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SOME REMARKS IN C∗– AND K –THEORY

BERNHARD BURGSTALLER

Abstract. This note consists of three unrelated remarks. First, we demonstrate how roughly
speaking ∗ -homomorphisms between matrix stable C∗ -algebras are exactly the uniformly con-
tinuous ∗ -preserving group homomorphisms between their general linear groups. Second, using
the Cuntz picture in KK -theory we bring morphisms in KK -theory represented by generators
and relations to a particular simple form. Third, we show that for an inverse semigroup its asso-
ciated groupoid is Hausdorff if and only if the inverse semigroup is E -continuous.
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