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SHARP OPERATOR MEAN INEQUALITIES OF THE NUMERICAL RADII

HOSNA JAFARMANESH AND MARYAM KHOSRAVI

Abstract. We present several sharp upper bounds and some extension for product operators.
Among other inequalities, it is shown that if 0 < mI � B∗ f 2(|X |)B , A∗g2(|X∗|)A � MI , f ,g
are non-negative continuous functions on [0,∞) such that f (t)g(t) = t , (t � 0) , then for all
non-negative operator monotone decreasing function h on [0,∞) , we obtain that
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As an application of the above inequality, it is shown that
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where, k =
(M +m)2

4mM
and σ is an operator mean s.t., ! � σ � � .
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