
Operators
and

Matrices

Volume 15, Number 2 (2021), 589–614 doi:10.7153/oam-2021-15-40

GRAPH COMPLEMENT CONJECTURE

FOR CLASSES OF SHADOW GRAPHS

MONSIKARN JANSRANG ∗ AND SIVARAM K. NARAYAN

Abstract. The real minimum semidefinite rank of a graph G , denoted mrR+(G) , is defined to be
the minimum rank among all real symmetric positive semidefinite matrices whose zero/nonzero
pattern corresponds to the graph G . The inequality mrR+(G)+mrR+(G) � |G|+ 2 is called the
graph complement conjecture, denoted GCC+ , where G is the complement of G and |G| is
the number of vertices in G . A known definition of shadow graph S(G) and a variant of this
definition denoted Shad(G) are given. It is shown that S(G) satisfies GCC+ when G is a tree
or a unicyclic graph or a complete graph. Under additional conditions on G , it is shown that
S(G) satisfies GCC+ when G is a k -tree or a chordal graph. Moreover, whenever G satisfies
GCC+ and G does not contain any isolated vertices, it is shown that Shad(G) satisfies GCC+ .
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