈ AlgFN , we calculate τ(FAB) in two ways and we obtain the followings.

τ(FAB) = Fτ(AB)+ τ(F)AB−Fτ(I)AB

and
τ(FAB) = FAτ(B)+Fτ(A)B+ τ(F)AB−Fτ(I)AB−FAτ(I)B.

Comparing these equations, we arrive at

Fτ(AB) = FAτ(B)+Fτ(A)B−FAτ(I)B

for all A,B ∈ AlgN and F ∈ AlgFN . From Lemma 2.2(ii), it follows that

τ(AB) = Aτ(B)+ τ(A)B−Aτ(I)B

for all A,B ∈ AlgN and F ∈ AlgFN .

Step 5. For all A ∈ A , we have

τ(A)−Aτ(I) = δ (A)− δ (I)A.

From (4) and Step 3, it follows that

τ(AF)−AFτ(I) = δ (AF)− δ (I)AF

= Aδ (F)+ δ (A)F −Aδ (I)F − δ (I)AF

= Aτ(F)−AFτ(I)+ δ (A)F − δ (I)AF
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for all A ∈ AlgN and F ∈ AlgFN . On the other hand, according to the Step 4, for all
A ∈ AlgN and F ∈ AlgFN , we have

τ(AF)−AFτ(I) = Aτ(F)+ τ(A)F −Aτ(I)F −AFτ(I).

By comparing these equations, we find

(δ (A)− δ (I)A)F = (τ(A)−Aτ(I))F

for all A ∈ AlgN and F ∈ AlgFN . From Lemma 2.2(i), it follows that

δ (A)− δ (I)A = τ(A)−Aτ(I)

for all A ∈ AlgN .

Step 6. For linear map γ : AlgN → AlgN defined by γ(A) = δ (A)+ Aτ(I) =
τ(A)+ δ (I)A we have (γ,δ ,τ) ∈ Tder(AlgN ) .

From Steps 3 and 5, it follows that

γ(AB) = δ (AB)+ABτ(I)
= Aδ (B)+ δ (A)B−Aδ (I)B+ABτ(I)
= δ (A)B+A(δ (B)− δ (I)B)+ABτ(I)
= δ (A)B+A(τ(B)−Bτ(I))+ABτ(I)
= δ (A)B+Aτ(B)

for all A,B ∈ AlgN . So (γ,δ ,τ) ∈ Tder(AlgN ) .

Step 7. There are elements R,T ∈ AlgN such that γ(A) = RA+AT for all A ∈
AlgN .

Define the linear map α : AlgN → AlgN by α(A) = δ (A)− δ (I)A . It follows
from Step 3 that

α(AB) = δ (AB)− δ (I)AB

= Aδ (B)+ δ (A)B−Aδ (I)B− δ (I)AB

= Aα(B)+ α(A)B.

So α is a derivation. From [6, Theorem 2.2] every linear derivation of a nest algebra
on a Banach space is continuous and by [7] all continuous linear derivations of a nest
algebra on a Banach space are inner derivations. So α is inner, i.e. there exists S ∈
AlgN such that α(A) = AS− SA for all A ∈ AlgN . Set R = δ (I)− S and T =
τ(I)+S . So δ (A) = RA+AS for all A ∈ AlgN and

γ(A) = δ (A)+Aτ(I) = RA+AS+Aτ(I) = RA+AT

for all A ∈ AlgN , where R,T ∈ AlgN .
Suppose that γ ′ : AlgN → AlgN is another linear map such that (γ ′,δ ,τ) ∈

Tder(AlgN ) . By definition of ternary derivation we see that γ(AB) = γ ′(AB) for all
A,B ∈ AlgN . Hence γ = γ ′ . The proof is completed. �
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Proof of Corollary 1.3. Assume that (γ,δ ,τ) ∈ Tder(AlgN ) . So δ ,τ satisfy
(Z) . By Theorem 1.2 there are R,T ∈ AlgN such that γ(A) = RA+AT for all A ∈
AlgN . Since γ(AB) = δ (A)B+Aτ(B) for all A,B ∈ AlgN , it follows that R+T =
δ (I)+ τ(I) . Set S = δ (I)−R = T − τ(I) . So

δ (A) = γ(A)−Aτ(I) = RA+AT −Aτ(I) = RA+AS

and
τ(A) = γ(A)− δ (I)A = RA+AT − δ (I)A = −RS+AT

for all A ∈ AlgN . We conclude that (γ,δ ,τ) is an inner ternary derivation. �
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Faculty of Management
University of Primorska
SI-6104 Koper, Slovenia

e-mail: ajda.fosner@fm-kp.si

Hoger Ghahramani
Department of Mathematics

University of Kurdistan
P.O. Box 416, Sanandaj, Iran

e-mail: h.ghahramani@uok.ac.ir;

hoger.ghahramani@yahoo.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


