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FROBENIUS NORM INEQUALITIES OF

COMMUTATORS BASED ON DIFFERENT PRODUCTS
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Abstract. The difference AB−BA of two matrices A and B is called the commutator (or Lie
product). In this paper, we are concerned with inequalities for the Frobenius norm of commu-
tators based on other products, including the Kronecker product, the Khatri-Rao product, the
contracted product, and the T-product. We also study the characterization of their corresponding
maximal pairs.
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[11] C. CHENG, X. JIN, S. VONG, A survey on the Böttcher-Wenzel conjecture and related problems, Oper.
Matrices, vol. 9 (2015), pp. 659–673.

[12] C. CHENG, C. LEI, On Schatten p-norms of commutators, Linear Algebra Appl., vol. 484 (2015), pp.
409–434.

[13] C. CHENG, Y. LIANG, Some sharp bounds for the commutator of real matrices, Linear Algebra Appl.,
vol. 521 (2017), pp. 263–282.

[14] C. CHENG, Y. LIANG, Singular values, eigenvalues and diagonal elements of the commutator of 2×2
rank one matrices, Electron. J. Linear Algebra, vol. 36 (2020), pp. 1–20.

[15] C. CHENG, S. VONG, D. WENZEL, Commutators with maximal Frobenius norm, Linear Algebra
Appl., vol. 432 (2010), pp. 292–306.

c© � � , Zagreb
Paper OaM-15-43

http://dx.doi.org/10.7153/oam-2021-15-43


646 W.-H. LIU, Z.-J. XIE AND X.-Q. JIN

[16] A. CICHOCKI, N. LEE, I. OSELEDETS, A. PHAN, Q. ZHAO, D. MANDIC,Low-rank tensor networks
for dimensionality reduction and large-scale optimization problems: perspectives and challenges part
1, ArXiv preprint, arXiv:1609.00893v1, 2016.
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