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REFINING EIGENVALUE INEQUALITIES FOR

BLOCK 2× 2 POSITIVE SEMIDEFINITE MATRICES

MAREK NIEZGODA

Abstract. In this paper, by employing a result due to Bourin, Lee and Lin for block 2×2 positive
semidefinite matrices, and by using gradients of Gateaux differentiable G -increasing functions,
we show refinements of some majorization inequality by Lin and Wolkowicz for the eigenvalues
of these block matrices. In particular, we establish a refinement for 2×2 version of Hiroshima’s
inequality.

We also consider some special cases of the obtained result.
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