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PRESERVERS OF THE ¢-NUMERICAL RADIUS OF
OPERATOR JORDAN SEMI-TRIPLE PRODUCTS

YANFANG ZHANG AND XIAOCHUN FANG*

(Communicated by P. Semrl)

Abstract. Let 7 be a complex Hilbert space with dim.7” > 3, let B(.#) be the algebra of
all bounded linear operators on .77 and let B°(.%’) be the real Jordan algebra of all self-adjoint
operators in B (). Let A = B(H) or B*(A). We characterize the surjective maps on
QU preserving the c-numerical radius of Jordan semi-triple products of operators. Further, the
maps on 2 preserving the c-numerical range of Jordan semi-triple products are characterized
according to different cases of c.

1. Introduction

Motivated by the theory and applications, it is always of interest to characterize
maps with special properties such as leaving certain functions, subsets or relations in-
variant, which are called preserving problems. For some given set .2/ of matrices or
operators, there are interesting results showing ¢ : &/ — </ will have a nice structure
if

F(¢(A)o¢(B)) =F(AoB) (A,Be ) (1.0)
for some suitable functional ' and some product o of matrices or operators (see [2, 3,
4, 6, 12]).

Let B(J¢) be the Banach algebra of all bounded linear operators on a complex
Hilbert space .7 with the identity I and 2B*(#) be the real Jordan algebra of all self-
adjoint operators in B (7). If dim.7# =n < oo, B(’) and B* () are regarded as
M, (C) and M3(C), respectively. Here M, (C) is the set of all complex n x n matrices
and M} (C) is the set of all complex self-adjoint n x n matrices. In [2], Bendaoud et al.
showed the form of ¢ satisfying (1.0), when 7 is some set of B(.5), o is either the
usual product or Jordan semi-triple product and F : B (%) — [0, ) has the following
properties:

(i) F(AUAU*) = F(A) for complex unit A, A € B(.7) and unitary U € B(.).

(ii) For every rank-one nilpotent N € B(#), the map ¢ — F(tN) on [0,0) is

strictly increasing.
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(iii) F(A)=0<A=0.

As applications, the results were used to characterize the preservers of the numer-
ical radius, the spectral norm, the pseudo spectral radius, etc. The preservers of pseudo
spectral radius were also characterized in [1].

In [12], when o is the Jordan semi-triple product, < is B°(5),and F : B(H#) —
[d,o0) with d > 0 satisfies (i), (ii) and (IIT), where (IIT) F(A) =d < A =0, the form of
¢ satisfying (1.0) was described. The result was used to characterize maps on B*(.7¢)
preserving the pseudo spectral radius.

For ¢ = (c1,---,¢x)" € R\ {0} and k < dim .77, recall that the c-numerical range
and the ¢-numerical radius of A € 9B(.7) are respectively defined as

k
W.(A) = { Y cj(Aej,ej) : {e1,...,e} is an orthonormal subset in ,%”} )
J=1

re(A) = sup{|A]: A € W.(A)}.

Obviously, nothing changes if the components ¢;(i = 1,---,k) are reordered in
descending order. Thus we always assume c¢; > --- > ¢;. If k=1 and ¢; =1,
we get the classical numerical range W(A) and the numerical radius w(A) of A. If
(c1y-ooser)=(1,...,1), W(A) and r.(A) reduce to the k-numerical range and the k-
numerical radius of A, respectively (see [5, 9, 10]). Obviously, the c-numerical radius

k
is unitary similarity. Also it has the property “r.(A) is a norm if and only if Y ¢; #0
i=1
and not all ¢;’s are equal”. When r.(A) is a norm or it reduces to the k-numerical
radius, the maps on B(s¢) preserving the c-numerical radius of Jordan semi-triple

product can be characterized from the result in [2]. However, when § ¢; = 0 and not
i=1

all ¢;’s are equal, r.(A) =0 if and only if A is a scalar multiple of the identity. No

general result can be applied to characterize the maps preserving the c-numerical ra-

dius. Motivated by this, we consider the question of the maps on B(7¢) and B* ()

satisfying (1.0) when o is the Jordan semi-triple product and F : B(5#) — [0,c0) has

the following properties:

(P1) F(UAU*) =F(A) forany A € B(7¢) and unitary U € B(¢).

(P2) Forevery A € B(), F(A) =0 if and only if A € CI.

(P3) There are non-negative real numbers o, 8 with a® + % # 0 such that

F(T) = a|T|| + B|te(T)| for each rank-one T € B(H7).

In this paper, let dim.7# > 3 and let A = B(J¢) or B (). Let #', ¥ be
subsets of 2 containing all rank-one operators in 2. When F : B(.%) — [0,0) satis-
fies the properties (P;), (P2) and (P3), we give a characterization of surjective maps
O : W — ¥ satisfying F(®(A)D(B)D(A)) = F(ABA) forall A,B € # . Based on the
result, the form of surjective maps on 2 preserving the c-numerical radius is obtained.
Further, we give the results about the maps on 2 preserving the c-numerical range
according to different cases of c.

The paper is organized as follows: in Section 2, firstly we study the general case
of the maps preserving some unitary similarity functional satisfying (P;) — (P3) on
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Jordan semi-triple products of operators in 8(.7°). Then as an application, we give
the form of surjective maps preserving the ¢-numerical radius for operators in 8 (.57).
In Section 3, we obtain results about maps preserving the c-numerical range of Jordan
semi-triple products for operators in B () according to three cases of ¢. In Section
4, we characterize the maps in B*(.%°) preserving the ¢-numerical radius and the c-
numerical range of operator Jordan semi-triple products, respectively.

Throughout this paper, denote the set of the complex field, the set of the real field
and the unit circle of complex field by C, R and T, respectively. For A € B(57),
we write A* for its adjoint and A" for the transpose of A for an arbitrary but fixed
orthogonal basis of 7. For any x, f € J¢, the notation x® f denotes a rank-one
operator on ¢ defined by z — (z, f)x for every z € 5 ; and every rank-one operator
can be written in this form. Let .#(7¢) denote the set of all rank-one operators in
HB(A). Fix an arbitrary orthogonal basis {e;},.r-, any x € .7 can be written to x =
Sicr&iei and define the conjugate operator J : 77 — J by Jx = X = Yjcr Eiej. The
notation A denotes the bounded linear operator JAJ in $B(#’). Notice that (Ae;,e;) =

(Aej,e;j) forall i,jeT.

2. Preservers of the c-numerical radius for operators in B (J7)

Firstly, we give a general result that provides a characterization of maps preserving
some unitary similarity functional satisfying (P;) — (P3) on Jordan semi-triple product
of operators in B(.7).

THEOREM 1. Let 5 be a complex Hilbert space with dim 5 >3 and W', V be
subsets of B(.A) containing F1(H). And let F :B(H) — [0,+e0) be a functional
satisfying (P1)-(P3). Suppose @ : W — V¥ is a surjective map satisfying

F(®(A)D(B)®(A)) = F(ABA)

for all A,B € W . Then there exist a unitary operator U on ¢ and a functional
f: W — T such that ®(A) = f(A)UA*U* for all A € W, where A* has only one of
the forms in {A, JAJ, A*, JA*J} forall A W .

The following two lemmas show properties of the c-numerical radius (the c-
numerical range). One may see [10, 13] for more information.

LEMMA 1. Let A € B(H), then
1. W(UAU*) = W,(A) for any unitary U € B(5).

N

. We(AA) = AW, (A) forany A € C.

k
3. We(AMI+A)=A Y ¢ci+W.(A) forany A € C.
=1

=

4. Suppose c;’s are not equal. Then W.(A) is a singleton if and only if A is a scalar
multiple of the identity.
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k
5. The c-numerical radius r.(A) is a norm on B(J) if and only if ¥ ¢; #0 and
i=1
not all ¢;’s are equal.

LEMMA 2. [13, Proposition 2.4] Let ¢ be a complex Hilbert space and not all
ci in ¢ € RF\ {0} be equal. Suppose T € B(H) is rank-one, then the followings hold:

1. W.(T) is an elliptical disk with foci ¢ite(T), cxte(T) and minor axis (&) —
VI T2 = |u(T) |, or it is a line segment with end points ¢ite(T) and
Ektr(T).

2. The c-numerical radius of T is (E';E") T+ ‘E';E"I |tr(T)].

Here & — { cl, if dimA =k, m { Crs if dims# =k,

max{cy,0},if dim.7Z > k, min{cg,0}, if dims# > k.

Next we give one of our main results, which is about maps preserving the c-
numerical radius of operator Jordan semi-triple products.

THEOREM 2. Let k >3 and not all c; in ¢ € R¥\ {0} be equal. Suppose W and
V' are subsets of B(H’) containing F\ (). Then the surjective map @ : W — ¥V

satisfies
re(ABA) = r.(®(A)®(B)D(A)) (A,Be¥) 2.0)

if and only if there are a unitary operator U € B() and a functional f: W — T
such that ®(A) = f(A\UAXU* for all A € W , where A* is one of the form among A,
JAJ, A* and JA*J forall A€W .

Proof. From Lemma | and Lemma 2, we know that r.(-) satisfies (P;) and (P3)

k
of F(-). When Y ¢; =0, r.(-) also satisfies (P,), then the conclusion can be deduced
i=1

k
by Theorem 1. When Y ¢; # 0, it can be deduced from [1, Theorem 2.1 and Theorem
i=1
22]. O

To prove Theorem 1, we need the following lemmas. The first two are quoted from
[7]. They characterize the maps preserving zero Jordan semi-triple product of operators
and matrices.

LEMMA 3. Let $(X) be the algebra of all bounded linear operators on an infi-
nite dimensional complex Banach space X, and W,V C B(X) contain all rank-one
idempotents. Suppose that © : W — ¥ is a surjective map such that

ABA =0 = ®(A)D(B)P(A) =0 (A,Be¥). (1)

Then there is a functional | : W — C\ {0} and either there is a bounded invertible
linear or a conjugate linear operator U on X such that ®(A) = [(A)UAU ™" for each
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rank-one A € W', or X is reflexive and there is a bounded invertible linear or conjugate
linear operator U from X*, the dual of X, into X such that ®(A) = [(A)\UA*U~! for
al Aew.

LEMMA 4. Let n >3 and W,V C M,(C) contain all rank-one matrices. Sup-
pose that @ : W — V is a surjective map satisfying (1). Then there are a functional
1:W — C\ {0}, an invertible matrix U € M,(C) and a field monomorphism n on C
such that either ®(A) = [(A)\UA"U ! forall A€ W, or ®(A) = L(A)UAM U for
al Aew.

LEMMA 5. [3, Lemma 2.4] Let T € B() be a positive invertible operator.
Then T is a scalar multiple of the identity if and only if there is a constant o > 0
such that || Tx ||| T~'x |= a for each unit vector x € .

LEMMA 6. Let A,B € B(s). If ABA € CI\ {0} and BAB € CI\ {0}, then
A3, B} e CI\ {0}.

Proof. ABA € CI\ {0} entails that A is injective and surjective. Thus A is a bi-
jection. Assume ABA = Al and BAB = ul, where A,u € C\ {0}. Then B=A(A!)2.

2
We get A2(A~")" = ul, thatis A° = 21 Similarly we get B> = 4-1. O

The following lemma is essential to the proof of Theorem 1.

LEMMA 7. Suppose ® and F satisfy the condition in Theorem 1. Then ® pre-
serves zero Jordan semi-triple products on both sides, i.e. ® satisfies (1).

Proof. For F :B() — [0,0) satisfies (P;) and (P;), firstly we show A =0«
®(A) =0 . Assume ®(A) =0. For any B € #, there is B € ¥ such that ®(B) = B.
Taking B=x® f for any x,f € 7, we get F((x® f)A(x® f)) = F(B®(A)B) = 0.
Thus (Ax, f)x® f € CI. This entails (Ax, f) =0 forany x,f € 5. So A=0.

Next we show for any A,B € # , ABA =0 = ®(A)P(B)D(A) = 0. If not, there
must be non-zero operators Ag, By € # such that AgBpAg =0 and ®(Ag)D(By)D(Ao)
€ CI'\ {0}. Then there is a non-zero complex Ay such that ®(Ag)P(By)D(Ag) =
Aol. Obviously @(Ag) is injective. On the other hand, for any x € 5, we have
@(Ao)(%cb(Bo)(D(Ao)x) = x. Then ®(Ap) is also surjective. So both ®(Ay) and
®(By) are invertible.

Now we consider the kernel of Ag. If kerAp = {0}, then dim.7 = e and
AopBoAp = 0 implies BpAg = 0. The range of A( is contained in kerBy. Then the
dimension of kerBy is infinite. Choose x € kerBy and consider F(Byx ® xBp) and
F(x ®xBox @ x), we get O(By)P(x ®@x)P(By), P(x @x)P(By)P(x @x) € CI'\ {0}.
With Lemma 6, we get ®(x®@x)* € CI'\ {0}. However, for F satisfies (P3), F((x®
x)?) # 0, which is a contradiction. Thus “kerAq = {0} " is impossible.

If kerAg # {0}, choose a non-zero element y € kerA. By considering F(Agy ®
yAp) and F(y ®yAgy @), we get ®(y®y)? € CI'\ {0}, also impossible. So for
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all A,Be W, ABA =0 implies ®(A)P(B)P(A) = 0. Similarly, the converse is also
true. [

Next we give the proof of Theorem 1.

Proof of Theorem 1. The proof will be finished by considering two cases when
dim 7 < oo and dim.7Z” = eo.

Case I: dim 7 =n < eo.

By Lemma 7 and Lemma 4, there exist a functional [ : #° — C\ {0}, an invert-
ible matrix U € M, (C), and a monomorphism 1 : C — C such that either ®(T) =
L(TYUT"U! foreach T € # or ®(T) = I(T)U(T")"U~! for each T € # . Next
there are two steps to check. Here the main idea comes from the proof of [2, Theorem
2.1]. In the first step, we will consider the restriction of @ on the set of all rank-one
matrices. If 7' is rank-one, then T is unitary similar to 7", and thus F(T) = F(T").
So we assume that @ has the first form; otherwise, replace ® by A — CI)(A“).

Step 1.1. U can be chosen as a unitary matrix and |[(x® f)| = 1 for any x,f €
I

Let U = V|U| be the polar decomposition of U. Using the property (P;), we

may assume U > 0. It is known that n(x® f) = n(x) @ n(f) for any x, f € C", thus

O(x®f)=1(x®HUMK)@U(n(f)) for any x, f € C". Denote [(I) = c; . First
we show that

lT@E)IIT DI = e Ixl1£] 2)
for each x, f € C". _ _
Noticing that (U (1(x)),U~'(n(f))) = (n(x),n(f)) = n({x,f)), with the prop-
erty (P3), we have

F(uUM ) @U~' () = F(vxe f) = ullvm) o= @)l = vl /]

(3)
for any complex u,v and x, f € C".
Now we consider F(®(1)®(x® f)P(I)) and get
Flell(x® UM (x) 2 U™ (1) = Fx& f)
for any x, f € C". Now (3) implies
ex Pl HIU@E)INU ()] = L] 4)
By F(®(x® [)®()®(x® f)) = F((x® f)?), we obtain
el APIT@E)IIT (D)= IxlL]- 3
Comparing (4) and (5) we get
l(x® f)| = e (6)

for any x,f € C". Applying (6) to (4), Equation (2) holds. Particularly, let f = x in
(2), it becomes

lwmE)Iu (@)l = #HXII2 ()
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for any x € C". Then there is a unitary matrix Uy such that UyUU; = diag{uy,us,
-+ up} with u; >0 for i =1,2,--- ,n. Next we claim u; =up = --- = u,. If not, say
uy # up. Substituting x = (1,0,---,0)" in (7), we get — =1, thus |c;| = 1. Again

le1]?

t
substituting x = ( 0, ,0) in (7), it yields

L1
V2' V2’
2

(o) o) ) () 55) )

This leads to u; = u;, a contradiction. Hence U =t/ for some ¢ > 0. Then it follows
that

G DI= 171 (®)

forany x, f € C".

Substituting x = (1,0,---,0)" and f = (1,4,---,0)" in(8), itimplies 1+|n(1)|> =
1+|A|*. So [n(X)| = || forall A € C. This ensures that 1 is continuous and either
Nn(A)=A or n(A) = A for all complex A.

Step 1.2. |I(T)| =1 forall T €W .

For any T € # with rank T > 2, there are x, f € C" such that (Tx, f) #0. Then
by considering F(®(x® f)O(T)P(x® f)), we get

(Tx, £ = 1@ HPLDII=NIA,

thus |I(T)| =1.
For any A € #', when 1 is the conjugation and ®(A) = [(A)UATU*, we have

U'®(A)Ux=1(A)A"x =1(A)A(x) = 1(A)JAJx
forall x € C". When 7 is the conjugation and ®(A) = [(A)U(AT)"U*, we have
U'®(A)Ux=1(A)(A")"x =1(A)A*(x) = [(A)JA"Jx
forall x € C". So ®(A) has one of the forms among [(A)UAU*, [(A)UA*U*, [((A)UJAJU*
or [(A)UJA*JU* forall Ac ¥ .

Case II: dim 7 = co.

By Lemma 3 and Lemma 7, there exist a functional / : " — C\ {0} and a bounded
invertible linear or conjugate linear operator V on # such that ®(T) = [(T)VTV !
forall T € # or ®(T)=1(T)VT*V~! forall T € # .

For an arbitrary orthogonal basis {e;}icr of 7 and x = Y, x;e;, we have known

iel
Jx= Y Xje;. Let
iel

U= V, if V is linear,
~ | VJ, if V is conjugate linear.

Thus we can write

D f) =1x® HUME @0 (U

for any x, f € 2, where 7 is the identity or the conjugation. By inspecting the proof
in Case I, one can see that U can be chosen as a unitary operator and |/(T)| = 1 for all
T € W . Analogously, the form of @ can be obtained. The proof is finished.
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3. Preservers of the c-numerical range in 5 (.%7)

In this section, we describe the form of surjective maps preserving the c-numerical
range of Jordan semi-triple products for operators in B(.7°). We will present the
results according to three cases of c¢: (1) when ¢1 +¢x # 0, (2) when ¢ +c¢;1-j =0
for j=1,---,k, (3) when there is an integer p (1 < p < k) such that ¢, +c;y1—p #0
and ¢cj+cpy1-j=0for j=1,---,p—1.

First we introduce some notations needed. Let

S ={SEB(H):W(S) = —W(S)},

T'={T €. :TAT € ¥ and ATA € . for all A € B(H#)},
P S € B (A)  W(S) = —Wu(S)},

and
T ={T € & :TAT € /" and ATA € /" for all A€ B*(H)}.

Obviously, .#* (or 7" ) is the set of all self-adjoint operators in .& (or .7'). When
the ¢ satisfies ¢j+cpp1—j =0 for j=1,2,--- k, we know W.(A) = —W,(A) for all
AEB(). Then ¥ =.T' =B(H) and S = T =B*(#) . When the c satisfies
¢1 + ¢ # 0, each rank-one operator does not belong to . and .7’ = {0}. If there
is 1 < p <k such that ¢, +¢xy1-p #0 and ¢j+cpq—; =0 for j=1,---,p—1,
from Lemma 2, it is easy to verify that %1 () € 7', but difficult to describe all the
elements in .7’ and .. For more information about .¥ and .#*, one can refer to [13,
Proposition 2.6].
Next we give the main result in this section.

THEOREM 3. Let k >3 and not all ¢; in ¢ € RF\ {0} be equal. The surjective
map © : B(H) — B(IH) satisfies

W, (®(A)®(B)D(A)) = W.(ABA) (A,B € B(H)) (3.0)

if and only if there exist a unitary operator U € B(¢) and @ € C with ®* = 1 such
that the followings hold:

1. If c; +c; #0, then ®(A) = @UA*U* for all A € B(IF).

2. If cj+cky1—j =0 for j=1,--- k, then there exists a functional € : B(H) —
{—1,1} such that ®(A) = we(A)UA*U* forall A € B(H).

3. If there is 1 < p <k such that cp+ciy1-p #0 and cj+cry1-j =0 for j =
l,---,p—1, then there are a functional ¢ : 7' — {—1,1}, a constant functional
0 B\ — {—1,1} and a functional v : S\ T" — {—1,1} satisfying
V(AP Y(42) € sen(A1day), w(A1)?@(B) € sen(AiBAs) and @(BYw(Ay) €
sgn(BA|B) forany Ay,Ay € S\ 7' and B € B(H)\ ., where

1) ix¢s,
sgn(X) = { {~1,11}, ifX €.,
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such that
o¢(A)UA*U*,  ifAc T,
D(A) = oy(A)UAU*, ifAc.s\T,
oQ(AUATU*, if A € B(H)\ .7,
forall AeB().

Here A* = A for all A € B(H) or A* = JA*J forall A € B(H).

The lemma below is needed for the proof of Theorem 3.

LEMMA 8. [13, Proposition 2.5] Let T,S € B(.5) be rank-one operators. Sup-
pose W.(T) = W,(S), then one of the followings holds:

1. If ci+ ¢ #0, then tr(T) = te(S);
2. If ci+¢; =0, then tr(T) = te(S) or tr(T) = —tr(S).

Proof of Theorem 3. Since the surjection @ satisfies (3.0), the equality (2.0) holds
true. Then there exist a unitary operator U on ¢ and a functional [ : B(J¢) — T
such that ®(A) = [(A)UA*U for all A € B(#), where A* is one of the forms among
A, A*, JAJ and JA*J .

Now considering x® f with (x, f) # 0, we have

We((x® f)7) = We(((x® £)")?)- ©)
If (x® f)* is of the form Jx®Jf, (9) becomes

(6 fYPWe(x® £) = 1x @ £)P T ) WelJx @) (10)

From Lemma 2 and 8, we get (x,f) =[(x® f)(x, f). This can not hold when (x, f)
is complex with non-zero real and imaginary parts. Then (x® f)* = Jx®Jf is im-
possible. Also, (x® f)* = f ®x is impossible. Then for any A € B(#), either
D(A) =1(A)UAU™ for all A € B(H) or P(A) =1(A)UJA*JU* for all A € B(H)
holds. Next the proof will be finished according to three cases of c.

Case I: when ¢ +c¢; #0.

In this case, firstly we show @ is linear. Obviously, @ preserves rank-one opera-
tors. For @ satisfies (3.0), we get tr(D(T)D(A)D(T)) = tr(TAT) for all A € B(7)
and all rank-one T € B(.¢). Thus for A,B € B(s¢) and rank-one T € B(J¢), we
have

tr(TAT) + tr(TBT) = tr(D(T)D(A)D(T)) + tr(D(T)D(B)D(T))
— tr(D(T)D(A+B)D(T)).

@ can run over all rank-one operators i.e. ®(7') can be chosen as x® f for any x, f €
J, so @ is additive. Similarly, @ is homogenous. In fact, the linearity of @ implies
that [ is a single value functional. For any linear independent A, B € B(.%¢), we have

I(A)UA*U* +1(B)UB*U* = I(A+B)U(A + B)*U".
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Then (I(A+ B)—1(A))A* + (I(A+ B) —1(B))B* = 0. That means /(A + B) =[(A) =
I(B) for any linear independent A,B € B(.7). For any complex ¢, it can be obtained
1(tA) = 1(A) similarly. Thus [ :B(s#) — T is a constant functional, writing as .
Again, Equation (9) entails (x, f) = @>(x, f), then @3 = 1.

Case II: when cj+cy1—j=0for j=1,--- k.

Let wy = HT‘E‘ and denote Q; = {ay’,— '} for i =0,1,2. For x® f with
(x,f) # 0, by considering the c-numerical range of (x® f)3, we have I(x® f)? €
{—1,1}. Then /(x® f) must be in some Q; (i=0, 1 or 2). For x® f with (x,f) =0,
by considering W.((x+ /) @ (x+ f)(x @ f)(x+ f) @ (x+ f)), we get [(x® f)I((x+
f)® (x+f))* € {—1,1}. This entails that [(x® f) and I((x+ f) ® (x+ f)) are in
the same ; for some i. In fact, among Q; for i = 1,2,3, /(x® f) belongs to only
one of them for all x, f € 7. If not, assume that there are x® f and y® g satisfying
Ix®f) e Q) and I[(y®g) € Q. Then W, (x® f) = W(O(I)D(x® f)®(I)) shows
[(I)?1(x® f) € {—1,1}, similarly we can get [(I)?[(y®g) € {—1,1}. This means
I(I)? € Q1 NQy =0, a nonsense.

Forany A € B(5¢) with rank A > 2, there must be x, f € ¢ such that (Ax, f) #
0. Then [(x® f)?I(A) € {—1,1}. So I(A) belongs to the same Q; for all A € B(7).
It means that there is a functional € : B(.#") — {—1,1} such that ®(A) = we(A)UAU*
forall A € B(H) or ®(A) = we(A)UJA*JU* forall A € B(H).

Case III: when there is 1 < p < k such that ¢, +cx11—, #0 and ¢j+cp1-j =0
for j=1,---,p—1.

In the similar way as in Case II , we get that @ has one of following forms:

D(A) = 0l (AYUAU* (A € B(#)),

> D(A) = 0l (A)UJA*JU* (A € B(H)),

where U € B(.7¢) is unitary and [ : B(.#) — {—1,1}.

For A € B()\ .S, We(A) = W(D(I)P(A)D(I)) shows [(I)?1(A) € {—1,1}.
Then [(A) =(I) forall A € B(2)\ 7.

For A; and A; € .7\ .7, the equality W.(A1A2A1) = W.(P(A)P(A2)D(A}))
shows the followings hold:

(1) If AjA2A; € ., then I(A1)?1(Ay) € {—1,1};

() If AjA2A; € .7, then [(A})*1(A;) € {1}.

Then I(A;)%1(A;) € sgn(A1AA;) forall Aj,Ay € .7\ 7. Also for Ac .7\ T’
and B € B()\ .7, we have [(A)?I(B) € sgn(ABA) and [(B)*I(A) € sgn(BAB). Let
¢, v and ¢ be the restrictions of the functional / on B(#)\ .7, ¥\ 7’ and T,
respectively. The proof is finished. [

4. Preservers in B*(J7)

In this section, we will characterize the surjective maps preserving the c-numerical
radius of Jordan semi-triple product for operators in B*(.5’) . Further, the form of maps
on B*(H) preserving the c¢-numerical range will be shown according to different
cases of c. Firstly, we give the following general result.
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THEOREM 4. Let 57 be a complex Hilbert space with dimsZ >3 and W, V
be subsets of B*(H) containing all rank-one self-adjoint operators. And let F :
B(H) — [0,00) be a functional satisfying (P1)-(P3). Suppose ® :# — V is a sur-
Jective map satisfying

F(D(A)D(B)®(A)) = F(ABA)

for all A,B € W . Then there exist a unitary operator U on € and a functional
h:W —{—1,1} suchthat ®(A) = h(A)UAU* forall Ae W , or ®(A) = h(A)UJAJU*
forall AcW.

The following lemma comes from [8, Lemma 2.4].

LEMMA 9. Let A,B € B*(J). If |{Ax,x)| = |(Bx,x)| for every x € J, then
A=4+B.

Proof of Theorem 4. Similar as in the proof of Lemma 7, one can prove the fol-
lowing facts about ®:

() For Ae #', A=0 if and only if ®(A) =0.

(2) For A,B€ %, ABA =0 if and only if ®(A)D(B)P(A) =0.

Then by [7, Theorems 3.1 and 3.3], there are a unitary operator U on ¢ and a
functional g : # — R\ {0} such that ®(T) = g(T)UTU* for all rank-one operators
T €W or ®(T)=g(T)UTU* for all rank-one operators T € % . By considering
F(T?) = F(®(T)?), we know ||T||F(T) = g(T)*||T||F(UTU*). So g(T) € {—1,1}
for all rank-one T € % . Here let g(A) =1 if A is not rank-one.

For any A € #, denote ¥(A) = U*®(A)U if ®(T) = g(T)UTU* for all rank-
one operators T and W(A) = JU*®(A)UJ if ®(T) = g(T)UTU* for all rank-one
operators T € # . Obviously, ¥(x®x) = g(x®x)x®x for any x € 5. For A€ W
with rank A > 2, Fx@xAx®@x) = F(P(x@x)Y(A)Y(x®x)) = Fx@x¥(A)x @ x)
holds for each x € 7. From Lemma 9, W(A) = £A. Then there is a functional
h: W — {—1,1} with h(A) = g(A) when rank A = 1 such that ¥(A) = h(A)A for all
AeW.And h(A) = g(A) when rank A = 1. Then @ has the required form. [

As an application, next we give the result about maps on B°(7) preserving the
c-numerical radius of Jordan semi-triple products.

THEOREM 5. Let k >3 and not all ¢; in ¢ € R¥\ {0} be equal and let W,V C
B () be subsets containing all rank-one self-adjoint operators. The surjective map
O W — V satisfies
re(ABA) = re(®(A)D(B)D(A))
forany A,B € W', if and only if there are a unitary operator U on 7 and a functional
g: W —{—1,1} suchthat ®(A) = g(A)UAU" forall Ac W or ®(A)=g(A)UJAJU*
forall Ac W .

k
Proof. When ¥ c¢; # 0, the result can be obtained from [8, Theorem 2.3]. When
j=1

k
>, ¢; =0, the result is obtained from Theorem 4. [
j=1
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The result about maps on B*(s¢) preserving c¢-numerical range will be shown

below. The proof is omitted as it is similar to those in Section 3.

THEOREM 6. Let k >3 and not all ¢; in ¢ € RF\ {0} be equal. The surjective

map © : B () — B () satisfies

We(D(A)D(B)D(A)) = We(ABA) (A,B € B (X)),

if and only if there is a unitary operator U € B() such that the followings hold:

L If ci+cx #0, then D(A) = £UA'U* for all A € B* ().

2. If cj+cpp1—j=0 for j=1,---k, then there exists a functional € : B*(H) —

{—1,1} such that ®(A) = e(A)UA*U* forall A € B ().

. If there is 1 < p <k such that cp+ ciy1-p #0 and cj+cry1-j =0 for j =

l,---,p—1, then there are a functional ¢ : 7'* — {—1,1}, a constant functional
0 :B(HA)\ .S —{—1,1} and a functional y: S*\ T* — {—1,1} satisfying
W(APY(42) € sen(A1daA), w(A)?G(B) € sen(AiBAs) and G(BYw(Ay) €
sgn(BA|B) forany Aj,Ay € S*\ 7" and B € B(H)\ S*, where

_ [ AL X ¢,
sgn(X) = { (—1,1},ifX € 7%,

such that
O (A UA*U*, ifAe T,
D(A) = { Yy(AUAU*, ifAec 7"\ .T",
PAVUARU™, if A € B (H)\ .7,

forall A € B5().
Here A* = A forall A € B°() or A* = JA*J forall A € B°(H).
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