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Abstract. In this article, we study the Bishop-Phelps-Bollobás type theorem for minimum attain-
ing operators. More explicitly, if we consider a bounded linear operator T on a Hilbert space
H and a unit vector x0 ∈ H such that ‖Tx0‖ is very close to the minimum modulus of T , then
T and x0 are simultaneously approximated by a minimum attaining operator S on H and a
unit vector y ∈ H for which ‖Sy‖ is equal to the minimum modulus of S . Further, we extend
this result to a more general class of densely defined closed operators (need not be bounded) in
Hilbert space. As a consequence, we get the denseness of the set of minimum attaining operators
in the class of densely defined closed operators with respect to the gap metric.

1. Introduction

The renowned Bishop-Phelps theorem states that the space of norm attaining func-
tionals on a Banach space is dense in the dual of the Banach space. Bollobás gave
a quantitative version of the Bishop-Phelps theorem, which is known as the Bishop-
Phelps-Bollobás theorem.

The operator version of the Bishop-Phelps theorem asks whether the class of all
norm attaining operators between any two Banach spaces is dense in the space of all
bounded linear operators between the Banach spaces with respect to the operator norm.
There are several authors who have studied the operator version of Bishop-Phelps the-
orem on various Banach spaces, for example [1, 3, 10]. In general, the operator version
of the Bishop-Phelps theorem need not hold. Lindenstrauss [10] gave a counter ex-
ample which illustrated this fact. He also proved that the answer is affirmative if the
domain space is reflexive.

Acosta et. al. [1] defined the notion of the Bishop-Phelps-Bollobás property
(BPBP), which asserts that a pair of Banach spaces (X ,Y ) is said to have BPBP if
for every ε > 0, there are α(ε) > 0 and β (ε) > 0 with β (ε) → 0 as ε → 0 such that
for every bounded linear operator T from X into Y with ‖T‖ = 1, if x0 ∈ X with
‖x0‖= 1 such that ‖Tx0‖> 1−α(ε) , then there exist xε ∈ X , ‖xε‖= 1 and a bounded
linear operator S from X into Y with ‖S‖ = 1 such that

‖Sxε‖ = 1, ‖xε − x0‖ < β (ε) and ‖T −S‖< ε.
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It is proved by Chang and Dong [3] that for every Hilbert space H , (H,H) have the
BPB property.

If T is a bounded linear operator on a Hilbert space H , then the minimum modulus
of T is defined by m(T ) = inf{‖Tx‖ : x ∈H,‖x‖= 1} . In this article, we introduce the
minimum attaining analog of BPBP on Hilbert spaces. In particular, we show that:

Let T be a bounded linear operator on a Hilbert space H with m(T ) > 0. Then
for all ε ∈ (0,m(T )) and a unit vector x0 in H satisfying

‖Tx0‖ < m(T )+ ε, (1.1)

there exist a bounded linear operator Tε on H and a unit vector xε in H satisfying the
following;

1. ‖Tεxε‖ = m(Tε ) = m(T ) ,

2. ‖T −Tε‖ < η(ε,T ) ,

3. ‖x0− xε‖ < γ(ε,T ) ,

where η(ε,T ), γ(ε,T ) → 0 as ε → 0.
In case, if m(T ) = 0 then for all ε > 0 and a unit vector x0 satisfying (1.1), there

exists a bounded operator Tε on H satisfying all the conditions (1), (2) and (3).
Later we extend this notion to a more general class of densely defined closed

operators defined between Hilbert spaces.
This article is divided into four sections. In section 2, we set up some notations

and terminologies. In section 3, we deal with the BPBP analog of bounded minimum
attaining operators in the space of all bounded linear operators on a Hilbert space. In
section 4, we extend the results of section 3 to the class of densely defined closed
operators.

2. Preliminaries

In this article, we deal with complexHilbert spaces, which are denoted by H,H1,H2

etc. If M is a subspace of H , then the unit sphere in M is defined by SM := {x ∈ M :
‖x‖ = 1} .

By a linear operator from H1 to H2 , we mean a linear mapping T whose domain
D(T ) and range R(T ) are subspaces of H1 and H2 , respectively. It is called densely
defined, if D(T ) =H1 . For every densely defined linear operator T , there exist a unique
linear operator T ∗ called the adjoint of T , which satisfies

〈Tx,y〉 = 〈x,T ∗y〉, for x ∈ D(T ), y ∈ D(T ∗),

where D(T ∗) = {y ∈ H2 : x → 〈Tx,y〉 is a continuous functional on D(T )} .
The graph G (T ) of a linear operator T from H1 to H2 is the subspace {(x,Tx) :

x ∈ D(T )} of H1 ⊕H2 . A linear operator T is said to be closed if G (T ) is a closed
subspace of H1 ⊕H2 . We denote the class of closed linear operators from H1 to H2

by C (H1,H2) . In particular, C (H) := C (H,H) . By the closed graph theorem, a linear
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operator T is bounded if and only if T is closed and D(T ) = H . We denote the class
of bounded linear operators from H1 to H2 by B(H1,H2) and B(H,H) is simply
denoted by B(H) .

Let T ∈ C (H1,H2) be a densely defined injective operator. Then the inverse of
T is the linear map from R(T ) into H1 , satisfying T−1Tx = x for all x ∈ D(T ) . In
addition, if T is onto, then T−1 ∈B(H2,H1) and in addition satisfy TT−1y = y for all
y ∈ H2 .

An operator A∈B(H1,H2) is called an isometry, if ‖Ax‖= ‖x‖ , for every x∈H1

and is a partial isometry, if A|N(A)⊥ is an isometry, where N(A) denotes the null space

of A . For the partial isometry A , N(A)⊥ is called the initial space and R(A) is called
the final space.

A linear operator S is called an extension of T , if D(T ) ⊆ D(S) and Sx = Tx , for
all x∈D(T ) . It is denoted by T ⊆ S . In addition if D(S) = D(T ) , then S = T . A linear
operator T in H is said to be normal if T is densely defined, closed and T ∗T = TT ∗ .
If T = T ∗ , then it is called self-adjoint. If T is self-adjoint and 〈Tx,x〉 � 0, for every
x ∈ D(T ) , then T is called a positive operator.

THEOREM 2.1. [12, Theorem 13.31] If T ∈ C (H) is a densely defined positive
operator, then there exists a unique positive operator S ∈ C (H) such that S2 = T . This
unique S is denoted by

√
T .

THEOREM 2.2. [2, Theorem 2, Page 184] Let T ∈ C (H1,H2) be a densely de-
fined operator. Then there exists a unique partial isometry V : H1 → H2 with the initial
space N(T )⊥ and the final space R(T ) such that

T = V |T |, where |T | =
√

T ∗T . (2.1)

Note that D(T ) = D(|T |) . The Equation (2.1) is called the polar decomposition
of T .

Let Σ be a σ -algebra of subsets of a set X and H be a Hilbert space. A spectral
measure for (X ,Σ,H) is a map E : Σ → B(H) such that

1. For each ω ∈ Σ , E(ω) is an orthogonal projection.

2. E( /0) = 0, E(X) = I.

3. E(ω1∩ω2) = E(ω1)E(ω2) , for all ω1,ω2 ∈ Σ.

4. If {ωn}∞
n=1 is a sequence of mutually disjoint sets in Σ , then

E

(
∞∪

n=1
ωn

)
=

∞

∑
n=1

E(ωn),

where the series on the right hand side converges in the strong operator topology.



500 N. BALA AND G. RAMESH

THEOREM 2.3. [12, Theorem 13.30] To every self-adjoint operator A in H ,
there corresponds a unique spectral measure E on the Borel subsets of real line, such
that

A =
∫ ∞

−∞
λdE.

Moreover, E is concentrated on σ(A) ⊂ (−∞,∞) , in the sense that E(σ(A)) = I .

The above theorem is called the spectral theorem for self-adjoint operators. For
more detail about spectral theory, we refer [4, 12].

If T is a linear operator from H1 to H2 , then the minimum modulus of T is defined
by m(T ) = inf{‖Tx‖ : x ∈ SD(T )} .

It is well known that T has bounded inverse if and only if m(T ) > 0. In this case
‖T−1‖ = 1/m(T). For more details about minimum modulus, we refer to [13].

DEFINITION 2.4. [9, Definition 2.3] Let T ∈ C (H1,H2) be a densely defined
operator. Then T is called minimum attaining, if there exists x0 ∈ SD(T) such that
‖Tx0‖ = m(T ) .

Among bounded operators, finite rank operators, partial isometries, all non injec-
tive operators are always minimum attaining. In fact, the set of all bounded minimum
attaining operators is dense in the space all bounded operators with respect to the oper-
ator norm. For more details of this class, we refer to [5, 9].

3. Bounded operators

This section is dedicated to the Bishop-Phelps type theorem for the minimum at-
taining operators in B(H) . First, we prove a quantitative version of the Bishop-Phelps
theorem for norm attaining operators. To some extent, this result is same as the one
proved in [3, Theorem 3.1]. We need a few observations from this result which we use
in proving our further results.

THEOREM 3.1. Let 0 < ε < 1/2 . For every self adjoint operator T ∈B(H) and
x0 ∈ SH such that ‖Tx0‖ > ‖T‖(1− ε) , there exist a self adjoint operator S ∈ B(H)
and xε ∈ SH such that

1. ‖Sxε‖ = ‖S‖ = ‖T‖ ,

2. ‖S−T‖ < C
√

2ε , for some constant C > 2‖T‖ ,

3. ‖x0− xε‖ <
√

2ε + 4
√

2ε.

Moreover, we have the following;

(a) If T is positive, then S is positive.

(b) N(T ) = N(S) .

(c) m(S) � m(T ) .
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Proof. Without loss of generality, we assume that ‖T‖ = 1. Suppose E is the
spectral measure associated with T . Define ω1 = σ(T )∩ [−1,−(1−√

2ε)] , ω2 =
σ(T )∩ [(1−√

2ε),1] and ω3 = σ(T )∩ (−(1−√
2ε),(1−√

2ε)
)
. Note that ω1 , ω2

and ω3 are mutually disjoint. Next, define

S = [−E(ω1)+E(ω2)]+TE(ω3). (3.1)

Clearly, S is self-adjoint, as it is the sum of self-adjoint operators.
Let x0 = x1 + x2 , where x1 ∈ R(E(ω1 ∪ω2)) and x2 ∈ R(E(ω3)) . Let xε =

x1/‖x1‖ . Observe that ‖Sxε‖ = 1 and

S−T =
∫

ω1

(−1−λ )dE(λ )+
∫

ω2

(1−λ )dE(λ ).

Note that if λ ∈ ω1 , then −1 � λ �−(1−√
2ε) so that sup

λ∈ω1

|1+λ |=√
2ε . Similarly

sup
λ∈ω2

|1−λ |= √
2ε , so that

‖S−T‖ � sup
λ∈ω1

|1+ λ |+ sup
λ∈ω2

|1−λ |� 2
√

2ε.

Thus in (2) we can choose C > 2. Observe that ‖T |R(E(ω1∪ω2))‖� 1 and ‖T |R(E(ω3))‖�
(1−√

2ε) , thus we get

(1− ε)2 <‖Tx0‖2 � ‖x1‖2 +
(
(1−

√
2ε)‖x2‖

)2

=
(‖x1‖2 +‖x2‖2)+(2ε −2

√
2ε
)
‖x2‖2

=1+
(
2ε −2

√
2ε
)
‖x2‖2.

That is, ε2−2ε < (2ε−2
√

2ε)‖x2‖2 . From this inequality, on simplification we obtain,

‖x2‖2 <
2ε − ε2

2(
√

2ε − ε)
=

√
2ε + ε
2

�
√

2ε.

Consequently, we have

‖x1‖ =
√

1−‖x2‖2 >

√
1−

√
2ε � 1−

√
2ε,

and
‖x0− xε‖ = ‖x1− (x1/‖x1‖)+ x2‖ � 1−‖x1‖+‖x2‖ <

√
2ε + 4

√
2ε.

Proof of (a): Suppose T is positive. Then σ(T ) ⊆ [0,1] and the operator in
Equation (3.1) takes the form

S = E(ω2)+TE
(

σ(T )∩ [0,(1−
√

2ε))
)

. (3.2)
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For every x ∈ H , we have x = x1 + x2 , where x1 ∈ R [E (ω2)] , x2 ∈ R[E(σ(T ) ∩
[0,(1−√

2ε)))] . Hence

〈Sx,x〉 = ‖x1‖2 + 〈Tx2,x2〉 � 〈Tx,x〉. (3.3)

The above inequality implies that S is positive, whenever T is positive. By the defini-
tion of the minimum modulus, we can easily verify that m(S) � m(T ) .

Proof of (b): Let x ∈ N(S) . Then x = x1 + x2 + x3 , where x1 ∈ R(E(ω1)), x2 ∈
R(E(ω2)) and x3 ∈ R(E(ω3)) . For i = 1,2, we have (−1)i‖xi‖2 = 〈Sx,xi〉 = 0, which
implies xi = 0. Thus we get Tx = Tx3 = Sx3 = 0 and consequently N(S) ⊆ N(T ) .

Conversely, if y ∈ N(T ) , then y ∈ R(E{0}) ⊆ R(E(ω3)) , by [2, Theorem 4, Page
155]. This gives Sy = Ty = 0. Hence N(T ) ⊆ N(S) .

Proof of (c): Let T be an arbitrary element of B(H) and T = W |T | be its polar
decomposition. Let S1 be the operator defined in (3.2) corresponding to the operator
|T | . That is,

S1 = E
(

σ(|T |)\ [0,(1−
√

2ε))
)

+ |T |E
(

σ(|T |)∩ [0,(1−
√

2ε))
)

.

Let S = WS1 . Then m(S1) � m(|T |) = m(T ) . By part (b), we have N(S1) = N(|T |) =
N(T ) . It can be easily verified that N(S) = N(S1) .

For y ∈ H , we have y = y1 + y2 , where y1 ∈ N(T ) and y2 ∈ N(T )⊥ . Hence

‖Sy‖ = ‖WS1y1 +WS1y2‖ = ‖WS1y2‖ = ‖S1y‖.

The above equality implies that m(S) = m(S1) � m(T ). �

REMARK 3.2.

1. Given ε > 0, it is possible to find a unit vector x0 such that ‖Tx0‖> ‖T‖(1−ε)
by the definition of the norm

2. If we do not assume ‖T‖ = 1 in Theorem 3.1, we have to define S as S =
‖T‖[E(ω2)−E(ω1)]+TE(ω3) .

The following result is a Bishop-Phelps type theorem for minimum attaining op-
erators.

THEOREM 3.3. Let T ∈B(H) be a positive operator, 0 < ε < m(T ) and x0 ∈ SH

with
‖Tx0‖ < m(T )+ ε. (3.4)

Then there exist a positive operator Tε ∈ B(H) and xε ∈ SH satisfying the following.

1. ‖Tεxε‖ = m(Tε ) = m(T ) ,

2. ‖T −Tε‖ < η(ε,T ) ,
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3. ‖x0− xε‖ < γ(ε,T ) ,

where η(ε,T ), γ(ε,T ) → 0 as ε → 0 .

Proof. Note that T is invertible and T−1 ∈ B(H) , hence Tx0 �= 0. By inequality
(3.4), and the fact that m(T ) = 1/‖T−1‖ , T−1 satisfies the following condition;

∥∥∥∥T−1 Tx0

‖Tx0‖
∥∥∥∥> ‖T−1‖(1− δ ), where δ =

ε
m(T )+ ε

. (3.5)

As 0 < ε < m(T ) we get 0 < δ < 1/2. By Theorem 3.1, there exist a positive operator
Sε ∈ B(H) and x1

ε ∈ SH , such that

‖Sεx
1
ε‖ = ‖Sε‖ = ‖T−1‖, (3.6)

‖T−1−Sε‖ < C
√

2δ for some constant C > 0 (3.7)

and ∥∥∥∥x1
ε −

Tx0

‖Tx0‖
∥∥∥∥<

√
2δ + 4

√
2δ . (3.8)

As a consequence of part (c) of Theorem 3.1, S−1
ε exists. Define Tε := S−1

ε and xε :=
Sε x1

ε
‖Sεx1

ε‖ . It can be easily seen from Equation (3.6) that

∥∥∥∥Tε
Sεx1

ε
‖Sεx1

ε‖
∥∥∥∥ =

‖x1
ε‖

‖Sεx1
ε‖

=
1

‖Sε‖
= m

(
S−1

ε
)

= m(Tε) = m(T ).

We know that the inverse of a positive operator is positive, hence Tε is positive.
By part (c) of Theorem 3.1, we have m(Sε) � m(T−1) . Using this inequality and

relations (3.6), (3.7) we get that

‖Tε −T‖ = ‖Tε(T−1 −T−1
ε )T‖ �‖S−1

ε ‖‖T−1 −Sε‖‖T‖
� 1

m(Sε)
‖T−1−Sε‖‖T‖

<C‖T‖2
√

2δ
=η(ε,T ),

where η(ε,T ) = ‖T‖2C
√

2δ . From the inequality (3.5), it is easy to see that δ → 0 as
ε → 0. Consequently, η(ε,T ) → 0 as ε → 0.
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From inequalities (3.4), (3.6), (3.7) and (3.8) we have the following estimate;

‖xε − x0‖ =
∥∥∥∥ Sεx1

ε
‖Sεx1

ε‖
− x0

∥∥∥∥
�
∥∥∥∥ Sεx1

ε
‖Sεx1

ε‖
− T−1x1

ε
‖Sεx1

ε‖
∥∥∥∥+

∥∥∥∥ T−1x1
ε

‖Sεx1
ε‖

− x0

‖Tx0‖‖Sεx1
ε‖
∥∥∥∥

+
∥∥∥∥ x0

‖Tx0‖‖Sεx1
ε‖

− x0

∥∥∥∥
�‖Sε −T−1‖

‖Sεx1
ε‖

+
‖T−1‖
‖Sεx1

ε‖
∥∥∥∥x1

ε −
Tx0

‖Tx0‖
∥∥∥∥

+
‖x0‖

‖Tx0‖‖Sεx1
ε‖
∣∣1−‖Tx0‖‖Sεx

1
ε‖
∣∣

<m(T )C
√

2δ +
√

2δ + 4
√

2δ +
m(T )
‖Tx0‖

|m(T )−‖Tx0‖|
m(T )

�m(T )C
√

2δ +
√

2δ + 4
√

2δ +
|m(T )−‖Tx0‖|

m(T )
, as ‖Tx0‖ � m(T ),

=γ(ε.T ),

where γ(ε,T ) = Cm(T )
√

2δ +
√

2δ + 4
√

2δ + ε/m(T ) . Again using the fact from in-
equality (3.5) that δ → 0 as ε → 0, we conclude that γ(ε,T ) → 0 as ε → 0. �

REMARK 3.4. Here we explain how to get explicitly Tε satisfying the conclusions
of Theorem 3.1. By (2) of Remark 3.2, we have

Sε =
[‖T−1‖E (Δ1) 0

0 T−1|R[E(Δ2)]

]
,

where Δ1 = σ(T−1)∩ (‖T−1‖(1−√
2δ ),‖T−1‖] , Δ2 = σ(T−1)∩ [m(T ),‖T−1‖(1−√

2δ )] and E is the spectral measure corresponding to T . Note that

Δ1 =σ(T−1)∩ (‖T−1‖(1−
√

2δ ),‖T−1‖]
=
{

μ ∈ σ(T ) : ‖T−1‖(1−
√

2δ ) < μ−1 � ‖T−1‖
}

=

{
μ ∈ σ(T ) : m(T ) � μ <

m(T )
1−√

2δ
= m(T )+

m(T )
√

2δ
1−√

2δ

}

=σ(T )∩
[
m(T ),m(T )+m(T )

√
2δ

1−√
2δ

)
.

Similarly,

Δ2 = σ(T−1)∩ [m(T−1),‖T−1‖(1−
√

2δ )]

= σ(T )∩
[
m(T )+m(T )

√
2δ

1−√
2δ

,‖T‖
]

.
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Thus

Tε =
[
m(T )E (σ(T )∩ [m(T ),m(T )+ δ1]) 0

0 T |R[E(σ(T)\[m(T ),m(T )+δ1])]

]
, (3.9)

where δ1 = (m(T )
√

2δ )/(1−√
2δ ) .

THEOREM 3.5. Let T ∈ B(H) , 0 < ε < m(T ) and x0 ∈ SH with

‖Tx0‖ < m(T )+ ε. (3.10)

Then there exist Tε ∈ B(H) and xε ∈ SH satisfying the following.

1. ‖Tεxε‖ = m(Tε ) = m(T ) ,

2. ‖T −Tε‖ < η(ε,T ) ,

3. ‖x0− xε‖ < γ(ε,T ) ,

where η(ε,T ), γ(ε,T ) → 0 as ε → 0 .

Proof. Let T = V |T | be the polar decomposition of T . As m(T ) > 0, T must
be bounded below. In this case N(V ) = N(T ) = {0} . Hence V is an isometry. As
m(T ) = m(|T |) and ‖|T |x0‖ = ‖Tx0‖ , by applying Theorem 3.3 to |T | , we can find
xε ∈ SH and Sε ∈ B(H) satisfying the conditions stated in Theorem 3.3.

Next, let Tε = VSε . Since V is an isometry, we have m(Sε) = m(Tε ) and

‖Tεxε‖ = ‖VSεxε‖ = ‖Sεxε‖ = m(Tε) = m(T ).

Next, ‖Tε −T‖= ‖V(Sε −|T |)‖= ‖Sε−|T |‖< η(ε,T ) . This completes the proof. �

Next we study the case when m(T ) = 0.

THEOREM 3.6. Let ε > 0 . Suppose T ∈ B(H) is a positive operator, m(T ) = 0
and x0 ∈ SH with

‖Tx0‖ < m(T )+ ε. (3.11)

Then there exist a positive operator Tε ∈ B(H) and xε ∈ SH satisfying the following.

1. ‖Tεxε‖ = m(Tε ) = m(T ) ,

2. ‖T −Tε‖ < η(ε,T ) ,

3. ‖x0− xε‖ < γ(ε,T ) ,

where η(ε,T ), γ(ε,T ) → 0 as ε → 0 .
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Proof. Consider Sε = T +2εI . It is easy to see that Sε is a positive operator and
m(Sε) = 2ε . From the condition (3.11), we get

‖Sεx0‖ �‖Tx0‖+2ε
<ε +2ε = ε +m(Sε).

Note that 0 < ε < m(Sε) . By Theorem 3.3, there exist a positive operator T 1
ε ∈ B(H)

and xε ∈ SH such that

‖T 1
ε xε‖ = 2ε = m(T 1

ε ), ‖T 1
ε −Sε‖ < η(ε,T ) and ‖x0− xε‖ < γ(ε,T ), (3.12)

with the condition that η(ε,T ), γ(ε,T ) → 0 as ε → 0.
Since T 1

ε is a positive operator and m(T 1
ε ) = 2ε , it follows that T 1

ε xε = (2ε)xε by
[7, Proposition 3.9].

Take Tε := T 1
ε − (2ε)I . Note that Tε is a positive operator and ‖Tεxε‖ = ‖T 1

ε xε −
(2ε)Ixε‖ = 0 = m(Tε) = m(T ) . By (3.12), we have that

‖Tε −T‖ =
∥∥T 1

ε −2εI−Sε +2εI
∥∥

=‖T 1
ε −Sε‖

<η(ε,T ). �

REMARK 3.7. Here we indicate a procedure to get Tε satisfying conclusions of
Theorem 3.6. By Remark 3.4, we have

T 1
ε =

[
m(Sε)E (σ(Sε)∩ [2ε,2ε + α(ε)]) 0

0 Sε |R[E(σ(Sε)\[2ε,2ε+α(ε)])]

]
,

for some function α(ε) of ε . Observe that

2εI = 2εE (σ(Sε)∩ [2ε,2ε + α(ε)])+2εE (σ(Sε)\ [2ε,2ε + α(ε)]) .

We know that (Sε −2εI) |R[E(σ(Sε )\[2ε,2ε+α(ε)])] = T |R[E(σ(Sε )\[2ε,2ε+α(ε)])] and σ(Sε)\
[2ε,2ε + α(ε)] = σ(T )\ [0,α(ε)] . Thus

Tε =
[
0 0
0 T |R[E(σ(T)\[0,α(ε)])]

]
. (3.13)

THEOREM 3.8. Let ε > 0 . Suppose T ∈B(H) with m(T ) = 0 and x0 ∈ SH with

‖Tx0‖ < m(T )+ ε. (3.14)

Then there exist Tε ∈ B(H) and xε ∈ SH satisfying the following.

1. ‖Tεxε‖ = m(Tε ) = m(T ) ,

2. ‖T −Tε‖ < η(ε,T ) ,

3. ‖x0− xε‖ < γ(ε,T ) ,
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where η(ε,T ), γ(ε,T ) → 0 as ε → 0 .

Proof. Let T =V |T | be the polar decomposition of T . Using the fact that ‖|T |x0‖=
‖Tx0‖ < m(T )+ ε and earlier arguments, we conclude that there exist a positive oper-
ator T̃ε ∈ B(H) and xε ∈ SH such that

‖T̃εxε‖ = m(T̃ε), ‖T̃ε −|T |‖ < η(ε,T ) and ‖x0− xε‖ < γ(ε,T ).

Define Tε := VT̃ε . From Equations (3.9), (3.13) and [2, Theorem 4, Page 155], we
observe that N(T ) ⊆ R(E{0}) ⊆ N(T̃ε ) , where E is the spectral measure associated
with |T | . That is, N(T̃ε )⊥ ⊆ N(T )⊥ .

Observe that ‖Tεxε‖ = ‖VT̃εxε‖ = ‖T̃εxε‖ = m(T̃ε) = m(Tε ) . Here we used the
fact that V |N(T̃ε )⊥ is an isometry.

Next, ‖Tε −T‖ � ‖V‖‖T̃ε −|T |‖ < η(ε,T ) . This proves the result. �

REMARK 3.9. Given ε > 0 it is possible to find a unit vector x0 such that ‖Tx0‖<
m(T )+ ε by the definition of the minimum modulus.

We illustrate Theorem 3.8 with a few examples.

EXAMPLE 3.10. Let 0 < ε < 1. Consider the operator M : L2[−1,1]→ L2[−1,1]
defined by

M f (t) = t f (t) for t ∈ [−1,1], f ∈ L2[−1,1].

It is easy to check that m(M) = 0. We define a function g = (1/2ε2)χ(−ε2,ε2) . Then

g ∈ L2[−1,1] and it satisfy

‖Mg‖2 =
ε√
6

< ε = m(M)+ ε.

Now, we show that M and g can be approximated by an operator Mε ∈ B
(
L2[−1,1]

)
and gε ∈ L2[−1,1] , respectively. To deduce this, we define Mε = MPω , where

ω =
{
h ∈ L2[−1,1] : support of h ⊆ [−1,1]\ (−ε2,ε2)

}
,

Pω is orthogonal projection onto ω and gε := g . We observe that ‖Mεgε‖ = 0 and

‖g−gε‖2 = 0 < ε,

‖M−Mε‖ �
(

sup |t|2
t∈(−ε2,ε2)

) 1
2

<
√

2ε2.

EXAMPLE 3.11. Let 0 < ε < 1. Consider the operator T : �2(N)→ �2(N) defined
by

T (x1,x2,x3, . . .) =
(
x1,

x2

2
,
x3

3
, . . .
)

for (x1,x2,x3, . . .) ∈ �2(N).
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Note that σ(T ) =
{

1
n : n ∈ N

}∪{0} and m(T ) = d(0,σ(T )) = inf{|λ | : λ ∈ σ(T )} =
0.

Suppose x0 =
∞
∑
i=1

αiei ∈ �2(N) satisfying ‖Tx0‖ < ε = m(T )+ ε , where {ei}i∈N

is the standard othonormal basis for �2(N) and αi is a scalar for every i ∈ N . As(αi
i

) ∈ �2(N) , we get an nε ∈ N such that 1
nε

< ε and
nε
∑
i=1

α2
i < ε2 .

Now we choose xε =
∞
∑

i=nε+1
αiei and define Tε ∈ B

(
�2(N)

)
by

Tε (x1,x2, . . .xnε ,xnε+1 . . .) =
(
x1,

x2

2
, . . .

xnε

nε
,0, . . .

)
, for all (xn) ∈ �2(N).

It is easy to observe that ‖Tεxε‖ = 0, ‖x0− xε‖ < ε and

‖T −Tε‖ = sup
i�nε+1

|1/i|= 1/(nε +1) < ε.

It can be easily shown that T is not minimum attaining.
Let us take ε = 1

3 , x0 = e4 . Then

‖Te4‖ =
1
4

<
1
3

= m(T )+ ε.

Now take xε = e4 . For n � n0 = 4 we have 1
n < ε . Define

Tε(x1,x2,x3, . . .) =
(
x1,

x2

2
,
x3

3
,0, . . .

)
for (xn) ∈ �2(N).

Then
(T −Tε)(x1,x2, . . .) =

(
0,0,0,

x4

4
,
x5

5
, . . .
)

.

Hence ‖T −Tε‖ = 1
4 < ε . Clearly ‖x0− xε‖ = 0 < ε .

If we take ε = 1
3 , x0 = e5 . Then

‖Te5‖ =
1
5

<
1
3

= m(T )+ ε.

For n � n0 = 4, 1
n < ε . In this case, take xε = e5 . Define

Tε(x1,x2,x3,x4, . . .) =
(
x1,

x2

2
,
x3

3
,
x4

4
,0, . . .

)
for (xn) ∈ �2(N).

Then
(T −Tε)(x1,x2, . . .) =

(
0,0,0,0,

x5

5
, . . .
)
.

Hence ‖T −Tε‖ = 1
5 < ε . Clearly ‖x0− xε‖ = 0 < ε .
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4. Unbounded operators

In this section, we generalize the results of the earlier section to densely defined
closed operators, which are not necessarily bounded. In this case, we have to discuss
the approximation of operators in the gap topology. For this purpose first we define the
gap between two closed subspaces of a Hilbert space.

Let M,N be two closed subspaces of a Hilbert space H . Define d(M,N) =
sup
x∈SM

dist(x,SN) . The gap between M and N is defined by

θ (M,N) = max{d(M,N),d(N,M)}.
For T1,T2 ∈ C (H1,H2) , the gap between T1 and T2 is defined by the gap between

the corresponding graphs. That is,

θ (T1,T2) = θ (G (T1),G (T2)).

It is well known that θ (·, ·) is a metric on C (H1,H2) and is called the gap metric. For
more details about this metric we refer to [6, 8, 11].

PROPOSITION 4.1. [6, Theorem 2.20, Page 205] Let S,T ∈ C (H) . Assume that
both S−1 and T−1 exists. Then θ (S,T ) = θ (T−1,S−1) .

PROPOSITION 4.2. [9, Theorem 3.1(2)] Let S,T ∈C (H1,H2) with D(S)= D(T ) .
If S−T ∈ B(H1,H2) , then θ (S,T ) � ‖S−T‖ .

Next, we prove our main theorem in this section.

PROPOSITION 4.3. Let T ∈ C (H) be positive. Let ε be such that ε ∈ (0,m(T ))
if m(T ) > 0 and, ε > 0 when m(T ) = 0 . Let x0 ∈ SD(T ) with

‖Tx0‖ < m(T )+ ε. (4.1)

Then there exist a densely defined operator Tε ∈C (H) which is positive and xε ∈ SD(Tε )
satisfying the following.

1. Tεxε = m(Tε )xε = m(T )xε ,

2. ‖x0− xε‖ < γ(ε,T ) ,

3. θ (T,Tε) < η(ε,T ) ,

where η(ε,T ), γ(ε,T ) → 0 as ε → 0 .

Proof. Case (1) : m(T ) > 0: then T−1 exists and T−1 ∈ B(H) . From the given
condition (4.1), we deduce that∥∥∥∥T−1Tx0

‖Tx0‖
∥∥∥∥> ‖T−1‖(1− δ ), where δ =

ε
m(T )+ ε

.
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As 0 < ε < m(T ), we have 0 < δ < 1
2 . Hence by Theorem 3.1, there exist Sε ∈ B(H)

and yε ∈ SH such that

‖Sεyε‖ = ‖Sε‖ = ‖T−1‖, (4.2)

‖T−1 −Sε‖ < C
√

2δ , for some constant C, (4.3)∥∥∥∥ Tx0

‖Tx0‖ − yε

∥∥∥∥<
√

2δ + 4
√

2δ . (4.4)

Also N(Sε) = N(T−1) = {0} . Hence S−1
ε : R(Sε) → H exists. We define Tε := S−1

ε
and xε := Sε yε

‖Sε yε‖ . We have D(Tε) = R(Sε) and as Sε is injective, we have R(Sε) =

N(Sε)⊥ = H . Hence Tε is a densely defined operator. It is clear that Tε ∈C (H) . Using
the positivity it can be shown that Tε is a positive operator. By similar explanation as
given in the Proof of Theorem 3.3, we get

‖Tεxε‖ = m(Tε)(= m(T )) and

‖xε − x0‖ < Cm(T )
√

2δ +
√

2δ + 4
√

2δ +
ε

m(T )
< γ(ε,T ),

where γ(ε,T ) = Cm(T )
√

2δ +
√

2δ + 4
√

2δ + ε
m(T ) . As Tε is a positive operator, the

equation ‖Tεxε‖ = m(Tε ) = m(T ) implies that

Tεxε = m(Tε)xε = m(T )xε , by [7, Proposition 3.9].

Since N(Tε ) = {0}, R(Tε) = D(Sε) = H , we get that T−1
ε : H → R(Sε) exists and

T−1
ε = Sε . By Proposition 4.1, we have the following inequality;

θ (Tε ,T ) = θ (Sε ,T
−1) � ‖Sε −T−1‖ < C

√
2δ =: η(ε,T ).

Case (2) : Let m(T ) = 0. Define T̂ := T +2εI . Note that T̂ is positive, D(T̂ ) =
D(T ) and m(T̂ ) = 2ε . Also ‖T̂ x0‖ � ‖Tx0‖+2ε < ε +2ε = ε +m(T̂ ) . By Case (1) ,
there exist a positive operator T2 ∈ C (H), xε ∈ SD(T2) such that

T2xε = m(T2)xε = m(T̂ )xε , θ (T̂ ,T2) < η1(ε,T ) and ‖x− xε‖ < γ(ε,T ).

Define Tε := T2 − 2εI . Clearly D(Tε) = D(T2) , m(Tε ) = m(T2)− 2ε = 0 and by [7,
Proposition 3.8] Tε is positive. Also Tεxε = T2xε −2εxε = 0 = m(Tε )xε = m(T )xε . We
have the following approximation;

θ (T,Tε) =θ
(
T̂ −2εI,T2−2εI

)
,

�θ
(
T̂ −2εI, T̂

)
+ θ (T̂ ,T2)+ θ (T2,T2 −2εI) ,

�2ε + η1(ε,T )+2ε,

=4ε + η1(ε,T )(:= η(ε,T )).

This completes the proof. �
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REMARK 4.4. In Proposition 4.3, more precisely Tε has the following structure.

Tε = m(T )E (σ(T )∩ [0,m(T )+ α(ε)])+TE (σ(T )\ [0,m(T)+ α(ε)]) , (4.5)

where α(ε) → 0 as ε → 0 and E is the spectral measure corresponding to T . More-
over, N(T ) ⊆ N(Tε ) .

Proof. Without loss of generality, we assume that N(T ) �= {0} . Then m(T ) = 0
and

Tε = TE (σ(T )\ [0,α(ε)]) .

By [2, Theorem 4, Page 155], we know that

N(T ) ⊆ R(E({0}))⊆ R(E(σ(T )∩ [0,α(ε)])) ⊆ N(Tε ). �

THEOREM 4.5. Let T ∈C (H) be densely defined. Let ε ∈ (0,m(T )) if m(T ) > 0
and, ε > 0 when m(T ) = 0 . Let x0 ∈ SD(T) be such that

‖Tx0‖ < m(T )+ ε. (4.6)

Then there exist a densely defined operator Tε ∈ C (H) and xε ∈ SD(Tε ) satisfying the
following.

1. ‖Tεxε‖ = m(Tε ) = m(T ) ,

2. ‖x0− xε‖ < γ(ε,T ) ,

3. θ (T,Tε) < η(ε,T ) ,

where η(ε,T ), γ(ε,T ) → 0 as ε → 0 .

Proof. Let T =W |T | be the polar decomposition of T . From the given condition
(4.6), we have ‖|T |x0‖ = ‖Tx0‖ < m(T )+ ε = m(|T |)+ ε . As a result of Proposition
4.3, there exist a densely defined positive operator Sε ∈ C (H), xε ∈ SD(Sε ) such that

Sεxε = m(Sε)xε = m(T )xε , θ (Sε , |T |) < η(ε,T ) and ‖x0− xε‖ < γ(ε,T ), (4.7)

η(ε,T ), γ(ε,T ) → 0 as ε → 0.
Define Tε = WSε . Note that

1. D(Tε) = {x ∈ D(Sε) : Sεx ∈ D(W ) = H} = D(Sε) ,

2. N(Tε) = N(Sε) ,

3. ‖Tεy‖ = ‖Sεy‖ , for every y ∈ D(Tε ) .
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Clearly N(Sε) ⊆ N(Tε ) . To get the reverse containment, let x ∈ N(Tε ) . So Sεx ∈
N(W ) = N(T ) ⊆ N(Sε) , this implies S2

εx = 0. Since Sε is a positive operator, we see
that Sεx = 0, that is x ∈ N(Sε) . Hence N(Tε ) ⊆ N(Sε) and consequently N(Sε) =
N(Tε) .

Every x ∈ D(Sε) = D(Tε) can be written as x = x1 + x2 , where x1 ∈ N(Sε) and
x2 ∈ N(Sε)⊥∩D(Sε) . From Remark 4.4, N(Sε)⊥ ⊆N(T )⊥ . Thus ‖WSεx2‖= ‖Sεx2‖ .
Consequently, we have the following equality;

‖Tεx‖ = ‖WSε(x1 + x2)‖ = ‖WSεx2‖ = ‖Sεx2‖ = ‖Sεx‖.

Thus we conclude that ‖Tεxε‖ = ‖Sεxε‖ = m(Sε) = m(Tε)(= m(T )).
We proceed to show that θ (Tε ,T ) = θ (Sε , |T |) . First we claim that ||Tx−Tεy‖ =

‖|T |x−Sεy‖ for every x ∈ D(T ) and y ∈ D(Tε) . Assuming the claim, we have

dist
(
(x,Tx),SG (Tε )

)
= inf

y∈D(Tε )
‖y‖2+‖Tε y‖2=1

‖(x,Tx)− (y,Tεy)‖

= inf
y∈D(Sε )

‖y‖2+‖Sεy‖2=1

‖(x,Tx)− (y,Tεy)‖

= inf
y∈D(Sε )

‖y‖2+‖Sεy‖2=1

√
‖x− y‖2 +‖Tx−Tεy‖2

= inf
y∈D(Sε )

‖y‖2+‖Sεy‖2=1

√
‖x− y‖2 +‖|T |x−Sεy‖2

=dist
(
(x, |T |x),SG (Sε)

)
, ∀x ∈ D(T ).

By simple computation, we get θ (Tε ,T ) = θ (Sε , |T |) < η(ε,T ) .
To prove our claim, suppose x ∈ D(T ) and y ∈ D(Tε ) . Then x = x1 + x2 and y =

y1 + y2 , where x1 ∈ N(T ), x2 ∈ N(T )⊥ ∩D(T ), y1 ∈ N(Tε ) and y2 ∈ N(Tε )⊥ ∩D(Tε ) .
Using the fact that N(Tε )⊥ ⊆ N(T )⊥ , we have

‖Tx−Tεy‖ =‖W |T |x2−WSεy2‖
=‖W(|T |x2 −Sεy2)‖
=‖|T |x2−Sεy2‖
=‖|T |x−Sεy‖.

This completes the proof. �
As a consequence of Theorem 4.5, we conclude that the set of all minimum attain-

ing operators is dense in the class of all densely defined closed operators with respect
to the gap metric.

COROLLARY 4.6. Let T ∈ C (H1,H2) be densely defined. Then for ε > 0 there
exists a minimum attaining densely defined operator S∈C (H1,H2) such that θ (S,T )�
ε.
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A more sharpened version of the above corollary can be found in [9].
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