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THE CONVEX INVERTIBLE CONE STRUCTURE OF

POSITIVE REAL ODD RATIONAL MATRIX FUNCTIONS

S. TER HORST ∗ AND A. NAUDÉ

Abstract. Positive real odd matrix functions, often referred to as positive real lossless matrix
functions, play an important role in many applications in multi-port electrical systems. In this
paper we present closer analogues to some of the known results for the scalar, one-port, case
in the multi-port setting. Specifically, we determine necessary and sufficient conditions for the
well studied partial fraction formula to represent functions in the class of positive real odd matrix
functions, and explicit minimal state space realization formulas for the inverse (admittance) of a
function in this class, which itself is also a positive real odd matrix function. Doing so, enables
us to provide a partial analogue of the pole-zero interlacing behavior from the scalar case.
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[16] G. E. DULLERUD AND F. PAGANINI,A Course in Robust Control Theory: A Convex Approach, Texts
in Applied Mathematics Vol. 36, Springer-Verlag, New York, 2000.

[17] R. M. FOSTER, A reactance theorem, Bell System Technical Journal 3 (1924), 259–267.
[18] R. W. FREUND AND F. JARRE, An extension of the positive real lemma to descriptor systems, Optim.

Methods Softw. 19 (2004), 69–87.
[19] R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge U.P., Cambridge, 1985.
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