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ANALYTIC EXTENSION OF n-NORMAL OPERATORS

SALAH MECHERI

(Communicated by G. Misra)

Abstract. Normal operators and n-normal operators played a pivotal role in the development
of operator theory. In order to generalize these classes of operators, we introduce new classes
of operators which we call analytic extension of n- normal operator and F -quasi-n-normal
operator. We show that every analytic extension of n-normal operator and F -quasi-#n-normal
operator have scalar extensions. We also show that an analytic extension of n-normal operator
has a nontrivial invariant subspace. Some spectral properties are also presented.

1. Introduction

Let B(s¢) be the algebra of all bounded linear operators acting on infinite di-
mensional separable complex Hilbert space 7. Throughout this paper R(T), N(T),
o(T) denotes range, null space and spectrum of 7T € B(J#) respectively. An operator
T € B(.) is said to be analytic if there exists a nonconstant analytic function F on
a neighborhood of ¢(T) such that F(T) =0. An operator T € B(J¢) is said to be
algebraic if there is a nonconstant polynomial p such that p(7) = 0. Recall that an
operator T € B(J) is said to be normal if T*T =TT*. In[1], S. A. Alzuraiqi and A.
B. Patel introduced n-normal operators.

DEFINITION 1.1. An operator T € B(H) is said to be n-normal if
T*T" = T"T* (1.1)
for some n € N.

This definition seems natural. S. A. Alzraiqi and A. B. Patel proved characteriza-
tions of 2-normal, 3-normal and n-normal operators on C2. Also, they made several
examples of n-normal operators and proved that T is n-normal if and only if 7" is
normal. Also, they proved that if T is 2-normal with the following condition

o(T)n(-o(T)) =0; (1.2)
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then T is subscalar. Recently, the authors in [5] have studied spectral properties of an
n-normal operator 7 satisfying the following condition (1.2).

o(T)N(—o(T)) C {0}. (1.3)

It is a little weaker assumption than this condition (1.2). Recently the authors in [6],
studied several properties of n-normal. In particular, they proved that if 7 is 2-normal
with (1.3), then T is polarloid. They also studied subscalarity of n-normal operators
under certain conditions.

In order to generalize the classes of quasi-z-normal and k-quasi-n-normal opera-
tors, we introduce the class of F -quasi-n-normal operators as follows:

DEFINITION 1.2. An operator T € B(.¢) is said to be F-quasi-n-normal if
F(T)*(T"T* —T*T™")F(T) = 0 for some nonconstant analytic function F on some
neighborhood of ¢(T), and p-quasi-n-normal if there exists a nonconstant polynomial
p such that p(T)*(T"T* —T*T")p(T) = 0. In particular, if p(z) = z* for some positive
integer k or p(z) =z, then T is said to be k-quasi-n-normal operator or quasi-n-
normal operator, respectively.

If T € B(#¢) is analytic, then F(T) =0 for some nonconstant analytic function
F on a bounded neighborhood U of spectrum of 7. Since F' cannot have infinitely
many zeros in U, we write F(z) = G(z)p(z), where the function G is analytic and
does not vanish on U and p is a nonconstant polynomial with zeros in U. By Riesz-
Dunford functional calculus, G(T') is invertible and the invertibility of G(T') induces
that p(T) = 0, which means that T is algebraic (See [4]). We say that T is analytic
with order n when p has degree n.

In order to generalize the class of n-normal operators, we introduce analytic ex-
tensions of n-normal operators as follows:

DEFINITION 1.3. An operator T € B(J4 @ %) is said to be an analytic exten-
Ty T .
01 T2> € B(s4 @ ), where Tj is an n-normal
3
operator and T3 is analytic of order n, where n is a positive integer. This means that
T € B(.%¢) is said to be an analytic extension of an n-normal operator if there exists an
invariant subspace .# such that T| , is n-normal and T*| ,. is algebraic.

sion of n-normal operator if T =

Let 0 < m < . Recall that an operator T € B(7¢) is said to be a scalar operator
of order m if there exists a continuous unital moromorphism of topological algebra
D : Cj(C) — B(A) such that @(z) = T, where z stands for the identity function on
Cy', the space of all compactly supported functions continuously differentiable of order
m. An operator T is said to be subscalar of order m if T is similar to the restriction
of a scalar operator of order m to an invariant subspace ([14]). M. Putinar [17] proved
subscalarity for hyponormal operators.

Let H*(U) denote the space of all bounded analytic functions on a bounded open
set U in C. A subset ¢ of C is dominating in U if ||f|| = sup,cony |f(x)| holds for
each function f € H*(U). Recall [3], a subset ¢ is thick if there is a bounded open set
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U in C such that o is dominatingin U. In [3], S. Brown [3] proved if T is hyponormal
operator with thick spectra then 7' has non trivial invariant subspace. Eschmeier [7]
showed that a Banach space operator 7' has a nontrivial invariant subspace if 7' has the
property () with thick spectra.

In this paper we prove that analytic extension of n-normal operators are subscalar
without any additional condition and we present several properties of these classes of
operators. We also show that an analytic extension of n-normal operator has a nontrivial
invariant subspace. Some spectral properties of such operators are also presented.

2. Preliminaries
Let C denote the set of complex numbers and let D be a bounded open disk in C.

We denote by L*(D, ) the Hilbert space of measurable functions f : D — J# such
that

11

o= (] |f<z>|2du<z>)% <o,

where d(z) be the planar Lebesgue measure.
The Bergman space for D, denoted by A%(D,.5#), is a subspace of L*>(D,.7#) in

which each function is analytic in D (ie., g—’; =0). Let 0(D,#) be the Fréchet space
of 77 -valued analytic functions on D with respect to uniform topology. Note that

A*(D,H) = L*(D,. )N O(D, )
is a Hilbert space. The following function space W (D, s¢) is a Sobolev type space
with respect to d and of order m
W™D, ) = {f € [2(D,#):d f € [X(D, ), fori=1,2,...,m}.

Note that W2(D,.7#) is a Hilbert space with respect to the norm
2 < (1312
Lf1fm = 2110 f13.p:
i=0

W™ (D, ) becomes a Hilbert space contained continuously in L*(D,.5#). A bounded
linear operator S on 7 is called scalar of order m if it possesses a spectral distribution
of order m, i.e., if there is a continuous unital morphism of topological algebras

®: CI'(C) — B(A)

such that ®(z) = S, where z is the identity function on C. An operator is subscalar
if it is similar to the restriction of a scalar operator to an invariant subspace. Let U
be a (connected) bounded open subset of C, and let m be a nonnegative integer. The
linear operator M of multiplication by f on W™ (U,.7) is continuous, has a spectral
distribution of order m, and is defined by the functional calculus

@y : Gy (C) — BW™(U, ), Pu(f) = My.
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Therefore, My is a scalar operator of order m. Let
VWU, ) — Syl (U, )

be the operator defined by V(f) = (f,df,...,d f),f € W"(U, ). Then V is an
isometry such that VM, = (&' M)V . Therefore, M, is a subnormal operator.

An operator T € B(J) is said to have the single-valued extension property (SVEP)
if for every open subset %7 of C and any analytic function f :% — ¢ such that
(T —2z)f(z) =0 on G, we have f(z) =0 on % . A Hilbert space operator T € B(J)
is said to satisfy Bishop’s property (B) if, for every open subset % of C and every
sequence f, : % — # of analytic functions with (T —z)f,,(z) converges uniformly
to 0 in norm on compact subsets of %, f,(z) converges uniformly to O in norm on
compact subsets of % .

For T € B() and x € 5, the local resolvent set of T at x, pr(x), is the
set of elements zyp € C such that there exists an analytic function f(A) defined in a
neighborhood of zg, with values in .7, which verifies (T —A)f(A) = x. The set
or(x), the compliment of pr(x) is called the local spectrum of T at x. The local
spectral subspace of T denoted by 77 (G) is the set

H4(G) = {x € A or(x) C G}

for each subset G of C.
If T € B(H) satisfies Bishop’s property (f3), then T has the (SVEP).
For more details see [13, 15, 16].

3. Subscalarity

In this section we prove that an analytic extension of n-normal operator is sub-
scalar of order 2n + 2. We begin with the following useful lemma due to Putinar [17].

LEMMA 3.1. (See [17, Proposition 2.1]) For a bounded open disk D in the com-
plex plane C, there is a constant Cp such that for an arbitrary operator T € B(J)
and f € W*(D, ) we have
=2
20+ (T =2)d fll2.0),

(I =P)fl2.0 < Co(||(T —2)df]

where P denote the orthogonal projection of L*(D, ) on to the Bergman space
A%(D, )

Now we prove the following lemma which will be used for the sequel.

LEMMA 3.2. Let T € B(H) be n-normal operator, then T has the Bishop’s prop-

erty (B).

Proof. Let T € B(H) be n-normal. It is easy to see that T"(T*)" = (T*)"T" for
some n € N. Hence T" is normal. Now, since 7" is normal, by applying [13] T has
the Bishop’s property (). O
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LEMMA 3.3. Let T € B(J) be an n-normal operator and let {f;} be a se-
quence in W"*(D, ) (m > 2) such that

tim (7= 2)9 | 2 =0
Jori=1,2,...,m, where D is a bounded disc in C. Then,
}gg\lgifj\lz,uo =0
fori=1,2,...,m—2, where Dy G D.

Proof. Let T € B(#¢) be an n-normal operator. From Lemma 3.1, there exists a
constant Cp such that

1= P)fll.p < Co((T =2 fllap + (T =2 fll20) G.1)
for i=1,2,....m. From (3.1), we have
tim (1= P)3 ;|20 =0 (3.2)
fori=1,2,...,m—2. Thus we have
tim (7~ 9P f;120 =0 G3)

holds for i = 1,2,...,m —2. From Lemma 3.2, n-normal operator satisfies Bishop’s
property(3) and hence by (3.3), we have

) i
tim [1Pd'f} 2.0, =0 G4

fori=1,2,...,m—2, where Dy G D.
From (3.2) and (3.4) , we get

}gg\lgfj\lwo =0
fori=1,2,....m—2. [

nh
0 T3
ator and T is analytic with order n. For any bounded disc D which contains o (T),

. WD) eW> (D, A5)
define the map A : H. & A — (T—z)W2(+1) (D A ) W2 +2(D,5) by

LEMMA 3.4. Let T = ( ) € B(s @ ), where Ty is an n-normal oper-

Ax=1®x(= 1 @x+ (T —2)W22(D, 74) & W2 2(D, 3),

where 1 ® x denotes the constant function sending any z € D to x € 74 & 56. Then,
A is injective with closed range.
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Proof. Let f; = fi1® fj2 € WD, 54) @ W>"2(D, 54) and let x; = xj 1 &
Xj2 € S @® St be sequences such that

}E}T;lo H(T — Z)fj + l ®xj| ‘W2"+2(D,=9ﬁ)®W2"+2(D,=}2ﬂ2)) == 0 (35)

From (3.5), we write

IILHOIO (Th —2)fj1 +Tafjo+ 1@xj 1|22 =0, (3.6)
lim |[(T3 — z) fj2 + 1 ®@xj 2|22 = 0. (3.7)
J—oo

Then from the definition of the norm of Sobolev space, (3.6) and (3.7) yields,

lim [[(Ti = 2)9 f1+ 29 fjallon =0 (3.8)
and
fim |(73 ~2)d fiallp =0 (39)
fori=1,2,...,2(n+1).
Write F ( ) = G(2)p(z), where G is non vanishing analytic function on a neigh-
borhood of ¢(T) and nonconstant polynomial p. Let z;,22,z3,...,2, be zeros of p(z).

Set g5 = (2= 2(s11)---(z2—2n), s=0,1,2,3...,n— 1.
Now we need to prove that forall s =0,1,2,...,n— 1 the following equation hold

lim [|g, 73 £, =0 (3.10)
J‘}oc

fori=1,2,...,2n+2—2s, where o(T) S D, S D, 1 & ...... S Dy CD. We use
induction on s for the proof (3.10). Since T3 is analytlc of order n, (3.10) is true for
s = 0. Suppose that

tim ||qs(73 )3 f;2||2.0, = 0
J—

holdsfor 0 <s<nandi=1,2,...,2n+2—2s.
From (3.9) and (3.10), we obtain that

0= lim [lge1 (T =2)9 £

2, = lim [l(z541 = 2as T 719 fiall2p, (1D
holds for i =1,2,...,2n—2s+2.

From [12, lemma 3.2], it follows that
=0 (3.12)

s+1

. —_—— 71‘
lim [|737710 frz .o
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holds for i = 1,2, where 6(T) & D1 & Dy. Which completes the proof of (3.10).
Now consider s = n in (3.10), so we have

. —i
lim [0 fj2ll2.0, =0 (3.13)

for i =1,2. So from (3.8) and (3.9), we have

) =i
}g{}oH(Tl —2)d fiall2.p, =0

for i =1,2. It follows from Lemma 3.1 that
fim |I(7 = Pr ) fjall2.o, = 0, (3.14)

where 6(T) S D; S D, and Py denotes the orthogonal projection of L*(D;,.#7) onto
A%(Dy, 1),
From (3.13) and Lemma 3.1 with zero operator, it follows that

fim [}(7 = Pay) fr2l 2.0, = 0, (3.15)

where Py denotes the orthogonal projection of L*(Dy,.73) onto A*(D;, 7).
Set Pfj:= Pysfi1 D Pysfj2- Then from (3.5), (3.14) and (3.15), we have

lim H(T — Z)Pfj +1 ®xj|

J—oo

2.0, = 0.

Let 7y be a closed curve in Dy surrounding (7). Then, lim;_...||Pfj+(T —2) ' (1®
xj)(z)|| = 0 uniformly for all z € y. Then by Riesz-Dunford functional calculus, we get
lim ;e || 55 J,Pfj(z)dz+x;|| = 0. But Cauchy’s theorem yields that = J,Pfi(z)dz=
0. Thus we have

lim |[x;[| = 0.
Jj—reo

This completes the proof. [l

Now we are ready to prove that every analytic extension of an n-normal operator
has a scalar extension.

THEOREM 3.5. If T is an analytic extension of n-normal operator, then T is
subscalar of order 2n+ 2, where n is a positive integer.

nT
0 T3
T; is analytic with order n. For any bounded disc D which contains 6(T'), the map

Proof. Let T = < ) € B(s4 @ 543), where T is an n-normal operator and

W22(D, ) @ WA (D, 5)

A DK —
(T _Z)W2n+2(D7%) @W2"+2(D’%)
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by

Ax=1@x(= 1 @x+ (T —2)W22(D, J4) & Wn+2(D, 75),

where 1 ® x denotes the constant function sending any z € D to x € J7] & 73 is in-
jective with closed range by Lemma 3.4. Consider M, which is the operator of multi-
plication by z on W?"*2(D, s4) @ W?"*2(D, 7). Then M is scalar operator of order
2n+ 2 and has spectral distribution

o C(2)n+2(C) N W2n+2(D,%) EBW2H+2(D,%)

defined by ®(v)x = vx for v € C;"**(C) and x € W*2(D, /) & W' (D, 783).
Since (T —z)W22(D, 7)) @ W2+2(D, #5) is invariant under M, M is scalar opera-
tor of order 2n+2 with ® as a spectral distribution. From the definition of map A, we
have AT = MA. In particular R(A) is an invariant subspace for M. Since T is similar
to restriction M| R(a)- it follows that 7' is subscalar of order 2n+2. [

The following corollaries are immediate.

COROLLARY 3.6. Let T be an analytic extension of an n-normal operator. Then
T satisfies the Bishop’s property ().

COROLLARY 3.7. Let T be an analytic extension of an n-normal operator. Then
T satisfies the single valued extension property (SVEP).

Recall that an operator T € B(J¢) is called isoloid if every isolated point of spec-
trum of T is an eigenvalue. An operator T € B(¢) is said to be polaroid if every
A € isoo(T) is a pole of the resolvent of 7.

COROLLARY 3.8. Let T be a analytic extension of n-normal operator. Then T
is polaroid.

Proof. Assume that T is an analytic extension of n-normal operator. Then T
is subscalar by Theorem 3.5. Hence, it follows from [16, Corollary 2.2] that T is
polaroid. [J

LEMMA 3.9. Let T € B(541 @ 5%3) be an analytic extension of n-normal opera-

tor, i.e.,
(T
(57 )

is an operator matrix on S @ 6, where Ty is n-normal and F(T3) = 0 for a noncon-
stant analytic function F on a neighborhood D of 6(T3). Then 6(T) = o(T1) Uo(T3)
and o (Ts) is a subset of {z€ C: p(z) =0} where F(z) = G(z)p(z), G is analytic and
does not vanish on D, and p is a polynomial.
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Proof. Since p(Tz) = 0, choose a minimal polynomial ¢ such that ¢(73) =0
and ¢(z) is a factor of p(z). Then {z € C: ¢(z) =0} is nonempty and is contained in
{ze€ C: p(z) =0}. First we will show that 6(73) = 6,(T3) = {z€ C: g(z) =0}. Since
q(T3) =0, we have q(0(T3)) = 0(q(T3)) = {0} by the spectral mapping theorem. This
means that 6(73) = {z € C: g(z) =0} . Moreover if we assume that z; - - -,z are all the
roots of ¢(z) = 0, not necessarily distinct, then (73 —z1)(T3 —22) -+ (T3 — zx)x = 0 for
all x € H,. By the minimality of the degree of g, we can select a vector xy € H> such
that (T3 —z2)--- (T3 — zx)x0 # 0, and so z; € o(p(T3). Similarly, z; € 0,(73) for all
i=1;2;---;k. Hence 6(T3) = 0,(T3) = {z€ C: g(z) =0}. Since {z € C: ¢(z) =0}
is a finite set, 6(77) No(73) is also finite, which implies that o(7;) N o(73) has no
interior point. By using [9], we get 6(T) = o(T1)Uo(T3). O

THEOREM 3.10. Let T € B(] @ 5%) be an analytic extension of n-normal op-

erator, i.e.,
(D
(57 ).

is an operator matrix on i @ 4, where Ty is n-normal and F(T3) = 0 for a non-
constant analytic function F on a neighborhood D of o(T3). Then the following state-
ments hold

(i) Hr (E) C Hy, (E) @ {0} for every subset E of C.

(ii) or; (x2) C or(x1 ®x2) and oy, (x1) = or (x; $0), where x; Bxy € A B H5.

(iii) R7, (F) ®0 C Hr(F), where Ry, (F) :={y € H, : or,(y) C F} for any subset
F c C.

Proof. (i) Let E be any subset of C and let x; € Hy, (E). Since T has SVEP by
Lemma 3.2, there exists an H -valued analytic function f; on C\ E such that (7] —
2)f1(z) =x; on C\E. Hence (T —z)(f1(z) ®0)=x; 90 on C\ E, and so x; B0 €
Hr(E).

(ii) Let x) ®xp € 54 @ 5. If 79 € pr(x) @ x2), then there exists an .7 -valued
analytic function defined on a neighborhood U of zy such that (T — 1) f(1) = x; B x
forall A € U. We can write f = f1 ® f, where fi € O(U;H;) and f> € O(U;H,).

Then we get
(T—2)f(2) = (TIEA T3T—2/l> (%;) B (2)’

Thus (T3 — ) f2(A) = x. Hence zg € pr, (x2). On the other hand, if zg € pr(x; &0),
then there exists an 7 - valued analytic function defined on a neighborhood U of
zo such that (T —24)g(A) =x; @0 for all L € U. We can write g = g; & g» where
g1 €0(U,74) and g, € O(U,.74). Then we get

reansin - (7,5, (35 (3)

Thus (77 —4)g1(A) + Thga(A) =x; and (T5 — A)g2(A) = 0. Since Tj is algebraic of
order n, it has SVEP, which implies that g»(A) = 0. Thus (77 —A)g1(4) = x1, and so
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20 € pr; (x1). Conversely, let zg € pr, (x1). Then there exists a function g; € O(U,J4)
for some neighborhood U of zg such that (T; —A)gi(A) =x;. Then (T —21)(gi1(A) @
0) =x; ©0. Hence z9 € pr(x1 ©0).

(iil) If x; € Ry (F), then o7 (x;) C F. Since o7 (x1) = o7 (x; $0) by (ii),
or, (x1®0) C F. Thus x; $0 € Hr(F), and hence Ry, (F)®0C Hr(F). O

LEMMA 3.11. Let T € B(H) be F -quasi-n-normal and let 4 be a reducing
subspace for T. Then the restriction T | 4 is a p-quasi-n-normal operator.

Proof. Since T is an F -quasi-n-normal operator for some function F analytic
and nonconstant on a neighborhood of ¢(T). Let F(z) = G(z)p(z) where G is a
nonvanishing analytic function on a neighborhood of ¢(7) and p is a nonconstant
polynomial. Since .# is a T -reducing subspace, we can write

(T O
r=(0n )
on A ®.#*; where Ty = T|y and T3 = (I — P)T(I — P)| 41, and P denotes the or-

thogonal projection of .7 onto .# . Since T is F -quasi-n-normal, F(T)*(T"T*)F(T)
=F(T)*T*T"F(T). Therefore

for some operators A; B and C by Riesz-Dunfords functional calculus. Since G(T') is
invertible, p(T1)*(T{'Ty — T;*T{")p(T1) = 0. This implies that 7} =T | 4 is p-quasi-
n-normal. [J

THEOREM 3.12. If T is an F -quasi-n-normal operator, then T is subscalar. In
particular, every k-quasi-n-normal operator is subscalar of order 2k + 2.

Proof. Suppose that T € B(J¢) be F -quasi-n-normal for some analytic function
F on a neighborhood of ¢(T). If the range of F(T) is norm dense in ¢, then T
is n-normal. Hence T is subscalar of order 2. Hence it suffices to assume that the
range of F(T) is not norm dense in .77. Since F(T) commutes with 7, R(F(T)) is a
T -invariant subspace. Thus 7' can be expressed as

(N
(57 ).

on R(F(T))®N(F(T)*); where T} = T\m and T3 = (I = P)T (I — P)|y(r(1)-)» and

P denotes the projection of H onto R(F(T)). Note that F(z) = G(z)p(z) where G is
a nonvanishing analytic function on a neighborhood of ¢(T') and p is a nonconstant
polynomial. Then G(T) is invertible and thus we obtain that N(F(T)) = N(p(T)).
Since p(T3) = (I P)p(T)(I — P)|n(r(r)+)- it follows for any x € N(F(T)"),

(p(T3)x;y) = (p(T)x;y) = (x;p(T)*y) =0
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for all y € N(F(T)*). Hence p(T3) = 0. Thus T3 is analytic. Since P(T{'T}]" —
IyT"P =0, PT!'T}P — PT{T'"P = 0. Hence T'T}" — T;'T{" = 0. This shows that
T) is n-normal. If T3 is analytic of order k, then T is subscalar of order 2k+2 by
Theorem 3.5. U

COROLLARY 3.13. Every F -quasi-n-normal operator has the Bishop'’s property

(B).

COROLLARY 3.14. Every k-quasi-n-normal operator T € B(J¢) is subscalar
of order 2k+2. In particular, T has the Bishop’s property (B).

It is known that a normal operator has a nontrivial invariant subspace. In the
following theorem, we will show that an analytic extension of n-normal operator also
has a nontrivial invariant subspace.

THEOREM 3.15. Let T be a n-normal operator. Then T has a nontrivial invari-
ant subspace.

Proof. Let T be a n-normal operator. Then 7" is normal. Hence, T" has no
hypercyclic vector by [11, Corollary 4.5]. Hence, T has no hypercyclic vector by [2].
Therefore, T has a nontrivial closed invariant subspace by [10]. [

THEOREM 3.16. Let T be an analytic extension of n-normal operator. Then T
has a nontrivial invariant subspace.

Proof. Let T be an analytic extension of n-normal operator. Then there is a closed
subspace .# invariantunder T such that T; = T| ;. is n-normal. If .Z* = {0}, then
T is an n-normal. So, T has a nontrivial invariant subspace by Theorem 3.16. Now, if
M+ # {0}, then .# is a non trivial proper invariant subspace for 7. [J
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