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FROBENIUS NORM INEQUALITIES OF
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(Communicated by F. Kittaneh)

Abstract. The difference AB−BA of two matrices A and B is called the commutator (or Lie
product). In this paper, we are concerned with inequalities for the Frobenius norm of commu-
tators based on other products, including the Kronecker product, the Khatri-Rao product, the
contracted product, and the T-product. We also study the characterization of their corresponding
maximal pairs.

1. Introduction

The commutator plays an important role in the areas of Lie group, Lie algebra,
perturbation analysis, operator theory, and matrix manifold computation [1, 4, 5, 25,
26, 38]. In 2005, Böttcher and Wenzel [6] proposed a conjecture that the upper bound
for the Frobenius norm of the commutator of any A,B ∈ Rn×n is given by

‖AB−BA‖F �
√

2‖A‖F‖B‖F . (1.1)

Note that
√

2 is the best possible coefficient, because the equality in (1.1) holds when
we take

A =
[
0 0
1 0

]
, B =

[
0 1
0 0

]
.

Besides, Böttcher and Wenzel [6] also proved the conjecture for the case of 2×2
matrices. In 2007, László [27] showed that the inequality holds for the case of 3× 3
matrices. The conjecture was first proved for any pair of n×n real matrices in 2008 by
Vong and Jin [36]. Later, Lu [29] gave a different proof independently and the result is
included in [30]. Böttcher and Wenzel [7] extended the result to general n×n complex
matrices. Some other alternative proofs of this conjecture can be found in [2, 31].
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Keywords and phrases: Commutator, Böttcher-Wenzel conjecture, Frobenius norm, Kronecker prod-

uct, Khatri-Rao product, contracted product, T-product, maximal pair.
The research is supported by research grants MYRG2019-00042-FST from University of Macau, 0014/2019/A from

FDCT of Macao, and National Natural Science Foundation of China (No. 11801074).
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-15-43

645

http://dx.doi.org/10.7153/oam-2021-15-43


646 W.-H. LIU, Z.-J. XIE AND X.-Q. JIN

After the affirmation of the Böttcher-Wenzel conjecture, there were several subse-
quent problems considered. One is the maximal pairs of the inequality. By maximal
pairs, one addresses those two nonzero matrices A and B such that

‖AB−BA‖F =
√

2‖A‖F‖B‖F ,

i.e., (1.1) holds in (non-trivial) equality.
Böttcher and Wenzel [7] gave some necessary conditions for maximal pairs and

obtained maximal pairs for 2× 2 matrices, rank one matrices, and normal matrices.
Later, Cheng, Vong, and Wenzel [15] gave a complete characterization of maximal
pairs. We remark that the proof in [15] was deduced by heavy calculations. Cheng
et al. [9] presented an alternative proof of the characterization of maximal pairs again
according to a proof in [2]. For convenience of the study in subsequent sections, we
similarly call a pair of nonzero matrices (or tensors) satisfying the respective equality a
maximal pair for the corresponding inequality. For more research on norm inequalities
of the commutator, we refer to [8, 10, 11, 12, 13, 14, 18, 19, 21, 32, 37].

In this paper, we study the inequality (1.1) based on other products than the usual
matrix product and propose the characterization of their maximal pairs.

2. Commutators based on other matrix products

In this section, we study the norm inequalities of commutators based on the Kro-
necker product and the Khatri-Rao product, and we investigate how the different prod-
ucts relate.

2.1. Kronecker product

Given two matrices A = [ai j]∈Cm×n and B = [bi j]∈Cp×q , the Kronecker product
of A and B is defined by

A⊗B :=

⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎦ ∈ C

mp×nq.

The Frobenius norm inequality of commutator based on the Kronecker product
has been studied by Böttcher and Wenzel [7] for square matrices. Their result is easily
extended to rectangular matrices.

THEOREM 2.1. Let A ∈ Cm×n and B ∈ Cm×n . We have

‖A⊗B−B⊗A‖F �
√

2‖A‖F‖B‖F . (2.1)

Furthermore, when A,B are nonzero, (A,B) is a maximal pair for (2.1) if and only if
tr(A∗B) = 0 .

The proof of the theorem is similar to that in [7] and we therefore omit it.
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EXAMPLE 2.2. We present a kind of maximal pair for (2.1). Let A,B ∈ C3×2 ,
where

A =

⎡
⎣1 0

0 1
0 0

⎤
⎦ , B =

⎡
⎣b11 b12

b21 b22

b31 b32

⎤
⎦

with b11 +b22 = 0. It is easy to see that tr(A∗B) = b11 +b22 = 0 and |b11| = |b22| . By
some calculations, we find that

‖A⊗B−B⊗A‖2
F = 2|b11−b22|2 +4∑

i�= j

|bi j|2

= 8|b11|2 +4∑
i�= j

|bi j|2

= 4∑
i, j

|bi j|2 = 2‖A‖2
F‖B‖2

F .

2.2. Khatri-Rao product

Next we discuss the commutator based on another product of matrices known
as the Khatri-Rao product [22]. It was first presented by Khatri and Rao in 1968,
which was used to solve some functional equations of the characterization of probability
distribution [22] and the estimation of heteroscedastic variances [35]. For matrices

A = [a1,a2, . . . ,an] ∈ C
m×n, B = [b1,b2, . . . ,bn] ∈ C

p×n

with the same number of columns n , the Khatri-Rao product A�B is defined to be the
partitioned matrix

A�B := [a1⊗b1,a2⊗b2, . . . ,an⊗bn] ∈ C
mp×n.

THEOREM 2.3. Let A ∈ Cm×n , B ∈ Cm×n . We have

‖A�B−B�A‖F �
√

2‖A‖F‖B‖F . (2.2)

Proof. By the previous definition, we have

A�B−B�A= [a1⊗b1−b1⊗a1, . . . ,an⊗bn−bn⊗an] ∈ C
m2×n

and

‖A�B−B�A‖2
F = ‖a1⊗b1−b1⊗a1‖2

2 + · · ·+‖an⊗bn−bn⊗an‖2
2. (2.3)

From the inequality (2.1) for the Kronecker product, one has

‖a j ⊗b j −b j ⊗a j‖2
2 � 2‖a j‖2

2‖b j‖2
2,
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for 1 � j � n . Thus, it follows from (2.3) that

‖A�B−B�A‖2
F � 2 (‖a1‖2

2‖b1‖2
2 + · · ·+‖an‖2

2‖bn‖2
2)

� 2 (‖a1‖2
2 + · · ·+‖an‖2

2)(‖b1‖2
2 + · · ·+‖bn‖2

2)

= 2 ‖A‖2
F‖B‖2

F .

Hence, (2.2) is immediate. �

The characterization of maximal pairs for (2.2) is a little more restrictive compared
to the one of (2.1), taking into account the additional structures.

COROLLARY 2.4. Let A = [a1,a2, . . . ,an],B = [b1,b2, . . . ,bn]∈Cm×n be nonzero.
Then (A,B) is a maximal pair for (2.2) if and only if there exists an integer i with
1 � i � n such that

(1) a∗i bi = 0 ;

(2) a j = b j = 0 , for any j �= i , 1 � j � n.

Proof. Based on the proof of above theorem, we find that (A,B) is a maximal pair
for (2.2) if and only if

(i) a∗kbk = tr(a∗kbk) = 0, for every 1 � k � n ;

(ii) ‖ak‖2
2‖b j‖2

2 = 0, for any k �= j , 1 � k, j � n .

Since A and B are nonzero, suppose ai �= 0 for a fixed i . According to condition (ii),
we get ‖b j‖2

2 = 0, i.e., b j = 0 , for any j �= i . Since B �= 0 , we have bi �= 0 . By using
condition (ii) again, we obtain a j = 0 , for any j �= i . Hence only ai and bi are nonzero,
and the other columns are zero. Therefore, (1) & (2) is equivalent to (i) & (ii). �

EXAMPLE 2.5. We present a simple example of a maximal pair for (2.2). Let
A,B ∈ R3×2 , where

A =

⎡
⎣0 1

0 0
0 1

⎤
⎦ , B =

⎡
⎣0 b12

0 b22

0 b32

⎤
⎦

with b12+b32 = 0. Thus, a1 = b1 = 0 and a∗2b2 = b12+b32 = 0. By some calculations,
we have

‖A�B−B�A‖2
F = 2|b12−b32|2 +4|b22|2

= 8|b12|2 +4|b22|2
= 4(|b12|2 + |b22|2 + |b32|2)
= 2‖A‖2

F‖B‖2
F .
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2.3. Relationship of commutators based on different products

The following theorem introduces a chain of inequalities of the commutators based
on the matrix product and the Kronecker product.

THEOREM 2.6. [7] If A,B ∈ Cn×n , then

‖AB−BA‖F � ‖A⊗B−B⊗A‖F �
√

2‖A‖F‖B‖F .

A similar relation can be found with the Khatri-Rao product.

THEOREM 2.7. Let A,B ∈ Cm×n , then we have

‖A�B−B�A‖F � ‖A⊗B−B⊗A‖F.

Proof. It is easy to see that

A⊗B =
[
a1⊗B | a2⊗B | . . . | an⊗B

]
,

where A is partitioned as A = [a1,a2, . . . ,an] . Thus, every column of A�B is a column
of A⊗B . This is also preserved under subtracting two such objects, completing the
proof. �

However, the commutators based on the matrix product and the Khatri-Rao prod-
uct cannot be compared directly. The following example gives the reason.

EXAMPLE 2.8. Let A,B ∈ R2×2 , where

A =
[
2 2
1 1

]
, B =

[
2 x
2 1

]
,

and x ∈ R . By some calculations, we obtain

‖AB−BA‖2
F −‖A�B−B�A‖2

F

= (3x2−20x+37)− (2x2−8x+16) = x2−12x+21.

Thus, when x = 2, we have 1, i.e., ‖AB−BA‖F > ‖A�B−B�A‖F ; when x = 3, we
have −6, i.e., ‖AB−BA‖F < ‖A�B−B�A‖F .

3. Extension to tensor products

We first recall notations of tensors. An m th-order tensor

A = [ai1i2...im ], 1 � is � ns, 1 � s � m,

is a multiway array consisting of n1n2 · · ·nm entries. We denote the set of all these ten-
sors over the complex field C (or the real field R) as Cn1×n2×···×nm (or Rn1×n2×···×nm ).
If

n1 = n2 = · · · = nm = n,
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then we call A an m th-order n -dimensional tensor. We denote the set of all complex
(or real) m th-order n -dimensional tensors as C[m,n] (or R[m,n] ). The Frobenius norm
of a tensor is defined by

‖A ‖F :=

(
n1,...,nm

∑
i1,...,im=1

|ai1...im |2
) 1

2

, A = [ai1...im ] ∈ C
n1×···×nm ,

where |ai1...im | is the absolute value of ai1...im . The Kronecker product of Section 2.1
represents the classical product of two second-order tensors. In this section, we study
the bound of the Frobenius norm of commutators based on two other tensor products:
the contracted product and the T-product.

3.1. Contracted product

Let c and r be two subvectors of m = [1,2, . . . ,m] and d = [1,2, . . . ,d] , respec-
tively, and assume they have the same length. For tensors A ∈ C[m,n] and B ∈ C[d,n] ,
the contracted product [3, 16, 17, 34] of A and B with respect to c and r , is defined
by

C = A ×r
c B with C (i(\c), j(\r)) = ∑

{i(c)|i(c)=j(r)}
A (i)B(j),

where i = [i1, i2, . . . , im] , j = [ j1, j2, . . . , jd ] , i(c) := [ic1 , ic2 , . . . , ics ] if c = [c1,c2, . . . ,cs] ,
and \c denotes the subvector whose elements arranged in ascending order are in m but
not in c .

In [37], Xie et al. concluded the following result of the commutator bound for
some special contracted tensor products.

THEOREM 3.1. Suppose A ,B ∈ C[m,n] . Let c and r be two subvectors of the
vector m = [1,2, . . . ,m] of the same length. If r = ρ(c) for some involution ρ (ρ is a
permutation with ρ2 being the identity) or if r = σ(\c) for some permutation σ , then
we have

‖A ×r
c B−B×r

c A ‖F �
√

2‖A ‖F‖B‖F . (3.1)

According to the proof in [37], we know that (A ,B) is a maximal pair for (3.1)
if and only if one of the following conditions for the associated matricizations of the
tensor contractions holds:

‖A\c×ρ(c)Bc×\c − (Bc×\c)T (A\c×ρ(c))T ‖F =
√

2‖A\c×ρ(c)‖F‖Bc×\c‖F , when
r = ρ(c) ;

‖Aσ(\c)×cBσ(\c)×c−Bσ(\c)×cAσ(\c)×c‖F =
√

2‖Aσ(\c)×c‖F‖Bσ(\c)×c‖F , when
r = σ(\c) .

Therefore, the problem of maximal pairs for (3.1) becomes the problem of maximal
pairs for matrices; one can refer to [11, 15, 19, 28] for some sufficient and necessary
conditions of maximal pairs for matrices.
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EXAMPLE 3.2. We illustrate some examples that are maximal pairs for (3.1). For
the case r = ρ(c) , let c = [3,2] , r = ρ(c) = [2,3] , and A ,B ∈ C2×2×2 , where all
entries of the tensors A and B are zero except

A (2,1,1) = −1, B(1,1,1) = 2.

Then we have

‖A ×[2,3]
[3,2] B−B×[2,3]

[3,2] A ‖F =
∥∥∥∥
[

0 0
−2 0

]
−
[
0 −2
0 0

]∥∥∥∥
F

= 2
√

2 =
√

2‖A ‖F‖B‖F .

For the case r = σ(\c) , let c = [1,2] , r = σ(\c) = [3,4] , and suppose that all
entries of A ,B ∈ C2×2×2×2 are zero except

A (2,1,1,1) = 1, B(1,1,2,1) = 1.

Therefore all entries of C1 = A ×[3,4]
[1,2] B and C2 = B×[3,4]

[1,2] A are zero except

C1(1,1,1,1) = 1, C2(2,1,2,1) = 1.

Again we have

‖A ×[3,4]
[1,2] B−B×[3,4]

[1,2] A ‖F = ‖C1 −C2‖F =
√

2 =
√

2‖A ‖F‖B‖F .

We remark that if c and r are not linked as in Theorem 3.1, the norm of the
commutator may exceed the value

√
2, as shown by the following example.

EXAMPLE 3.3. Let A ,B ∈ C2×2×2 , where

A (:, :,1) =
[
0 1
0 1

]
, A (:, :,2) =

[
1 0
1 −1

]
,

B(:, :,1) =
[
0 1
1 0

]
, B(:, :,2) =

[
0 −1
−1 0

]
.

Suppose that c = [2,3] and r = [1,2] . Then r �= ρ(c) for any involution ρ and r �=
σ(\c) for any permutation σ . We have

‖A ×[1,2]
[2,3] B−B×[1,2]

[2,3] A ‖F =
∥∥∥∥
[
2 −2
2 −2

]
−
[−1 2
−1 1

]∥∥∥∥
F

=
√

43 >
√

40 =
√

2‖A ‖F‖B‖F .
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3.2. T-product

Next we introduce the definition of the T-product. For A ∈ Rm×n×p and B ∈
Rn×s×p , we denote their frontal slices as A(k) = A (:, :,k) ∈ Rm×n and B(k) = B(:, :
,k) ∈ Rn×s , respectively, for k = 1,2, . . . , p . The operations bcirc , unfold, and fold
are defined as follows [20, 23, 24]:

bcirc(A ) :=

⎡
⎢⎢⎢⎣

A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

...
...

...
A(p) A(p−1) · · · A(2) A(1)

⎤
⎥⎥⎥⎦ , unfold(A ) :=

⎡
⎢⎢⎢⎣

A(1)

A(2)

...
A(p)

⎤
⎥⎥⎥⎦ ,

and fold(unfold(A )) := A , which means that fold is the inverse opearator of unfold.
We also denote the corresponding inverse operator as bcirc−1 such that

bcirc−1(bcirc(A )) = A .

DEFINITION 3.4. (T-product [20, 23, 24]) Let A ∈ Rm×n×p and B ∈ Rn×s×p be
two real tensors. Then the T-product A ∗B is an m× s× p real tensor defined by

A ∗B := fold(bcirc(A )unfold(B)).

We remark that above concepts of the T-product could be easily extended to the complex
field. Therefore we have the following norm inequality about two complex tensors.

THEOREM 3.5. Let A ∈ Cn×n×p and B ∈ Cn×n×p . Then we have

‖A ∗B−B ∗A ‖F �
√

2p‖A ‖F‖B‖F . (3.2)

Proof. Based on the definition, we have

‖bcirc(A )‖F =
(
p‖A ‖2

F

) 1
2 =

√
p‖A ‖F .

Observing the T-product, it is easy to see that unfold(B) is the first column of bcirc(B) .
Besides, the product of circulant matrices is circulant, which means that the block col-
umn matrix bcirc(A )unfold(B) could determine the whole matrix bcirc(A )bcirc(B)
(see [33]). Thus,

A ∗B = fold(bcirc(A )unfold(B)) = bcirc−1(bcirc(A )bcirc(B)).

Combining above two equalities and (1.1), we obtain

‖A ∗B−B ∗A ‖F =
1√
p
‖bcirc(A ∗B−B ∗A )‖F

=
1√
p
‖bcirc(A )bcirc(B)−bcirc(B)bcirc(A )‖F

� 1√
p
·
√

2‖bcirc(A )‖F‖bcirc(B)‖F =
√

2p‖A ‖F‖B‖F . � (3.3)
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According to the proof of above theorem and the properties of the T-product, the
characterization of maximal pairs for (3.2) can be derived.

COROLLARY 3.6. Let n > 1 , A ∈ Cn×n×p,B ∈ Cn×n×p be two nonzero tensors,
and A(q) ∈ Cn×n and B(q) ∈ Cn×n be their frontal slices for 1 � q � p. Then (A ,B)
is a maximal pair for (3.2) if and only if

(1) ωk(p−1)A(1) = ωk(p−2)A(2) = · · · = ωkA(p−1) = A(p) ,
ωk(p−1)B(1) = ωk(p−2)B(2) = · · · = ωkB(p−1) = B(p) ,
where ω = e−2π i/p and k is an integer with 0 � k � p−1 ;

(2) (A(1),B(1)) is a maximal pair.

Proof. Based on (3.3), we find that (A ,B) is a maximal pair for (3.2) if and only
if (bcirc(A ),bcirc(B)) is maximal. As all circulant matrices can be diagonalized by
the discrete Fourier matrix, so do block-circulant matrices. Then

(Fp⊗ In) ·bcirc(A ) · (F∗
p ⊗ In) =

⎡
⎢⎢⎢⎣

A1

A2
. . .

Ap

⎤
⎥⎥⎥⎦≡ DA

and

(Fp⊗ In) ·bcirc(B) · (F∗
p ⊗ In) =

⎡
⎢⎢⎢⎣

B1

B2
. . .

Bp

⎤
⎥⎥⎥⎦≡ DB,

where Fp is the p× p discrete Fourier matrix and In is the n× n identity matrix [21,
24]. With this diagonalization, we have

‖bcirc(A )bcirc(B)−bcirc(B)bcirc(A )‖2
F

= ‖DADB −DBDA‖2
F

= ‖A1B1−B1A1‖2
F + · · ·+‖ApBp−BpAp‖2

F

� 2(‖A1‖2
F‖B1‖2

F + · · ·+‖Ap‖2
F‖Bp‖2

F)

� 2(‖A1‖2
F + · · ·+‖Ap‖2

F)(‖B1‖2
F + · · ·+‖Bp‖2

F)

= 2‖DA‖2
F‖DB‖2

F

= 2‖bcirc(A )‖2
F‖bcirc(B)‖2

F .

Thus, (bcirc(A ),bcirc(B)) is a maximal pair if and only if

(i) (Ai,Bi) is a maximal pair, for each 1 � i � p ;

(ii) ‖Ai‖2
F‖Bj‖2

F = 0, for any i �= j , 1 � i, j � p .
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Since above properties are similar to those in the proof of Corollary 2.4, we find that
only one diagonal block of DA is nonzero, so is the corresponding block of DB . Thus,
(bcirc(A ),bcirc(B)) is a maximal pair if and only if there exists an integer k with
0 � k � p−1 such that

(a) (Ak+1,Bk+1) is maximal;

(b) Ai = Bi = 0 , for any i �= k+1, 1 � i � p .

Next we want to show that the two properties (a) and (b) actually are equivalent to
the sufficient and necessary conditions in the corollary. First, revealing the relationship
between diagonal matrices of DA and frontal slices of A , we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A(1) = 1

p(ω0A1 + ω0A2 + · · ·+ ω0Ap) = 1
p ω0Ak+1,

A(2) = 1
p(ω0A1 + ω1A2 + · · ·+ ω p−1Ap) = 1

p ωkAk+1,

. . .

A(p) = 1
p(ω0A1 + ω p−1A2 + · · ·+ ω(p−1)(p−1)Ap) = 1

p ωk(p−1)Ak+1.

Hence we have

ωk(p−1)A(1) = ωk(p−2)A(2) = · · · = ωkA(p−1) = A(p).

Similarly, B(1) = 1
p ω0Bk+1 and

ωk(p−1)B(1) = ωk(p−2)B(2) = · · · = ωkB(p−1) = B(p).

Moreover, (A(1),B(1)) is a maximal pair because (Ak+1,Bk+1) is a maximal pair.
Conversely, according to the relations between the frontal slices of A , by some

calculations, we obtain the following relationship between Ai and A(i) with 1 � i � p :

Ai =
[
ω(k−i+1)·0 + ω(k−i+1)·1 + · · ·+ ω(k−i+1)(p−1)

]
A(1).

Thus, Ak+1 = pA(1) and Ai = 0 for other cases, which means that only Ak+1 is nonzero.
Similarly only Bk+1 = pB(1) is nonzero. Furthermore, (Ak+1,Bk+1) is a maximal pair
because (A(1),B(1)) is a maximal pair. Therefore, the proof is completed. �

EXAMPLE 3.7. We show an example that satisfies (3.2) with equality. Let A and
B be 2×2×2 real tensors, where

unfold(A ) =
[
A(1)

A(2)

]
=

⎡
⎢⎢⎣

0 0
1 0
0 0
1 0

⎤
⎥⎥⎦ and unfold(B) =

[
B(1)

B(2)

]
=

⎡
⎢⎢⎣

0 1
0 0
0 1
0 0

⎤
⎥⎥⎦ .

It is easy to see that A(1) = A(2) , B(1) = B(2) , and (A(1),B(1)) is a maximal pair. We
have

unfold(A ∗B) = bcirc(A )unfold(B) =

⎡
⎢⎢⎣

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 1
0 0
0 1
0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0
0 2
0 0
0 2

⎤
⎥⎥⎦
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and

unfold(B ∗A ) = bcirc(B)unfold(A ) =

⎡
⎢⎢⎣

0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
1 0
0 0
1 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

2 0
0 0
2 0
0 0

⎤
⎥⎥⎦ .

Hence

‖A ∗B−B ∗A ‖F =
√

4 ·22 =
√

2 ·2 ·
√

2 ·
√

2 =
√

2p‖A ‖F‖B‖F .

It is interesting to notice that we may define an inner product for tensors in Rn×n×p

just like

〈A ,B〉F := tr(bcirc(B)∗bcirc(A )),

which means that we have another kind of norm for tensors:

‖A ‖2
F = 〈A ,A 〉F = tr(bcirc(A )∗bcirc(A )) = ‖bcirc(A )‖2

F .

With this new norm, we have the following norm inequality.

COROLLARY 3.8. Let A ∈ Cn×n×p and B ∈ Cn×n×p . Then we have

‖A ∗B−B ∗A ‖F �
√

2‖A ‖F‖B‖F . (3.4)

Proof. Since unfold(A ) is the first block column of the block-circulant matrix
bcirc(A ) , we have

‖A ‖2
F = ‖bcirc(A )‖2

F = p‖unfold(A )‖2
F = p‖A ‖2

F .

Thus, it directly follows from (3.2) that

‖A ∗B−B ∗A ‖F =
√

p‖A ∗B−B ∗A ‖F

�
√

2p‖A ‖F‖B‖F

=
√

2‖A ‖F‖B‖F . �

In the proof, it is easy to see that this norm inequality is a scaled version of Theo-
rem 3.5, which means that (3.2) and (3.4) are equivalent. Thus, the maximal pairs for
(3.4) are the same as the ones for (3.2).
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[31] Z. LU, Remarks on the Böttcher-Wenzel inequality, Linear Algebra Appl., vol. 436 (2012), pp. 2531–
2535.

[32] Z. LU, D. WENZEL, Commutator estimates comprising the Frobenius norm – looking back and
forth, in: D. Bini, T. Ehrhardt, A. Karlovich, I. Spitkovsky (Eds.), Large Truncated Toeplitz Matri-
ces, Toeplitz Operators, and Related Topics, in: Operator Theory: Advances and Applications, vol.
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