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INEQUALITIES RELATED TO THE GEOMETRIC
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JUNTONG L1uU, JIN-JIN MEI AND DENGPENG ZHANG *
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Abstract. We present some inequalities related to the recently defined geometric mean of two

accretive matrices. Firstly, we show that if the block matrix is accretive, then the

A X
Y* B
singular values of (X +Y)/2 are weakly log majorized by the singular values of the geometric
mean of A and B. This extends a result of M. Lin.

1. Introduction

The set of all n x n complex matrices is denoted by M,,. We say that A € M, is
accretive if its real (or Hermitian) part RA := (A +A*)/2 is positive definite, where
A* means the conjugate transpose of A. For two positive definite matrices A,B € M,,,
their geometric mean is defined by

AﬁB = B1/2(Bfl/2ABfl/2)1/2B1/2'

It is easy to prove that the geometric mean AfB is the unique positive definite solution
to the Ricatti equation XB~'X = A. This observation enables one to see that the role
of A, B in the geometric mean is symmetric, that is AfB = BA. By a limit process, the
definition could be extended for positive semidefinite matrices. For more information
about matrix geometric mean, we refer to [4, Chapter 4].

Extending the geometric mean of two positive definite matrices, Drury [5] recently
defined the geometric mean for two accretive matrices A, B € M, via the formula

oo -1
AfB = (%/ (tA—|—tlB)lﬂ> :
T Jo t

in which we continue to use the standard notation A§B for the geometric mean. The
geometric mean for accretive matrices enjoys several appealing properties; see [5]. A
weighted version was subsequently proposed by Raissouli, Moslehian and Furuichi
[12]. Tt is clear from the formula that if A, B are accretive, then so is A#B.
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For two Hermitian A,B € M,,, we write A > B (resp. A > B) if A — B is positive
semidefinite (resp. positive definite). It is well known that if A,B € M, are positive
semidefinite, then we have the noncommutative AM-GM inequality

A+B
% > A#B. (1)

It was pointed out in [10, Eq. (9)] that a direct analogue of (1)

A+B

3

> R(ALB)
for accretive A, B € M, fails.

A remarkable property about the geometric mean is the following inequality due
to Lin and Sun [9]: Let A,B € M, be accretive. Then

R(ALB) = (RA)4(RB). 2

This inequality would play an important role in our derivations. Again, we mention that
the corresponding weighted version was given in [12].

In this paper, we consider several results related to the geometric mean of accretive
matrices. The remaining of this section is some notation used in the article. The eigen-
values, singular values of A € M), are denoted by A;(4),0;(4), j=1,...,n, respec-
tively such that 4;(A) > --- > A,(A), 01(A) > --- > 0,(A) (whenever the eigenvalues
are all real). For A,B € M, , if

k

oj(4) <[] o;(B)

Jj=1 Jj=1

=

forall k=1,...,n, then we say that the singular values of A are weakly log majorized
by the singular values of B and we denote the relation by

O-(A) "<wlag G(B)'

For more information about majorization, we refer to [13, Chapter 3] or [14, Chapter
10].

2. A weak log majorization

Let A,B,X.,Y € M,. If

(A X r [AXT
M_<X*B) and M _<X B)

are both positive semidefinite, then we say that M is PPT (i.e., positive partial trans-
pose). In [11], Lin proved that if M is PPT, then

G(X) =wlog G(AﬁB)' (3)
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For an alternative proof of (3), see [7]. We could extend the notion to accretive matrices.

If
(AKX : [AYF
M_<Y* B) and M _<X B)

are both accretive, then we say that M is APT (i.e., accretive partial transpose). Clearly,
the class of APT matrices include the class of PPT matrices. A relevant notion SPT (i.e.,
sectorial partial transpose) has appeared in [6].

We extend Lin’s result to the case of APT matrices as follows.

THEOREM 2.1. Let A,B,X, Y e M,,. If M = (;1* );) is APT, then
X+Y
o (T) <wiog O(A1B). 4)

Proof. By the Fan-Hoffman inqeuality [3, p. 73],
2;(R(ALB) < 0,(AtB)
forall j=1,...,n. Moreover, since
R(ALB) > (RA)H(RB)
and by the Weyl’s monontonicity theorem for the eigenvalues [3, p. 63], we have
2;(RAN(FRB)) < A;(R(AZB))
forall j=1,...,n. These enable us to conclude
O ((RA)E(NB)) <wiog O(ALB). (5)
As M is APT, we see that

RA (X +Y)/2 . RA (X +Y))2 .
Sm"":<(x+y)*/2 RB ) and ER(M):((XJrYW RB )Z(ERM)

are both positive definite. In other words, RM is PPT. Therefore, applying (3) to RM
gives

o (557 <uus o(R)e(8). ©

The desired result now follows from (5) and (6). [

It is apparent that if M is PPT (in this case, X =Y), then (4) becomes Lin’s result
(3). An immediate corollary of the previous theorem is the following.

COROLLARY 2.2. Let A,B, X e M,,. If M = (; );) is accretive, then

0 (RX) <105 O(A4B).
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3. A matrix inequality

In [1], Ando proved the following interesting result.

PROPOSITION 3.1. Let A;,Bj,X,Y € M,. If <Af X

X* B;j
. . . AlﬁAg X
semidefinite, then so is ( X* BitB,)

>, Jj = 1,2, are positive

The next result is an extention of this.

Aj X

PROPOSITION 3.2. Let Aj,B;, XY € M,. If (Y*‘ B,
J

. (A1fA, X
thensozs( Y* BiiB,)

), j=1,2, are accretive,

y AP X\ [ WA, (X+Y)2\ .
Proof. The condition says R (Y Bj) = ((X+Y)*/2 RB, ,j=1,2,are

positive definite. Then by the positivity of the Schur complement,
X+Y X+Y\"
RA; > (%) (%B))! (%) . j=12

On the other hand, the key inequality (2) implies

(sBi8) " < (@B0RB)

Therefore,
)
< (55) (@mosmm)  (2E1)
- EX”) )((%Bnlﬁ(mw) (S2)
Y

o (52 ) (£ (£51))
< (RANH(RA2) < R(A1842),

in which the second inequality is due to [4, Theorem 4.1.5 (ii)]. This implies the block

matrix ( (9;(:}%4*2/)2 g{(;g;é ?) is positive definite. In other words, (A;]ﬁfz BjéBz)

is accretive. [

In [7], Lee proved the following matrix inequality.
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A X

THEOREM 3.3. Let A,B,X e Ml,. If M = (X* B

matrix V € M,

) is PPT, then for some unitary

2|X| < AfB+ V™ (AtB)V.
We make use of Proposition 3.2 to extend Theorem 3.3.

A X

THEOREM 3.4. Let A,B,X.,Y € M,,. If (Y* B

matrix V € M,

) is APT, then for some unitary

m+n<m@w+wmww)

*

. AY*N . . . (B X . 017
Proof. Since (X B) is accretive, so is (Y* A) by a congruence with ( ] O) .

A$B X

It follows from Proposition 3.2 that ( Y A4 B) is accretive, that is,

R(AIB) (X+Y)/2
((X+Y)*/2 R(ALB) )

is positive definite. Consider the polar decomposition X +Y =V |X +Y|, where V € M,
is unitary. Then

o) (3507 62) - R )

is positive definite. Therefore by a simple congruence with (I -1 ) , we have the desired
inequality. [J

4. The geometric mean of A and A*
In this section, we present some inequalities about AfA™.

PROPOSITION 4.1. If A € M, is accretive, then AfA* > RA.

Proof. Clearly AfA* is Hermitian and accretive, so AfA™ is positive definite. Then

we observe that the block matrix <A§é AﬁA*) is positive semidefinite by using the

Schur complement, for
Mm—Ammﬂ*m:Amﬁﬁ(wwMﬂ*yﬁzo
Therefore,

<V€B—V7 (Af‘é* A&Z*) (V@—v)> >0, WweC".
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Expanding this gives
2(v, (AfA™ V) = (v,(A+A")y), WweC",
as desired. [J

We say that A € M, is a contraction if 1 > A*A. Using the obvious fact that
detA§B = detA!/2detB'/?, we see that the following corollary is stronger than the
Hua’s determinantal inequality [14, p. 231]: For A, B € M, contractive,

|det(I — A*B)|? > det(I — A*A)det(I — B*B).
For other strengthenings of the Hua’s determinantal inequality in the level of eigenval-

ues or singular values, we refer to [8].

COROLLARY 4.2. If A,B € M, are contractions, then

(I—A*B)§(I—B*A) > (I — A*A)$(I — B*B).

Proof. We need the following observation of Ando [2]: (A—B)*(A—B) >0 gives
A*A+B*B > A*B -+ B*A, and so
(I—A*A)+ (I - B*B)

—A*B) >
R(I—A*B) > 5

Now by Proposition 4.1,
(I-A"B){(I—B*A) = R(I—A*B).
And the easy fact

(I —A*A)+ (I - B*B)
2

> (I—A*A)(I - B*B).

Hence the conclusion. [
The positivity of the block matrix in the proof of previous proposition also implies
the following inequality about the usual operator norm.

COROLLARY 4.3. If A € M, is accretive, then

|AsAT] = [lA]l-

Disclosure statement
No potential conflict of interest was reported by the authors.

Acknowledgement. The work is supported by a grant from National Natural Sci-
ence Foundation Project of China (No. 11601314); Key Project of Anhui Provincial
Department of Education (No. KJ2019A0534); Anhui Natural Science Foundation (No.
1908085qa08, 2008085MA12); The Building of Brand Speciality Projects of Fuyang
Normal University (No. 2019PPZYO01); Young Talents Program of Fuyang Normal
University (No. rcxm202002).



INEQUALITIES RELATED TO THE GEOMETRIC MEAN OF ACCRETIVE MATRICES 587

REFERENCES

[11 T. ANDO, Geometric mean and norm Schwarz inequality, Ann. Funct. Anal. 7 (2016) 1-8.

[2] T. ANDO, Hua-Marcus inequalities, Linear Multilinear Algebra 8 (1980) 347-352.

[3] R. BHATIA, Matrix Analysis, GTM 169, Springer-Verlag, New York, 1997.

[4] R. BHATIA, Positive Definite Matrices, Princeton University Press, Princeton, 2007.

[5]1 S. DRURY, Principal powers of matrices with positive definite real part, Linear Multilinear Algebra

63 (2) (2015) 296-301.

[6] L. KUAL An extension of the Fiedler-Markham determinant inequality, Linear Multilinear Algebra 66

(2018) 547-553.

[71 E.-Y.LEE, The off-diagonal block of a PPT matrix, Linear Algebra Appl. 486 (2015) 449—453.
[8] M. LIN, The Hua matrix and inequalities related to contractive matrices, Linear Algebra Appl. 511

(2016) 22-30.

[91 M. LIN, FE. SUN, A property of the geometric mean of accretive operator, Linear Multilinear Algebra

65 (2017) 433-437.

[10] M. LIN, Some inequalities for sector matrices, Oper. Matrices 10 (2016) 915-921.

[11] M. LIN, Inequalities related to 2 x 2 block PPT matrices, Oper. Matrices 9 (2015) 917-924.

[12] M. RAISSOULI, M. S. MOSLEHIAN, S. FURUICHI, Relative entropy and Tsallis entropy of two ac-
cretive operators, C. R. Acad. Sci. Paris, Ser. I 355 (2017) 687-693.

[13] X.ZHAN, Matrix Theory, GSM 147, American Mathematical Society, Providence, RI, 2013.

[14] F. ZHANG, Matrix Theory: Basic Results and Techniques, second edition, Springer, New York, 2011.

(Received January 7, 2020)

Operators and Matrices
www.ele-math.com
oam@ele-math.com

Juntong Liu

School of Mathematics and Statistics
Fuyang Normal university

Fuyang, 236041, China

e-mail: juntongliu82@163.com

Jin-Jin Mei

School of Mathematics and Statistics
Fuyang Normal university

Fuyang, 236041, China

e-mail: meijinjin666@126.com

Dengpeng Zhang

School of statistics and mathematics

Guangdong University of Finance and Economics
Guangzhou 510320, China

e-mail: zhangdengpeng@sina.cn



