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NEW CHARACTERIZATIONS FOR DIFFERENCES OF INTEGRAL-TYPE
OPERATORS FROM 0 -BLOCH SPACE TO -BLOCH-ORLICZ SPACE

YUXIA LIANG AND YA WANG

(Communicated by I. M. Spitkovsky)

Abstract. Several new equivalent characterizations for the boundedness of the differences of
integral-type operators from o -Bloch space to 3 -Bloch-Orlicz space are presented in this paper.
Especially, we estimate their essential norms in terms of the n-th power of the induced analytic
self-maps on the unit disk, which can provide new and interesting compactness criteria and be
seen as extensions of several existing results in the literature. Moreover, some applications are
also exhibited in an example for readers’ convenience.

1. Introduction and preliminaries

Let H(D) denote the space of all holomorphic functions on D and S(D) the
collection of all holomorphic self-maps on D, where D is the unit disk in the com-
plex plane C. Given a continuous linear operator 7 on a Banach space X, its es-
sential norm is the distance from the operator T to compact operators on X, that is,
IT||. = inf{||T — K|| : K is compact}. It’s trivial that |||, = O if and only if T is
compact, see, e.g. [6] and their references therein. For a € D, let ¢, be the automor-
phism of D exchanging 0 for a, thatis, ¢,(z) = (a—2z)/(1 — az). For z,w € D, the
pseudo-hyperbolic distance between z and w is given by

—Ww

p(zw) =[ow(2)| =

1—wz

In the sequel, given ¢,y € S(D), we denote p(z) = p(¢(z), ¥(z)) for simplicity.
For an analytic self-map ¢ : D — D, the composition operator Cy : H(D) — H (D)
is defined by
Cof=foo, feHD).

The study of composition operators is a fairly active field. For general references on
the theory of composition operators, see the two excellent books [3] by Cowen and
MacCluer, and [20] by Shapiro.

In this paper, we mainly pay our attention to the boundedness and essential norms
of the differences of integral-type operators defined below. As we all know, the operator
theoretic properties of integral-type operators expressed in terms of function theoretic
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conditions on symbols have been a subject of high interest, which can be found in
[9, 10, 13, 17] and their reference therein. Subsequently, we list some relevant integral-
type operators in details.

(a) Given g € H(ID), the operator L8 is defined by

/f t)dt, f € HD), ze€ D.

(b) Given g € H(ID), the operator L, is defined by

/f t)dt, f € HD), z € D.

(c)Let ¢ € S(D) and g € H(D), the operator Cg is defined by

/f (1)dt, f € H(D), z€D.

(d)Let ¢ € S(D) and g € H(D), the operator V(;;' is defined by

/f' (t)dt, f € H(D), ze D.

Indeed, the above integral-type operators have close connections. On the one hand,
let ¢ = id be the identity map in Cg and Vq;g , then

Ci=L8%and V5 =L,
This means the operators L# and L are special cases of Cg and qu , respectively. On
the other hand, if we replace g € H(D) with ¢’ € H(D) in C, then Cg, =V, . More-

over, Cg is called the generalized composition operator due to the fact Cg —Cy isa

constant if g = ¢’. Based on the above facts, we firstly provide interesting descrip-
tions for Cg — C{}, acting from the o -Bloch space to f-Bloch-Orlicz space, then the
analogous results for residual integral-type operators follow naturally. Our result can
generalize the work in [11] to some extent. Next we present some Banach spaces we
concentrated on.

Let u be a weight; that is, u is a positive continuous function on . We recall
that the u-Bloch space %, 1= %, (D) consists of all f € H(ID) such that

£l = £ O+ £ [lu <=
with || /|| == supu( )|f'(z)]. It is a well-known fact that the p-Bloch space %, is

a Banach space under the norm ||f{| , - In particular, if u(z) = (1 - 2)?)%, we obtain
the a-Bloch space A [1, 18, 23]. For a =1, % = 2, the classical Bloch space; if
O0<a<l, B*=Lip|_q, the analytic Llpschltz space which consists of all f € H(D)
satisfying

£(2) = fw)| < Clz—w|'"%,
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for some constant C > 0 and all z,w € D; when o > 1, % = H); |, the o — 1

weighted-type space of analytic functions that contains all f € H(D) satisfying

sup(1—[2[*)* [ £(2)] < eo.
zeD

More generally, let v be a weight on D. The weighted-type space H,” is defined to be
the collection of all functions f € H(ID) that satisfy

[1fllv = supv(2)|f(2)] < oo,
zeD

provided we identify that differs by a constant, and then H;® is a Banach space under
the norm ||.||,, see, e.g. [4, 8] and the references therein.

As another generalization of the classical Bloch space %, Ramos Ferndndez [19]
employed Young’s functions to define the Bloch-Orlicz space %% in 2010. More pre-
cisely, let @ : [0,+o0) — [0,+o0) be an .4 -function, that is, ¢ is a strictly increasing
convex function such that ¢(0) = 0, which implies that IILIE, ¢(t) = +oo. The Bloch-

Orlicz space %, linked with the function @, is the collection of all f € H(DD) fulfilling

sup(1 —[z2)p(A[f'(2)]) < o

z€eD

for some A > 0 depending on f. We further suppose that ¢! is continuously differ-

entiable. If ¢! is not differentiable everywhere, we can define the function
t
y(t) :/ de, 1 >0,
0o X

then y is differentiable, whence w~! is differentiable everywhere on [0,c0). Since
¢ is a strictly increasing, convex function satisfying ¢@(0) = 0, therefore the function
o(t)/t, t > 0, is increasing and

o,

t
> > > — > 0.
o(t) = () > . x/(p(2> forall £ >0

As a consequence, #? = Y. The convexity of ¢ can further imply the Minkowski’s

functional .

defines a seminorm for %%, where

Sp(f) = sup(L — |z)p(|f(2)])-

zeD

At the same time, %? is a Banach space endowed with the norm

£z = [£(O)[+ 1 f]lo-
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f/
S —— | <1
w(ﬂw)<

LEMMA 1.1. The Bloch-Orlicz space is isometrically equal to ulqo -Bloch space,
where

Observing from the fact

it leads to the following lemma.

1
”?(2)2—17172611).
o~ (=)

Whence for any f € A,

If

a0 = |£(0)|+supuf (2)|f'(2)]-
zeD

As far as we know the readers can consult, e.g. [2, 22] and their reference therein
for Bloch-Orlicz spaces. In [12], the B-Bloch-Orlicz space %Y = %7 (D) is defined

B
as the class of all f € H(ID) satisfying

sup(1—[z1*)P p(Af'(2)]) < o

z€eD

for some A > 0 depending on f. And the f3-Bloch-Orlicz space %g is also a Banach
space under the norm

1715 = SO+ 11f
nf%ﬁ:mﬁk>oh%ﬁ(?><1}

Sep(f) = Slelﬂg(l — P ()

where

and

It holds that %g = %% when = 1. Furthermore, a standard fact is
f/
Sep | —— | <1,
PP\ g

which yields a lemma linking with Lemma 1.1.

LEMMA 1.2. The B -Bloch-Orlicz space is isometrically equal to ug’ -Bloch space,

where
1

HE(Z):ﬁ,ZED.
¢ \=epp
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Whence for any f € A?,
/119 = 1O+ 17T, (1.1)
with || f'|| ;o := sup g (2)| £ (2)].
”ﬁ z€D B

In the sequel, Lemma 1.2 will play an important role in showing our main results.

And we always use ,LL;; (z) to stand for 1/¢~! (m
ing. Meanwhile, we let Ny denote the set of all nonnegative integers and the notations
A=~ B, A X B, A > B mean that there maybe different positive constants C such that

B/C<A<CB,A<CB,CB<A.

For a long time, huge interest has been in characterizing the properties of composi-
tion operator Cy acting on Bloch-type spaces in terms of the n-th power of ¢ of D. In
particular, Wulan, Zheng and Zhu [21] obtained a new compactness criterion for Cy on
the Bloch space in term of the norm of ¢", where ¢" means the n-th power of ¢. That
is, Cy is compact on Z if and only if nlgrolc ll0" |2 = 0. As regards to o-Bloch spaces,

) for the convenience of writ-

Zhao [23] proved that [|Cy||, ya_, s ~ limsupn®~'[[¢" | for 0 < o, B < eo. Since

then, many work have contributed to the development of new characterizations for sev-
eral kinds of operators, the interested readers can refer to [5, 6, 7, 14, 15, 16, 21]. The
integration, differentiation and composition operators are well-studied objects because
they are quite natural and provide information about spaces and functions in them. They
are often related to some operations in algebras of functions and are useful in solving
differential and integral equations. Especially, they may represent models of operators
with particular properties and have important links with geometric function theory or
dynamics. To the best of our knowledge, there has been no such new descriptions for
differences of integral-type operators acting on 3 -Bloch-Orlicz spaces. Hence these
characterizations are in desired need of response. Motivated by this, we will treat the
differences of integral-type operators acting from o -Bloch space to f3-Bloch-Orlicz
space in this paper, which shows the interesting role of Bloch-Orlicz spaces. The out-
line of the paper is as follows, the boundedness of Cg — Cf;, T B* — %’g is investigated
in Section 2 and then its essential norm is estimated in Section 3. Finally, some corol-
laries and an example of application are presented in Section 4.

2. The boundedness of Cg — Cﬁ’, 7 g ﬂg

In this section, we will present several equivalent characterizations for the bound-
edness of Cg — Cg, T B* — ﬂg. For a € D, define two test functions as below:

z _ a2 o
= Ul

(1—ar)?e

(1= lal>)* a—
e = [ UL

(1—ar)? 1—at
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It turns out that

| fllza < || fall e = 1.

Moreover, by the direct calculations, it yields that

/ (1—a*)” (1—]a)* a—z
fa()_ﬁ dfa() (l—ﬁz)zo‘l—ﬁz
For our further use, we denote two notations
By MEEED g @R
70 =1 gmpe % MO = R

LEMMA 2.1. Let 0 < ot < oo, then for each f € B*, it holds that

(1= [z)*f'(2) = (L= W) )| < CIlfll e (2 )

forall z,w € D.

Proof. For f € 2%, it follows that sup(l —[2[?)*|f'(z)| < eo. Thatis to say f’ €

, and || f/

. Using [4, Lemma 3.2], it yields that

[(1=12)*f'(2) = (1= [w)* £ (w)]
=< g p(z,w) < (z,w). O

LEMMA 2.2. Let 0 < a, 3 < oo and @ : [0,00) — [0,00) be an A -function. Sup-

pose ¢, v € S(D) and g,h € H(D), then the following three inequalities hold,

(i) sup| 7 (86)(2)| p(2)

zeD
< sup H(C(p —Cﬁ’,)fwll,w + SHBH(Cﬁ _Cﬁ)fw”,%g;
S

(ii) sup

zeD

wll o + CE—Cl) ool gos

jlelpH( )f Iug 3161%\\( o — Cy)f Iug
T (§0)(2) — T& (hw)(2)

C5 —CM) finll oo
WD("’ "’)W“gﬁ

T ) (@) p ()

(iii) sup
zeD

< sup [[(C5 = Cy) fiull,
weD ¢ Yol B

2.1)

(2.2)

2.3)
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Proof. From the consequences in Lemma 1.2, we use the norm given in (1.1) to
show this lemma. For a € D, we arrive at

(€5 =€) ol oy
= supf 20 (0(2)8(2) — Fy (WD)

> g (@)l f3(a) (9(a))8(a) = foay(W(@))h(a)] (2.4)
g @lg@l (1 p@P)?(1 - ly(@P)* H5@lha)]
(1—|¢( ks 11— ¢(a)y(a)]> (1= y(a)?)*

(1= 19@P)*(1 |y (a)[)
[1—¢(a)y(a)P

= |78 (g0)(a)| - |72 (hy)(a). 2.5)

Similarly, it turns out that

(€5 = C ol g
> 1 (@)l ) (0(a))g(@) = Fiy (wla))h(a)]
10 (@) L@
g @l T P @
_ (1= [9@P)*(1 - [y(@P)* Hg(@lh(a) )
11— (a)y(a))® (1=]w(a)]?)“
)*(1 -

(@
_ = @PI A=W @P) | o .
a7 V@@ 6

Putting (2.6) into (2.5) we deduce that

o (g0)(a )P
< |I(Cs — Co) fo(a) II%Z;P(a)

(1= 0@P) (1 = [W@P)
s LT @l @

< ICG = C) oLy +11(C5 = Ch) ol 2.7)

where the last inequality follows from p(a) < 1. Analogously, we deduce that

2 9)(@)]p(@) < 1G5 = Cfytall g + 1G5~ Coyiall g @)
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Taking the supremum about @ € D in (2.7) and (2.8), we conclude that

(i) sup

acD

< sup (1165 = C4) ool g 1G5 ~ Gl )

T8 (g0)(a )P

acD

< sup (€5 = g + 1G5~ Clpl g ). 29

(ii) sup 913 (hy)(a )p

acD

< sup (€5 = Al + 1G5~ Clpl g ). 2.10)

weD

On the other hand, we change (2.4) into

1(Cy _C}ull)fd)(a)”%’g

8(a) h(a)(1—¢(a)*)*
(I=[e@P)* (1 ¢(a)y(a))?
4

> ug(a)

WV

T8 (30)(a) — T4 (hy)(a)| -
U= 19@) P 30 (@) = (1 = [w(@) Py (wia)
= |78 (s9) (@) — 7L (hy)(a)| -
= 10@P) £ (9(a)) = (1= [w(@) )y ) (W(a))|

= |78 (80)(@) = 7 (hw)(@)| = €| 7 (hy) (@) p(@), 1

the last inequality in (2.11) is due to Lemma 2.1. The above inequalities yield

(i) sup| 7F (8)(a) — T (hy)(a)

ach

< sup (n(c;; o

aeD

Al )
< sup (n(c;; )l (G — cmnw) . 2.12)
weD B B

(2.9), (2.10) together with (2.12) verify the inequalities (2.1)—(2.3) are true. This com-
pletes the proof. [
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LEMMA 2.3. Let 0 < o, < oo and @ : [0,00) — [0,00) be an A -function. Sup-
pose that ¢,y € S(D) and g,h € H(D) , then the following statements hold,

(i) su%H(Ci )wa@¢—<supn“Hg¢ —hy
we

neNy

“llgg” ~ 1y .
0

i) sup [|[(C5 —=C1) full oo =
(i) sup (€5 ~Cp)ful

Proof. Recall that

= k+2a) L
u—az § ZaH at)”

Integrating the above formulae we express f, into Maclaurin expansion as below

I'(k+20) «
f@ =0l [*3 o
> k+2a Tk

(1—la)* 1 zeD. 2.13

" X k+1>“ 2€ (2.13)

On the other hand, it turn out that

(L—laP)* a—t
(1—at)® l1—at

B o wrw+zm a(l —at)+la|’t —1t

=<1—a|2>“<i%a"rk>( ~(-laP )
o )( l—|a\ Zakk+l>

k=0
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Integrating the above, we obtain the Maclaurin expansion of £, as below

A 2(1—a®)* a—t

= . dt
fa(2) /o (I—ar2* 1—ar

o (k=1
F(l+20)\ 4
— (1 _ o+1 k—1_k
= ahl) - (-l [ 3 (z e ) s

Iri+42
= afu(z) — (1—|a|? ““ZkH(Z é(;aﬁ))aklzkH. (2.14)

0

By the Maclaurin expansion in (2.13), we formulate that

- k+2
<01 3 e a1~ g

k=

— (=) 5, et lalhsup uf Qe+ 16 )~ e+ DV QAG]

B I'(k+20)

= (1-a®)® kzoﬁ' at*sup [1f 2) 10" @)g(2) — v (2|

= (1 Iy 3, S ot Al @15
k=0
o Dk+20) _p [ 2k \*

< (-l S Fmelalt (7) leo*—hvlg

< (1= 102y 3, TSl (e 1) sup 0" . @16
k=0 neNy

By Stirling’s formula, it follows that
I'(k+a)

kT ()
I'(k+2a)

T'(2o)k!

Therefore it yields that

~ (k+1)%7 ask — oo

(k+1)" %~ (k+1)*! ask — oo,

(1—lal)® Ia\ fan
2 (k+1)% Yal*
> k+2a _
2 o | al*(k+1)"% (2.17)
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Putting (2.17) into (2.16), we deduce that
1(C5 = Chy)all gy < sup 180" — k" . 218)

neNy

Using the Maclaurin expansion in (2.14), it turns out that
o h i
| (C; - Cq/)fa H@g

= ||(C§_C}ul/)fa“@(l)
T +20)
a+l k=1 (& _ oy k+1
+(1~a) 2k+1<2 e ) 4 = cy):

k—1
= €5~ Chal g+ 1 o) 5 i (2 Fr(ﬁ;j)f?)m“

sup | (k+ D1 @ls(2)6* (2) — h(e) v 2

= 15 = Cy)all g

e (K42
—|af? °‘“2<2 ﬂ)l ! lg9" — hy 0. (2.19)

2P
Py

I2o)i!

Furthermore by Stirling’s formula again, we obtain

k=1 k=1
I'(l+2a) Y01 . 2

Y = m Y (1) m kY ask — oo,

= TRa)l! 5
The reason for the second equivalent display is exhibited as below. For simplicity, we
denote a; = 2;‘;& (I+1)?*~1 and employ the Binomial Theorem to formulate

k20€ o (k o 1)206

= (k—1+1)*—(k—1)*

= (k—1)*+Qa)(k—1)** 41— (k—1)>*

= Qo)(k— 1P 1,
here the sum on the right-hand is not necessarily finite if « is not an integer, which does

not essentially affect the following estimates. We deduce from Stole-Cesdro formulae
that

lim 25— i Y1
k—oo0 k20( koo k200 — (k — 1)20{
200—1
- ]151010 f2o (k— 1)20:
k2a71
i 2a)(k— 12T+ 1 1
1



398 Y. LIANG AND Y. WANG

The above facts entail (2.19) into

~

1(C§ —Cy)

2P
Zy

(€ = Cy)fall g + (1= laP)* ™ X kal" Hgo" —hyll e (220)

k=1

+(1—[a)* Y ¥ al ke - sup n%(|g9" — hy"|| o
k=1 neNy B

+(1—[al)* Y kal* " sup n®|g¢" — hy"|| 0
k=1 neNg B

1 n
+(1_|a\2)a+lm-:£)na||g¢ —h‘I/"Hug’

= sup n%|[g¢" —hy"|, g- (2.21)

neNy

After that, we take the supremum about a € D in (2.18) and (2.21), which completes
the proof. [

In this section, our main result is presented as below.

THEOREM 2.4. Let 0 < a,f3 < oo and @ : [0,00) — [0,00) be an AN -function.
Suppose ¢,y € S(D) and g,h € H(D), then the following statements are equivalent,

i) C8—C" . B* — BY is bounded;
[ v

B
(i)
sup| 7 (0) (2)lp (2) + sup | 7 (69)(2) = 7 (hw) ()| < =,
z€D zeD
sup| T (hy)(2) p(2) + sup| T (89)(2) = 7 (hw) ()| < o=
z€D zeD
(iif)
sup |(C —Cy)fully +sup (G —Cullgg <o
(iv)

sup % 9" — " <

neNy
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Proof. The implications (iv) = (iii) = (ii) follow from Lemma 2.3 and Lemma
2.2, respectively. We only need to prove (i) = (iv) and (ii) = (i).
(i) = (iv). Suppose that Cg - Cg, T B — ﬂg is bounded. Concerning the mono-

mial function 7" € Z% we recall that ||?""!|| ga =~ (n+ 1)!=% from [16, Section
2(6)]. And then we conclude that

h
o > 16§ = Chl oy
n+1

- e _chy_*
- H(C O o e

e@g

= (0 D) supif ()] (n-+ g 209" (2) — (n+ D)W@)
= (n+1)%89" ~ hy" o

~ 90" —hy 0.

The above formulas imply

sup n " —hy"ll, 0 X NIC5 = Cyll g < ==
neNy

which entails the statement (i) = (iv).
(ii) = (i). For any f € %%, we employ Lemma 2.1 to show that
1G5~ € il g
= supug(Z)lg(Z)f’(MZ)) —h)f (w(2))]

< sup| 7 (50)(: @) [(1=10@P)F (0(2) - (1 = @) P)*F (w(2))]
+sup(1 = [W@P)IF (w(a))| | 7 (59) )~ 78 () 2)
< sup 17¢ (20)(2)lp(2) + sup T (89)(2) — T (hw)(2)| < . (2.22)

Analogously to (2.22), we can also obtain that

1(C5 =y g

= sgﬂgmﬁ (hy))lp(z) + sup TL(49)(2) — T8 () (2)| < o. (2.23)

The two inequalities (2.22) and (2.23) imply that each one of conditions (ii) can ensure
the boundedness of Cg — C’V’, CBY — ﬂg. This finishes the proof. [
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3. The essential norm of Cg - C{}, T B — %g

In this section, we deduce several estimations for essential norm of Cg — Cf;, :
B* — %g . Firstly, we present some parallel results with Lemma 2.2 as follows.

LEMMA 3.1. Let 0 < o, < oo and @ : [0,00) — [0,00) be an A -function. Sup-
pose ¢,y € S(D) and g,h € H(D), then the following inequalities hold,

(i) lim sup 913 (g9)(z )p
~o@)>r
<11|rrTsupH(C” Cy)fwll, m (C = Cy)full e
w|—1 w|—1
(ii) lim sup ﬁﬁ (hy)(z ’p
=Ly ()>r
<h|n1supH(Cg i full, " (o S,)fw\\gg,
(iii) lim sup 9£<g¢><z>—9£(hw><z>
"L min{|g (@)l y()[}>r
-<11msupH(Cfs Ch)fW“ﬁ(p-i-llmSU.p”( ﬂ,)fw\\@g.

[wl—1 [wl—1

Proof. These results can be deduced directly from the inequalities (2.7), (2.8) and
(2.11) in Lemma 2.2. [

LEMMA 3.2. Let 0 < o, 8 < e and @ :[0,00) — [0,00) be an A -function. Sup-
pose ¢,y € S(D) and g,h € H(D) such that the operator Cg - Cf;, C B — %’g is
bounded, then the following statements hold,

(i) hlmlsupH( )fwllﬂ = limsupn®||g¢” — hy"|[ o: (3.1)
w|—1 Nn—o0

(i) hlrrTsupll( )waﬁ = limsupn®||g¢” — hy"|| 0. (3.2)
w|—1 n—oo

Proof. For any a € D and each positive integer N, employing (2.15) we obtain

s —cy w)fall 9

k+2
<Ol S, ((;X),fiﬂ g0t~y

e Llk+2a) x
< (1-laP)” kzo T 20" =yl g
e v Dk+2a) k
1=l 2 Tagm 1 al" g =y 0. (3.3)
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We denote two displays as below,

N
Jii=(1—|af)® Er(l(‘;jg)l g9 = hy e
h=(-lape 3 k29 — hy| o
2= (1—al") k:%jrl T(2a)k! lal*llgo* Wk”’“‘ﬁ

For k =0,1,---,N, choosing 2" € % and using the boundedness of Cj

B> — %’g, it turns out that ||g¢k—hl//k||“§n < eo. Hence
limsupJ; = 0.
la|—1
On the other hand, it follows from (2.17) that
< k+2a)
D= (1—|a)* ( — hy*
> F(k+20€) kg —
< (1—laf)” — 5o lal’km % sup %" —hy"|| o
k=§+l I(20)k! n>=N+1 Hp
=< sup n%[lg0" — k" o.
n>=N+1 B

Furthermore, letting |a| — 1 in the above inequality, it leads to

limsupJ, < sup n%[g¢" —hy"| 0.
a1 n=N+1 b

401

_Ch.

v

(3.4)

(3.5)

Putting (3.4) and (3.5) into (3.3) and letting n — e, we arrive at (3.1). Similarly, by

(2.20), we conclude that
1G5 —Cy)fall g

(€ =y fall g + (1= 1a)* ™ X 2%l lgo" —hyll o

k=1

N
< H(Cg —Chw)fan%g + (1 — ‘a|2)a+ll;lk2a|a|kfl Hg(bk _hWkHyg’

H(1 a3 R al gk — hyt| 0
k=N+1 B

N
< 1G5 = Chfll g + (1= a1 3, 2 Jal* g0y o
k=1

=3

H(1=]a) Y PYal ke sup n®)g9" —hy"|l o
k=N+1 n>=N+1 B

N
nl[(e —Cﬁ)fallw +(L=]a)* Y 2 al ! go" — h‘lfk\\yg
k=1

+ sup iyl 0.

n=N-
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Letting |a| — 1 in the above formulas, we can get that

IT?supH( Cy)all g
a*}l
< h|n|lSlipH( Co) fa 7 1 a||g¢n—hllfn||u/‘3p~

The above inequality together with (3.1) verify (3.2). This ends the proof. [

In the sequel, we employ the similar methods from [ 16, Section 4], we let K, f(z) =
f(rz) for r € (0,1). And then K, is a compact operator on ¢ -Bloch space Z% or the
little oc-Bloch space % for any a > 0, with [|K,|| < 1. Here we cite an interesting
lemma, which provides a sequence of compact operators acting on 4% with 0 < a <

oo,

LEMMA 3.3. [23, Lemma 4.1-4.3] Let 0 < & < . Then there is a sequence
{re}, with 0 < ri < 1 tending to 1, such that the compact operator

on A satisfies lim sup sup|((I—Ly)f)'(z)| =0 forany t € [0,1). Furthermore,

S VPMSTEIS]
this statement holds as well for the sequence of biadjoints L' on 9%.

:l’—‘

The following is our main theorem in this section.

THEOREM 3.4. Let 0 < a, <o and @ : [0,00) — [0,00) be an A -function.
Suppose ¢,y € S(D) and g,h € H(D) such that the operators C§, Cf,’, t B — '%/(3/)
are bounded, then the following equivalences hold,

H@—@mﬂuﬁ
~ lim sup ﬂﬁ (g9)(z ’p +lim sup ﬁﬁ (hy)(z ’p
=Ho@)l>r Hy)l>r

tiim s [P (g0)(@) — T ) 2)

=L min{| )],y () [}>r
~ limsup [(CF — Cy) vl g+ Himsupl (G5 —Cy) vl

= timsupn® 9"~y .

n—oo

Proof. Firstly, the boundedness of C§ : % — %’g and Cy, : % — %’g yield that

My = Sup P (9)]g(2)| < = and My = supu () ()] < .
z€
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Lemma 3.1 together with Lemma 3.2 verify that

lim sup
"=le@)>r

9’3 (g9)(z ’p +11m sup
“Hy@)l>r

T (29)(@) ~ TE hw)(2)|

T )@ p (@)

+lim sup
"L min{|o ()] |y ()| }>r

= hmsupH(C” C}V’,) wllzg +11msup||( }Vl/)fWHﬂg

[w|—1 [w|—1

< limsupn®||g¢” —hl//"Hﬂg.

n—oo

Hereafter, we only need to show the following inequalities,

. 1 h
limsupn®||g¢”" —hl[/"||,JqJ mll|[e —Cw“e,ﬂaﬂzg

=<1im sup |77 (39)(2)|p(2)+lim sup |7 (hy)(2)|p(2)
9> Ny@)l>r
tlim swp | TP o)) - T hw)()|. (3.6)

"L min{|o ()], |y (2)[}>r

To prove the first inequality in (3.6), we choose a bounded sequence f,(z) =
U127 Y| 4o in %, which converges to zero uniformly on every compact sub-
set of ID. For any compact operator K : % — %’g, it yields that lim ||Kf, || 4 = 0.

n—oo
Furthermore, we conclude that

h
HCg - Cll/ ‘ ‘ e.,%’a—»%’g

> hmsupme (C5— —-Ch - K)an@g

n—oo

. . g h
> hinj:plgf <||(C¢ - Cw)an@g - ||Kfne@g>
> limsup | (C§ = Cy ) fll g

= limsup(n+ 1) g9 by

n—oo

~ limsupn® 9" — 1y .

n—oo

the second line from the bottom is due to ||7"1|| go &~ (n + 1) ¢

Now we turn to the second inequality in (3.6). Let {L,} be the sequence of op-
erators given in Lemma 3.3. Since each operator L'* : % — #* is compact and

Cy—Cy: B — %g is bounded, thus (C§ —Cy )Ly : % — %g is also compact. As
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a consequence, we have that

g h
1C5 = Cl o

. 3 h 4 Y
< limsup ||(C{;) —Cy) — (Cf;, —Cy)L, H@aa@g’

n—oo

= limsup||(C§ — Cy) (I — L") e ot

n—oo

=limsup sup ||(C§—C$)(I—LZ*)fHQ@¢
e | f] ga<l p

=limsup sup suppg(2)[g(2)[(I = L") f1'(¢(2) = h(2)[(I = L") (w(2))] -

n—es | f|lga<1z€D
For an arbitrary r € (0,1), we denote

Dy={zeD: |¢@z)[ <r [y <r}, Dy ={zeD: [¢()| <r, [w(z)] >r},
DsZ{ZED 0@ >r (W@ <r}, Da={zeD: [¢(z)] >r, [y(z)] > r};
L= sglguﬁ 2) 8@ = L)1 (9(2) = h()( = L)) (w(2)]

fori=1,2,3,4. Then Cauchy’s integral formula and Lemma 3.3 imply that

limsup sup [;
n=ee | fllge <1

<limsup sup sup (ug ()82~ L") f) (9(2))]

n=e |l ga<tio@)<r
+limsup sup sup (ug (@) (DI — L) f) (w(2)]
ne |l ga <t ly()l<r

< Mglimsup sup  sup |[(I—L:")f)(9(z))]

= | flge<tio@)<r

+Mylimsup sup sup [[(1— L) AT (w(z)] =0. (3.7)
n—=ee || fllga<l|y(z)|<r

On the other hand, we formulate that

ug (2) g = L)1 (8(2) — h(2) [ - L") A1 (w(2)))|
1g (2)lg(2)] e
= 7(1—|¢(z)|2)°‘|(1 19(2)[7)*[(I— L") f](9(2))
—(1= QP I - L)1 ()
(L= W@ P |- L) 1 (w(2)] | T (89)(2) — T& (hlV)(Z))

2 (29)@)]p(2)+ (1= [w@P)* [~ L)) (w(2)]
7L (89)(2) ~ 7L (y)(2)| (3:8)
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Analogously, we obtain that
ug (@) [8()[(I = L) A(6(2) = h(2)[(I - L) A1 (w(2)]
<178 () @Ip (@) + (1~ 6@ P)* ][~ Ly )1 (9 ()]
|78 2010 - 7 ) (2)| -

405

(3.9)

Since the operators C% ,Chq, N7 LN %’g are bounded, hence Cg - C{}, 7 LN %’g

is bounded. Thus Theorem 2.4 ensures )ﬂaﬁ (89)(2) — FL (hy) (z)‘ < . Employing

Lemma 3.3 we can show that

limsup sup I
n=e || f] ga<l

<limsup sup  sup |7 (hy)(2)|p(2)

= | flge<tly@)>r

+limsup sup  sup (1—[9(2)[")*|[(I—L;") 1 (9(2)]

= ||f ga<lo(z)|<r
|7 (29)(2) - 7 () )|
< sup |78 (hy)(2)lp(2)-
ly(2)[>r
Similarly, employing (3.8) we deduce that
limsup sup 1= sup |74 (¢9)(2)|p()-
n—ee | fllga<l [¢(z)|>r
Finally, we deduce from (3.8) that

limsup sup Iy
n—e || fll ga<1

< s 178 (20)(2)Ip(2)

+ 1= L") f] e sup
min{10 ()], |w(2) }>r

< sup |78 (20)(2)|p(2)

s Ao - 2w
min{|¢(2)],|w(z)|} >r

T (29)(2) — T8 (hy)(2)

Similarly, (3.9) entails that

limsup sup Is < sup |§aﬁ(hu/)(z)|p(z)

n=ee | fllge <1 ly(@)|>r

+ s T8 (39)(2) — Ta (hy)(2)].

min{[¢(2)[,|y(z)[}>r

(3.10)

(3.11)

(3.12)

(3.13)
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Consequently, we combine (3.7), (3.10), (3.11) and (3.12), (3.13) to find that

Ic§-c}

e.%’“—»%g
<lim sup |78 (g0)(@)|p()+1im sup | 7L (hw)(@)|p(2)
e (2)>r Hy()>r
tlim s [P (g0) (@) - T w)(2)|-

"L min{|9(2)].|w(2)[}>r

This ends all the proof for the essential norm estimation. [l

At the end of this section, we give three equivalent characterizations for the com-

8 _ch . o

pactness of Cy —Cy, B* — '%/3 .
THEOREM 3.5. Let 0 < a, < oo and @ : [0,00) — [0,00) be an A -function.

Suppose ¢,y € S(D) and g,h € H(D) such that the operators C5, Cg, T B — ﬂg

are bounded, then the operator Cg — Cﬁ, C B* — ﬂg is compact if and only if one of
the following statements hold,

(i) im sup [72(20)@)|p(0) +1im sup |72 (hy)(0)] o)
Ho@)|>r "y (z)|>r
+ lim sup Fp (g9)(2) — TP (h‘//)(z)‘ =0;
"L min{|o ()], () [} >r
(if) limsup||(Cy — ch )fW”A,(p +11msup||( ’u’,)fw\\@g =0;
|w|—1 \w\
(iii) limsupn®||g¢” —hl[/"H 0=

4. Some Corollaries

In this section, we illustrate some characterizations for the boundedness and es-

sential norms of LS — L", qu - Vu’j and L, — L, acting from %% into %g. Indeed, the

remaining differences are special cases of Cg — Cg,, and then the following corollaries
can be easily verified from Theorem 2.4 and Theorem 3.4. At the same time, some
examples are listed to show the efficiency of our results.

(1) Let ¢ = y = id be the identity maps in Cj — Cy, then Cj, — Cjyy = L8 — L,
and denote these two notations

ug (2)g(2)
(1= z[)*”

In this special case, we find that p(z) = p(¢(z), w(z)) =0. And we can only use the test
function f,, to describe the boundedness and essential norm of L8 — L : % — %’g’.

THEUE

B
Tah&) = 0 pya

ﬁaﬁg(z) =
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COROLLARY 4.1. Let 0 < a,f8 < oo and ¢ : [0,00) — [0,0) be an A -function.
Suppose g,h € H(DD), then the followings are equivalent,

(i) L8 —L": B* — %’g is bounded;
(if)

sup |0 g(2) — TP h(2)| <
zeD

(iii)

sup || (L8 — L") || o < oo
weD B

sup n®(|gz" — hz"|, g <o
neNy

COROLLARY 4.2. Let 0 < 0,3 < oo and @ : [0,00) — [0,00) be an AN -function.
Suppose g,h € H(D) such that the operators L8, L" : % — @g are bounded, then
the following equivalences hold,

||Lg _Lh”ee@”‘ﬁ%’g
A~ 11m sup ﬂaﬁg( ) — 9aﬁh(z)
=1 g>r

~ limsup ||(L# —Lh)wagw

|w|~>l

~ limsupn®||gZ" — h" Il o

n—oo

Next we apply the above two corollaries into the following example.

EXAMPLE 4.3. For o >0 and 8 > 1, we consider an .4 - function @ (1) =¢'/*
and g =z> € H(D) and h = z* € H(D), and then we formulate the characterizations

for the boundedness and the essential norm of L7 — L3¢ B — ﬂg‘” in details. It is

obvious that ,ul3 *(z) = (1 —|z>)*F and

(1—[72)% ,
TEFEEE

Firstly, employing the statement in Corollary 4.1 (ii), we deduce that

:70?]’1(2) — (1 — ‘Z|2)aﬁ :

B z
Zag(@)= (EEBEY

sup| 7 5(2) — TEH(2) = sup(1 P8 o @1

zeD zeD
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Similarly, we use the statement in Corollary 4.1 (iv) to obtain that

1
o n+2 _ = nt2
Iz 57 Mo

sup n
neNy
1
= = sup n%sup(1 — [z]*) %P || 2
2n€No z€eD
1 1+2 NP/ 142 2
:—supno‘<1— n2 ) ( n2 )
2nENo 1+§+(Xﬁ 1+§+(Xﬂ
< sup n%1P) < oo, 4.2)
neNy

Each one of (4.1) and (4.2) can verify I[F 137 5% %g”‘ is bounded.

Secondly, since sup(1 — [[*)#=D|¢]? < oo, the operators L : B% — ﬂg" and
zeD

L7 B ﬂg‘” are bounded. Consequently, Corollary 4.2 entails
2 1.2
L7 = L3, e

~ lim sup (1 — |z[)*F~1) P =0

=Lgp>r 2

1 1+2 N\ 1\
~ limsup = sup n“ (1— —2 ) < —2 ) =0.
n—soo neNy l+§+aﬁ 1+§+O{ﬁ

Observing the above two displays are zero, so the difference 7 -1 3% — %‘A’“
is also compact.

(2) Replacing g,h € H(D) by ¢'.k' € H(D) in Cj — Cj, we have Cg Cg,/ =
V(;;' — VV’}, and denote two notations

ug(2)g'(2) THOLION
(1=10@)[*)~’ (1=[w())?)*
COROLLARY 4.4. Let 0 < 0,3 < oo and @ : [0,00) — [0,00) be an AN -function.
Suppose ¢,y € S(D) and g,h € H(D), then the followings are equivalent,
(i) qu - Vlﬁ t B* — ﬂg is bounded;
(if)

TL(9)(2) = TLHy)(2) =

supl 74 (¢/0)(2)|p(2) +sup | 7L (5'9)(2) — 74 (Hy)(2)| < =

z€eD

supl 7 () Dlp (2)+ sup | 7 (£0) &) ~ 7 (') @) < o=

zeD
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sup ||V )wa@erSUPll( Vh)fwllﬂ < oo}
webD

sup n%¢'9" — " | g <

neNy

COROLLARY 4.5. Let 0 < a,f8 <o and ¢ : [0,00) — [0,0) be an A -function.
Suppose ¢, v € S(D) and g,h € H(D) such that the operators V; , Vv}} t BY — '%/(3/) are
bounded, then the following equivalences hold,

va—vhue_,%awg

~ lim sup yﬁ (&'¢)(z 'P
o@)l>r
+1lim sup ﬂﬁ ’p
"y () >r
+ lim sup ﬂf (§0)(2) — yaﬁ (H'w)(z)

"L min{|9(2)].|w(2)[}>r
thsupH(Vg Vh)wa@whmsupH( —Vi)hullz

wl— wl—

~ limsupn®||g'¢" _h/WnHug"

n—o0

(3) Let ¢ = y = id be the identity maps in Vg - Vu’}, then V5 — VI =L, — Ly,
and denote two notations

SO (LG CLC)

(1—z)2)= (1=1z[)*
Similarly, in this case p(z) = 0 and the test function f,, is enough to exhibit the bound-

edness and essential norm of L, —Lj, : % — %g’.

COROLLARY 4.6. Let 0 < 0,3 < oo and @ :[0,00) — [0,00) be an AN -function.
Suppose g,h € H(D), then the followings are equivalent,

(i) Lg—Ly: B* — B is bounded;

B
(if)
B B .
sup | Ty &' (z) — TG h'(2)] < oo;
zeD
(if)

SUPH(L Lh)fWHLg‘P < oo
weD
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sup n®||g'z" — HZ"|| o < .
neNy B

COROLLARY 4.7. Let 0 < o, < oo and @ : [0,00) — [0,00) be an AN -function.
Suppose g,h € H(D) such that the operators Lg, Ly, : % — @g are bounded, then

the following equivalences hold,

HLg — Ly ”e,e%’ﬂ‘ﬂ.%’g

~ limsup | 7 ¢/ (2) = TLH (2)

r—1 |2[>r

~ limsup| (Lg - Lh)fw“,%‘f’
wj—1 k

~ limsupn®| g’z — W'7"|| o.
pn®(g lug

n—00
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