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Abstract. Normal operators and n -normal operators played a pivotal role in the development
of operator theory. In order to generalize these classes of operators, we introduce new classes
of operators which we call analytic extension of n - normal operator and F -quasi-n -normal
operator. We show that every analytic extension of n -normal operator and F -quasi-n -normal
operator have scalar extensions. We also show that an analytic extension of n -normal operator
has a nontrivial invariant subspace. Some spectral properties are also presented.

1. Introduction

Let B(H ) be the algebra of all bounded linear operators acting on infinite di-
mensional separable complex Hilbert space H . Throughout this paper R(T ) , N(T ) ,
σ(T ) denotes range, null space and spectrum of T ∈ B(H ) respectively. An operator
T ∈ B(H ) is said to be analytic if there exists a nonconstant analytic function F on
a neighborhood of σ(T ) such that F(T ) = 0. An operator T ∈ B(H ) is said to be
algebraic if there is a nonconstant polynomial p such that p(T ) = 0. Recall that an
operator T ∈ B(H ) is said to be normal if T ∗T = TT ∗ . In [1] , S. A. Alzuraiqi and A.
B. Patel introduced n -normal operators.

DEFINITION 1.1. An operator T ∈ B(H) is said to be n -normal if

T ∗Tn = TnT ∗ (1.1)

for some n ∈ N .

This definition seems natural. S. A. Alzraiqi and A. B. Patel proved characteriza-
tions of 2-normal, 3-normal and n -normal operators on C2 . Also, they made several
examples of n -normal operators and proved that T is n -normal if and only if Tn is
normal. Also, they proved that if T is 2-normal with the following condition

σ(T )∩ (−σ(T )) = /0; (1.2)
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then T is subscalar. Recently, the authors in [5] have studied spectral properties of an
n -normal operator T satisfying the following condition (1.2).

σ(T )∩ (−σ(T )) ⊂ {0}. (1.3)

It is a little weaker assumption than this condition (1.2). Recently the authors in [6],
studied several properties of n -normal. In particular, they proved that if T is 2-normal
with (1.3), then T is polarloid. They also studied subscalarity of n -normal operators
under certain conditions.

In order to generalize the classes of quasi-n -normal and k -quasi-n -normal opera-
tors, we introduce the class of F -quasi-n -normal operators as follows:

DEFINITION 1.2. An operator T ∈ B(H ) is said to be F -quasi-n -normal if
F(T )∗(TnT ∗ − T ∗Tn)F(T ) = 0 for some nonconstant analytic function F on some
neighborhood of σ(T ) , and p -quasi-n -normal if there exists a nonconstant polynomial
p such that p(T )∗(TnT ∗−T ∗Tn)p(T ) = 0. In particular, if p(z) = zk for some positive
integer k or p(z) = z , then T is said to be k -quasi-n -normal operator or quasi-n -
normal operator, respectively.

If T ∈ B(H ) is analytic, then F(T ) = 0 for some nonconstant analytic function
F on a bounded neighborhood U of spectrum of T . Since F cannot have infinitely
many zeros in U , we write F(z) = G(z)p(z) , where the function G is analytic and
does not vanish on U and p is a nonconstant polynomial with zeros in U . By Riesz-
Dunford functional calculus, G(T ) is invertible and the invertibility of G(T ) induces
that p(T ) = 0, which means that T is algebraic (See [4]). We say that T is analytic
with order n when p has degree n .

In order to generalize the class of n -normal operators, we introduce analytic ex-
tensions of n -normal operators as follows:

DEFINITION 1.3. An operator T ∈ B(H1 ⊕H2) is said to be an analytic exten-

sion of n -normal operator if T =
(

T1 T2

0 T3

)
∈ B(H1 ⊕H2) , where T1 is an n -normal

operator and T3 is analytic of order n , where n is a positive integer. This means that
T ∈ B(H ) is said to be an analytic extension of an n -normal operator if there exists an
invariant subspace M such that T |M is n-normal and T ∗|M⊥ is algebraic.

Let 0 � m � ∞ . Recall that an operator T ∈ B(H ) is said to be a scalar operator
of order m if there exists a continuous unital moromorphism of topological algebra
Φ : Cm

0 (C) → B(H ) such that Φ(z) = T , where z stands for the identity function on
Cm

0 , the space of all compactly supported functions continuously differentiable of order
m . An operator T is said to be subscalar of order m if T is similar to the restriction
of a scalar operator of order m to an invariant subspace ([14]). M. Putinar [17] proved
subscalarity for hyponormal operators.

Let H∞(U) denote the space of all bounded analytic functions on a bounded open
set U in C . A subset σ of C is dominating in U if ‖ f‖ = supx∈σ∩U | f (x)| holds for
each function f ∈H∞(U) . Recall [3], a subset σ is thick if there is a bounded open set
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U in C such that σ is dominating in U . In [3], S. Brown [3] proved if T is hyponormal
operator with thick spectra then T has non trivial invariant subspace. Eschmeier [7]
showed that a Banach space operator T has a nontrivial invariant subspace if T has the
property (β ) with thick spectra.

In this paper we prove that analytic extension of n -normal operators are subscalar
without any additional condition and we present several properties of these classes of
operators. We also show that an analytic extension of n -normal operator has a nontrivial
invariant subspace. Some spectral properties of such operators are also presented.

2. Preliminaries

Let C denote the set of complex numbers and let D be a bounded open disk in C .
We denote by L2(D,H ) the Hilbert space of measurable functions f : D → H such
that

|| f ||2,D =
(∫

D
|| f (z)||2dμ(z)

) 1
2

< ∞,

where dμ(z) be the planar Lebesgue measure.
The Bergman space for D , denoted by A2(D,H ) , is a subspace of L2(D,H ) in

which each function is analytic in D ( ie., ∂ f
∂ z = 0). Let O(D,H ) be the Fréchet space

of H -valued analytic functions on D with respect to uniform topology. Note that

A2(D,H) = L2(D,H )∩O(D,H )

is a Hilbert space. The following function space Wm(D,H ) is a Sobolev type space

with respect to ∂ and of order m

Wm(D,H ) = { f ∈ L2(D,H ) : ∂
i
f ∈ L2(D,H ), for i = 1,2, . . . ,m}.

Note that W 2(D,H ) is a Hilbert space with respect to the norm

|| f ||2Wm =
m

∑
i=0

||∂ i
f ||22,D,

Wm(D,H ) becomes a Hilbert space contained continuously in L2(D,H ) . A bounded
linear operator S on H is called scalar of order m if it possesses a spectral distribution
of order m , i.e., if there is a continuous unital morphism of topological algebras

Φ : Cm
0 (C) → B(H )

such that Φ(z) = S , where z is the identity function on C . An operator is subscalar
if it is similar to the restriction of a scalar operator to an invariant subspace. Let U
be a (connected) bounded open subset of C , and let m be a nonnegative integer. The
linear operator Mf of multiplication by f on Wm(U,H ) is continuous, has a spectral
distribution of order m , and is defined by the functional calculus

ΦM : Cm
0 (C) → B(Wm(U,H )), ΦM( f ) = Mf .
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Therefore, Mf is a scalar operator of order m . Let

V : Wm(U,H ) →⊕∞
0 L2(U,H )

be the operator defined by V ( f ) = ( f ,∂ f , . . . ,∂
m

f ), f ∈ Wm(U,H ) . Then V is an
isometry such that VMz = (⊕m

0 Mz)V . Therefore, Mz is a subnormal operator.
An operator T ∈B(H ) is said to have the single-valued extension property (SVEP)

if for every open subset U of C and any analytic function f : U → H such that
(T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on U . A Hilbert space operator T ∈ B(H )
is said to satisfy Bishop’s property (β ) if, for every open subset U of C and every
sequence fn : U −→ H of analytic functions with (T − z) fn(z) converges uniformly
to 0 in norm on compact subsets of U , fn(z) converges uniformly to 0 in norm on
compact subsets of U .

For T ∈ B(H ) and x ∈ H , the local resolvent set of T at x , ρT (x) , is the
set of elements z0 ∈ C such that there exists an analytic function f (λ ) defined in a
neighborhood of z0 , with values in H , which verifies (T − λ ) f (λ ) ≡ x . The set
σT (x) , the compliment of ρT (x) is called the local spectrum of T at x . The local
spectral subspace of T denoted by HT (G) is the set

HT (G) = {x ∈ H : σT (x) ⊂ G}
for each subset G of C .

If T ∈ B(H) satisfies Bishop’s property (β ) , then T has the (SVEP).
For more details see [13, 15, 16].

3. Subscalarity

In this section we prove that an analytic extension of n -normal operator is sub-
scalar of order 2n+2. We begin with the following useful lemma due to Putinar [17].

LEMMA 3.1. (See [17, Proposition 2.1]) For a bounded open disk D in the com-
plex plane C , there is a constant CD such that for an arbitrary operator T ∈ B(H )
and f ∈W 2(D,H ) we have

||(I−P) f ||2,D � CD(||(T − z)∂ f ||2,D + ||(T − z)∂
2
f ||2,D),

where P denote the orthogonal projection of L2(D,H ) on to the Bergman space
A2(D,H )

Now we prove the following lemma which will be used for the sequel.

LEMMA 3.2. Let T ∈ B(H) be n-normal operator, then T has the Bishop’s prop-
erty (β ) .

Proof. Let T ∈ B(H) be n -normal. It is easy to see that Tn(T ∗)n = (T ∗)nT n for
some n ∈ N . Hence Tn is normal. Now, since Tn is normal, by applying [13] T has
the Bishop’s property (β ) . �
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LEMMA 3.3. Let T ∈ B(H ) be an n-normal operator and let { f j} be a se-
quence in Wm(D,H ) (m � 2) such that

lim
j→∞

||(T − z)∂
i
f j||2,D = 0

for i = 1,2, . . . ,m, where D is a bounded disc in C . Then,

lim
j→∞

||∂ i
f j||2,D0 = 0

for i = 1,2, . . . ,m−2 , where D0 � D.

Proof. Let T ∈ B(H ) be an n -normal operator. From Lemma 3.1, there exists a
constant CD such that

||(I−P) f ||2,D � CD(||(T − z)∂ f ||2,D + ||(T − z)∂
2
f ||2,D) (3.1)

for i = 1,2, . . . .m . From (3.1), we have

lim
j→∞

||(I−P)∂
i
f j||2,D = 0 (3.2)

for i = 1,2, . . . ,m−2. Thus we have

lim
j→∞

||(T − z)P∂
i
f j||2,D = 0 (3.3)

holds for i = 1,2, . . . ,m− 2. From Lemma 3.2, n -normal operator satisfies Bishop’s
property(β ) and hence by (3.3), we have

lim
j→∞

||P∂
i
f j||2,D0 = 0 (3.4)

for i = 1,2, . . . ,m−2, where D0 � D.
From (3.2) and (3.4) , we get

lim
j→∞

||∂ i
f j||2,D0 = 0

for i = 1,2, . . . ,m−2. �

LEMMA 3.4. Let T =
(

T1 T2

0 T3

)
∈ B(H1 ⊕H2) , where T1 is an n-normal oper-

ator and T3 is analytic with order n. For any bounded disc D which contains σ(T ) ,
define the map A : H1 ⊕H2 → W2n+2(D,H1)⊕W2n+2(D,H2)

(T−z)W2(n+1)(D,H1)⊕W2n+2(D,H2)
by

Ax = 1̃⊗ x(≡ 1⊗ x+(T − z)W2n+2(D,H1)⊕W2n+2(D,H2),

where 1⊗ x denotes the constant function sending any z ∈ D to x ∈ H1 ⊕H2 . Then,
A is injective with closed range.
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Proof. Let f j = f j,1 ⊕ f j,2 ∈W 2n+2(D,H1)⊕W2n+2(D,H2) and let x j = x j,1 ⊕
x j,2 ∈ H1⊕H2 be sequences such that

lim
j→∞

||(T − z) f j +1⊗ x j||W 2n+2(D,H1)⊕W 2n+2(D,H2)) = 0. (3.5)

From (3.5), we write

lim
j→∞

||(T1− z) f j,1 +T2 f j,2 +1⊗ x j,1||W 2n+2 = 0, (3.6)

lim
j→∞

||(T3− z) f j,2 +1⊗ x j,2||W 2n+2 = 0. (3.7)

Then from the definition of the norm of Sobolev space, (3.6) and (3.7) yields,

lim
j→∞

||(T1− z)∂
i
f j,1 +T2∂

i
f j,2||2,D = 0 (3.8)

and

lim
j→∞

||(T3 − z)∂
i
f j,2||2,D = 0 (3.9)

for i = 1,2, . . . ,2(n+1) .
Write F(z) = G(z)p(z) , where G is non vanishing analytic function on a neigh-

borhood of σ(T ) and nonconstant polynomial p . Let z1,z2,z3, . . . ,zn be zeros of p(z) .
Set qs = (z− z(s+1) . . .(z− zn) , s = 0,1,2,3 . . . ,n−1.

Now we need to prove that for all s = 0,1,2, . . . ,n−1 the following equation hold

lim
j→∞

||qsT
n−s
3 ∂

i
f j,2||2,Ds = 0 (3.10)

for i = 1,2, . . . ,2n+ 2− 2s , where σ(T ) � Dn � Dn−1 � . . . . . . � D1 ⊂ D . We use
induction on s for the proof (3.10). Since T3 is analytic of order n , (3.10) is true for
s = 0. Suppose that

lim
j→∞

||qs(Tn−s
3 )∂

i
f j,2||2,Ds = 0

holds for 0 < s < n and i = 1,2, . . . ,2n+2−2s .
From (3.9) and (3.10), we obtain that

0 = lim
j→∞

||qs+1(Tn−s−1
3 − z)∂

i
f j,2||2,Ds = lim

j→∞
||(zs+1− z)qsT

n−s−1
3 ∂

i
f j,2||2,Ds (3.11)

holds for i = 1,2, . . . ,2n−2s+2.
From [12, lemma 3.2], it follows that

lim
j→∞

||Tn−s−1
3 ∂

i
f j,2||2,Ds+1 = 0 (3.12)
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holds for i = 1,2, where σ(T ) � Ds+1 � Ds. Which completes the proof of (3.10).
Now consider s = n in (3.10), so we have

lim
j→∞

||∂ i
f j,2||2,Dn = 0 (3.13)

for i = 1,2. So from (3.8) and (3.9), we have

lim
j→∞

||(T1 − z)∂
i
f j,1||2,Dn = 0

for i = 1,2. It follows from Lemma 3.1 that

lim
j→∞

||(I−PH1) f j,1||2,Dt = 0, (3.14)

where σ(T ) � Dt � Dn and PH1 denotes the orthogonal projection of L2(Dt ,H1) onto
A2(Dt ,H1) .

From (3.13) and Lemma 3.1 with zero operator, it follows that

lim
j→∞

||(I−PH2) f j,2||2,Dt = 0, (3.15)

where PH2 denotes the orthogonal projection of L2(Dt ,H2) onto A2(Dt ,H2) .
Set P f j := PH1 f j,1 ⊕PH2 f j,2 . Then from (3.5), (3.14) and (3.15), we have

lim
j→∞

||(T − z)P f j +1⊗ x j||2,Dt = 0.

Let γ be a closed curve in Dk surrounding σ(T ) . Then, lim j→∞ ||P f j +(T − z)−1(1⊗
x j)(z)||= 0 uniformly for all z∈ γ . Then by Riesz-Dunford functional calculus, we get
lim j→∞ || 1

2π i

∫
γ P f j(z)dz+x j||= 0. But Cauchy’s theorem yields that 1

2π i

∫
γ P f j(z)dz =

0. Thus we have

lim
j→∞

||x j|| = 0.

This completes the proof. �
Now we are ready to prove that every analytic extension of an n -normal operator

has a scalar extension.

THEOREM 3.5. If T is an analytic extension of n-normal operator, then T is
subscalar of order 2n+2 , where n is a positive integer.

Proof. Let T =
(

T1 T2

0 T3

)
∈ B(H1 ⊕H2) , where T1 is an n -normal operator and

T3 is analytic with order n . For any bounded disc D which contains σ(T ) , the map

A : H ⊕K → W 2n+2(D,H1)⊕W2n+2(D,H2)

(T − z)W 2n+2(D,H1)⊕W2n+2(D,H2)
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by

Ax = 1̃⊗ x(≡ 1⊗ x+(T − z)W2n+2)(D,H1)⊕W2n+2(D,H2),

where 1⊗ x denotes the constant function sending any z ∈ D to x ∈ H1 ⊕H2 is in-
jective with closed range by Lemma 3.4. Consider M , which is the operator of multi-
plication by z on W 2n+2(D,H1)⊕W2n+2(D,H2) . Then M is scalar operator of order
2n+2 and has spectral distribution

Φ : C2n+2
0 (C) →W 2n+2(D,H1)⊕W2n+2(D,H2)

defined by Φ(ν)x = νx for ν ∈ C2n+2
0 (C) and x ∈ W 2n+2(D,H1)⊕W 2n+2(D,H2) .

Since (T − z)W 2n+2(D,H1)⊕W2n+2(D,H2) is invariant under M , M̃ is scalar opera-
tor of order 2n+2 with Φ̃ as a spectral distribution. From the definition of map A , we
have AT = M̃A . In particular R(A) is an invariant subspace for M̃ . Since T is similar
to restriction M̃|R(A) , it follows that T is subscalar of order 2n+2. �

The following corollaries are immediate.

COROLLARY 3.6. Let T be an analytic extension of an n-normal operator. Then
T satisfies the Bishop’s property (β ) .

COROLLARY 3.7. Let T be an analytic extension of an n-normal operator. Then
T satisfies the single valued extension property (SVEP).

Recall that an operator T ∈ B(H ) is called isoloid if every isolated point of spec-
trum of T is an eigenvalue. An operator T ∈ B(H ) is said to be polaroid if every
λ ∈ isoσ(T ) is a pole of the resolvent of T .

COROLLARY 3.8. Let T be a analytic extension of n-normal operator. Then T
is polaroid.

Proof. Assume that T is an analytic extension of n -normal operator. Then T
is subscalar by Theorem 3.5. Hence, it follows from [16, Corollary 2.2] that T is
polaroid. �

LEMMA 3.9. Let T ∈ B(H1 ⊕H2) be an analytic extension of n-normal opera-
tor, i.e.,

T =
(

T1 T2

0 T3

)
,

is an operator matrix on H1⊕H2 , where T1 is n-normal and F(T3) = 0 for a noncon-
stant analytic function F on a neighborhood D of σ(T3) . Then σ(T ) = σ(T1)∪σ(T3)
and σ(T3) is a subset of {z ∈ C : p(z) = 0} where F(z) = G(z)p(z) , G is analytic and
does not vanish on D, and p is a polynomial.
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Proof. Since p(T3) = 0, choose a minimal polynomial q such that q(T3) = 0
and q(z) is a factor of p(z) . Then {z ∈ C : q(z) = 0} is nonempty and is contained in
{z∈C : p(z) = 0} . First we will show that σ(T3) = σp(T3) = {z∈C : q(z) = 0} . Since
q(T3) = 0, we have q(σ(T3)) = σ(q(T3)) = {0} by the spectral mapping theorem. This
means that σ(T3) = {z∈C : q(z) = 0} . Moreover if we assume that z1 · · · ,zk are all the
roots of q(z) = 0, not necessarily distinct, then (T3− z1)(T3− z2) · · · (T3− zk)x = 0 for
all x ∈ H2 . By the minimality of the degree of q , we can select a vector x0 ∈ H2 such
that (T3 − z2) · · · (T3 − zk)x0 
= 0, and so z1 ∈ σ(p(T3) . Similarly, zi ∈ σp(T3) for all
i = 1;2; · · · ;k . Hence σ(T3) = σp(T3) = {z ∈ C : q(z) = 0} . Since {z ∈ C : q(z) = 0}
is a finite set, σ(T1)∩σ(T3) is also finite, which implies that σ(T1)∩σ(T3) has no
interior point. By using [9], we get σ(T ) = σ(T1)∪σ(T3) . �

THEOREM 3.10. Let T ∈ B(H1⊕H2) be an analytic extension of n-normal op-
erator, i.e.,

T =
(

T1 T2

0 T3

)
,

is an operator matrix on H1 ⊕H2 , where T1 is n-normal and F(T3) = 0 for a non-
constant analytic function F on a neighborhood D of σ(T3) . Then the following state-
ments hold

(i) HT (E) ⊆ HT1(E)⊕{0} for every subset E of C .
(ii) σT3(x2) ⊂ σT (x1 ⊕ x2) and σT1(x1) = σT (x1⊕0) , where x1⊕ x2 ∈ H1 ⊕H2 .
(iii) RT1(F)⊕0⊂ HT (F) , where RT1(F) := {y ∈ H1 : σT1(y) ⊂ F} for any subset

F ⊂ C .

Proof. (i) Let E be any subset of C and let x1 ∈ HT1(E) . Since T has SVEP by
Lemma 3.2, there exists an H -valued analytic function f1 on C \E such that (T1 −
z) f1(z) ≡ x1 on C \E . Hence (T − z)( f1(z)⊕ 0) ≡ x1 ⊕ 0 on C \E , and so x1 ⊕ 0 ∈
HT (E) .

(ii) Let x1 ⊕ x2 ∈ H1 ⊕H2 . If z0 ∈ ρT (x1 ⊕ x2) , then there exists an H -valued
analytic function defined on a neighborhood U of z0 such that (T −λ ) f (λ ) = x1⊕ x2

for all λ ∈ U . We can write f = f1 ⊕ f2 where f1 ∈ O(U ;H1) and f2 ∈ O(U ;H2) .
Then we get

(T −λ ) f (λ ) =
(

T1 −λ T2

0 T3 −λ

)(
f1(λ )
f2(λ )

)
=

(
x1

x2

)
,

Thus (T3 −λ ) f2(λ ) = x2 . Hence z0 ∈ ρT3(x2) . On the other hand, if z0 ∈ ρT (x1 ⊕0) ,
then there exists an H - valued analytic function defined on a neighborhood U of
z0 such that (T − λ )g(λ ) = x1 ⊕ 0 for all λ ∈ U . We can write g = g1 ⊕ g2 where
g1 ∈ O(U,H1) and g2 ∈ O(U,H2) . Then we get

(T −λ )(g(λ )) =
(

T1−λ T2

0 T3−λ

)(
g1(λ )
g2(λ )

)
=

(
x1

0

)
.

Thus (T1 −λ )g1(λ )+T2g2(λ ) ≡ x1 and (T3 −λ )g2(λ ) ≡ 0. Since T3 is algebraic of
order n , it has SVEP, which implies that g2(λ ) ≡ 0. Thus (T1 −λ )g1(λ ) ≡ x1 , and so
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z0 ∈ ρT1(x1) . Conversely, let z0 ∈ ρT1(x1) . Then there exists a function g1 ∈ O(U,H1)
for some neighborhood U of z0 such that (T1−λ )g1(λ )≡ x1 . Then (T −λ )(g1(λ )⊕
0) ≡ x1⊕0. Hence z0 ∈ ρT (x1⊕0) .

(iii) If x1 ∈ RT1(F) , then σT1(x1) ⊂ F . Since σT1(x1) = σT1(x1 ⊕ 0) by (ii),
σT1(x1⊕0)⊂ F . Thus x1⊕0 ∈ HT (F) , and hence RT1(F)⊕0 ⊂ HT (F) . �

LEMMA 3.11. Let T ∈ B(H) be F -quasi-n-normal and let M be a reducing
subspace for T . Then the restriction T |M is a p-quasi-n-normal operator.

Proof. Since T is an F -quasi-n -normal operator for some function F analytic
and nonconstant on a neighborhood of σ(T ) . Let F(z) = G(z)p(z) where G is a
nonvanishing analytic function on a neighborhood of σ(T ) and p is a nonconstant
polynomial. Since M is a T -reducing subspace, we can write

T =
(

T1 0
0 T3

)
,

on M ⊕M⊥ ; where T1 = T |M and T3 = (I−P)T (I −P)|M⊥ , and P denotes the or-
thogonal projection of H onto M . Since T is F -quasi-n -normal, F(T )∗(TnT ∗)F(T )
= F(T )∗T ∗TnF(T ) . Therefore

0 = G(T )∗
(

p(T1)∗(Tn
1 T ∗

1 −T∗
1 Tn

1 )p(T1) A
B C

)
G(T )

for some operators A;B and C by Riesz-Dunfords functional calculus. Since G(T ) is
invertible, p(T1)∗(Tn

1 T ∗
1 −T ∗

1 Tn
1 )p(T1) = 0. This implies that T1 = T |M is p -quasi-

n -normal. �

THEOREM 3.12. If T is an F -quasi-n-normal operator, then T is subscalar. In
particular, every k -quasi-n-normal operator is subscalar of order 2k + 2.

Proof. Suppose that T ∈ B(H ) be F -quasi-n -normal for some analytic function
F on a neighborhood of σ(T ) . If the range of F(T ) is norm dense in H , then T
is n -normal. Hence T is subscalar of order 2. Hence it suffices to assume that the
range of F(T ) is not norm dense in H . Since F(T ) commutes with T , R(F(T )) is a
T -invariant subspace. Thus T can be expressed as

T =
(

T1 T2

0 T3

)
,

on R(F(T ))⊕N(F(T )∗) ; where T1 = T |R(F(T )) and T3 = (I−P)T (I−P)|N(F(T )∗) , and

P denotes the projection of H onto R(F(T )) . Note that F(z) = G(z)p(z) where G is
a nonvanishing analytic function on a neighborhood of σ(T ) and p is a nonconstant
polynomial. Then G(T ) is invertible and thus we obtain that N(F(T )) = N(p(T )) .
Since p(T3) = (I−P)p(T )(I−P)|N(F(T )∗) , it follows for any x ∈ N(F(T )∗) ,

〈p(T3)x;y〉 = 〈p(T )x;y〉 = 〈x; p(T )∗y〉 = 0
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for all y ∈ N(F(T )∗) . Hence p(T3) = 0. Thus T3 is analytic. Since P(Tn
1 T ∗

1 −
T ∗
1 Tn

1 )P = 0, PTn
1 T ∗

1 P− PT ∗
1 Tn

1 P = 0. Hence Tn
1 T ∗

1 − T ∗
1 Tn

1 = 0. This shows that
T1 is n -normal. If T3 is analytic of order k , then T is subscalar of order 2k+2 by
Theorem 3.5. �

COROLLARY 3.13. Every F -quasi-n-normal operator has the Bishop’s property
(β ).

COROLLARY 3.14. Every k -quasi-n-normal operator T ∈ B(H ) is subscalar
of order 2k+2. In particular, T has the Bishop’s property (β ) .

It is known that a normal operator has a nontrivial invariant subspace. In the
following theorem, we will show that an analytic extension of n-normal operator also
has a nontrivial invariant subspace.

THEOREM 3.15. Let T be a n-normal operator. Then T has a nontrivial invari-
ant subspace.

Proof. Let T be a n -normal operator. Then Tn is normal. Hence, Tn has no
hypercyclic vector by [11, Corollary 4.5]. Hence, T has no hypercyclic vector by [2].
Therefore, T has a nontrivial closed invariant subspace by [10]. �

THEOREM 3.16. Let T be an analytic extension of n-normal operator. Then T
has a nontrivial invariant subspace.

Proof. Let T be an analytic extension of n -normal operator. Then there is a closed
subspace M invariant under T such that T1 = T |M⊥ is n -normal. If M⊥ = {0} , then
T is an n -normal. So, T has a nontrivial invariant subspace by Theorem 3.16. Now, if
M⊥ 
= {0} , then M is a non trivial proper invariant subspace for T . �
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