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SOME REMARKS IN C∗– AND K –THEORY

BERNHARD BURGSTALLER

(Communicated by C.-K. Ng)

Abstract. This note consists of three unrelated remarks. First, we demonstrate how roughly
speaking ∗ -homomorphisms between matrix stable C∗ -algebras are exactly the uniformly con-
tinuous ∗ -preserving group homomorphisms between their general linear groups. Second, using
the Cuntz picture in KK -theory we bring morphisms in KK -theory represented by generators
and relations to a particular simple form. Third, we show that for an inverse semigroup its asso-
ciated groupoid is Hausdorff if and only if the inverse semigroup is E -continuous.

1. Introduction

In this note we present three unrelated results in C∗ -theory and K -theory. The
first result is demonstrated in Section 2 and shows that for all unital C∗ -algebras A
and B , every uniformly continuous, ∗ -preserving group homomorphism ϕ : GL(A⊗
M2) → GL(B) can be extended to a ∗ -homomorphism A⊗M2 → B , provided a very
light additional technical condition for the restriction of ϕ to the complex numbers is
satisfied, see Corollary 2.3 and Section 2. Actually, we have demonstrated a similar
result already in [6], but the improvement, thanks to some trick by L. Molnár [14], is
that the additional technical condition is here subjectively somewhat easier, even if not
strictly logically comparable with the one in [6].

In the next Section 3, we make a turn to KK -theory [11]. J. Cuntz [7] and N.
Higson [10] found out that Kasparov’s KK -theory is the universal stable, homotopy
invariant, split-exact functor from the C∗ -category to an additive category. This makes
it possible to describe KK -theory as a localization of the category of C∗ -algebras, or
expressed in less technical terms, by adding certain synthetical inverses to the cate-
gory of C∗ -algebras and moding out certain relations to form KK -theory. We slightly
simplify the representation of KK -elements in this picture at first, but make the most
dramatical simplification by using the Cuntz-picture [7, 8] of KK -theory elements.
This picture of KK -theory may also be analogously and readily defined equivariantly
for other equivariant structures than groups, say semigroups, categories and so on, and
even the category of C∗ -algebras may be changed to other (topological) algebras.

In the last Section 4 we observe that a discrete inverse semigroup induces a Haus-
dorff groupoid if and only if the inverse semigroup is E -continuous. We also note
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that both equivalent technical conditions appear necessary to define a non-degenerate,
C0(X)-compatible C0(X)-valued L2(G)-module, see Definition 4.4 and Example 4.14
for more on this. Such a module is a useful tool for the computation of the K -theory
of inverse semigroup crossed products. However, the lack of such a module in the non-
Hausdorff case hinders the computation of beformentioned K -theory groups of crossed
products by non-applicability of parallel methods successful in the group case. The
difficulty of computation has been already observed by Tu [19] for the more general
setting of non-Hausdorff groupoids in the context of Baum–Connes theory.

All chapters in this note can be read completely independently.

2. Group and algebra homomorphisms

In this section we show how certain group homomorphisms between the group
of invertible elements of C∗ -algebras can be extended to ∗ -homomorphisms. A map
ϕ : A → B between C∗ -algebras A and B is called a ∗ -semigroup homomorphism if it
is multiplicative (i.e. ϕ(ab) = ϕ(a)ϕ(b)) and ∗ -preserving (i.e. ϕ(a∗) = ϕ(a)∗ ). As
usual, Mn denotes the C∗ -algebra of all complex-valued n× n -matrices, and GL(A)
the general linear group of A .

PROPOSITION 2.1. Let ϕ : GL(A⊗M2) → B be an arbitrary function where A
and B are C∗ -algebras and A is unital. Then the following are equivalent:

(a) ϕ extends to a ∗ -homomorphism A⊗M2 → B.

(b) ϕ is a uniformly continuous, ∗ -semigroup homomorphism with

‖ϕ(1/2)‖< 1, ϕ(i1) = iϕ(1). (1)

REMARK 2.2. Alternatively, instead of requiring ‖ϕ(1/2)‖ < 1 in Proposition
2.1.(b), we may equivalently require that ‖ϕ(z)‖ < 1 for any single fixed z ∈ GL(A⊗
Mn) with ‖z‖ < 1.

Proof. (a) to (b) is clear. To show (b) to (a), we are going to apply [6, Propo-
sition 2.6]. At first we continuously extend ϕ to an equally denoted function ϕ :
GL(A⊗M2) → B (norm closure) by using Cauchy sequences and the uniform continu-
ity of ϕ . Then ϕ is a ∗ -semigroup homomorphism. Notice that ϕ(0) = limn ϕ(zn) = 0
by Remark 2.2. By applying Proposition 2.6 of [6] we are done when showing the
ortho-additivity relation ϕ(e11 + e22) = ϕ(e11) + ϕ(e22) , where eii are the standard
matrix corners. To this end, we use the following trick by L. Molnár [14] by means of
the exponential function, which we are going to recall for convenience of the reader.

Consider the C∗ -subalgebra B′ of B generated by the image of ϕ . It is unital with
unit ϕ(1) . Represent B′ faithfully on a Hilbert space H such that 1B(H) is the unit of
B′ . In the following, identify now B′ as a subalgebra of B(H) .

Let P be a projection in M2(A) . Clearly eλP is invertible for every λ ∈ R and
so in the domain of ϕ . Consider the map λ �→ ϕ(eλP) = ϕ(1−P+ eλ P) from R into
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GL(B(H)) . This is a one-parameter group. Thus there exists an operator T ∈ B(H)
such that

ϕ(1−P+ eλ P) = eλT .

Since ϕ is ∗ -preserving, eλT is self-adjoint for all λ ∈ R . This implies that T is also
self-adjoint. By the uniform continuity of ϕ , for every ε > 0 there exists a δ > 0 such
that

‖eλT − eμT‖ = sup
t∈σ(T )

|eλ t − eμt | < ε

if |eλ − eμ | < δ . The last identity is by standard functional calculus. Therefore, the
function x �→ xt is uniformly continuous on the positive half-line for all t ∈ σ(T ) .
Hence σ(T ) ⊆ {0,1} and so T is a projection.

Consequently,

ϕ(1−P+ eλ P) = 1−T + eλ T.

For λ →−∞ we get ϕ(1−P) = 1−T . Setting P = 1 and using ϕ(0) = 0 this implies
T = 1, and consequently ϕ(eλ 1) = eλ 1. In particular, ϕ is R+ -homogeneous.

Hence the above equality divided by eλ and letting λ → ∞ yields ϕ(P) = T .
Thus, putting λ = 1,

ϕ(1) = ϕ(1−P)+ ϕ(P).

Now set P = e11 . �

We remark that in Proposition 2.1.(b) ϕ is obviously actually a group homomor-
phism into the image of ϕ . So let us also state the following variant to emphasize this
fact:

COROLLARY 2.3. Let ϕ : GL(A⊗M2) → GL(B) be an arbitrary function where
A and B are unital C∗ -algebras. Then the following are equivalent:

(a) ϕ extends to a unital ∗ -homomorphism A⊗M2 → B.

(b) ϕ is a uniformly continuous, ∗ -preserving group homomorphism satisfying (1).

EXAMPLE 2.4.

(a) The determinant det : GL(Mn(C)))→GL(C) , though a continuous ∗ -preserving
group homomorphism, cannot be extended to a ∗ -homomorphismbecause det(λ1)
= λ n , which is not uniformly continuous.

(b) The trivial group homomorphism ϕ : GL(Mn(A)) → GL(B) , ϕ(x) = 1, though
a uniformly continuous ∗ -preserving group homomorphism, cannot be extended
to a ∗ -homomorphism because ‖ϕ(1/2)‖ = 1.
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3. KK -theory and generators

In this section we deal with the Kasparov category KK . This is the category with
object class being the C∗ -algebras, and morphism class from C∗ -algebra A to C∗ -
algebra B being the Kasparov group KK(A,B) . Composition of morphisms is defined
to be the Kasparov product KK(A,B)×KK(B,C)→KK(A,C) : ( f ,g) �→ f g := f ⊗B g .
Analogously, we have the Kasparov category KKG in the group equivariant setting with
respect to a given second-countable locally compact group G .

By the work of J. Cuntz [7] and N. Higson [10] it became clear that Kasparov’s
KK -theory allows a very elegant characterization when restricted to the class of un-
graded separable C∗ -algebras. Cuntz noted that if F is a stable, homotopy invariant,
split-exact functor F from the C∗ -category C∗ to the abelian groups Ab , then each
KK -theory element of KK(A,B) induces a map F(A) → F(B) . Higson brought these
findings to its final form by showing that the Kasparov category KK is universal in
this respect in the sense that every such functor F factorizes over the Kasparov cate-
gory KK . This fact is called the universal property of KK -theory. K. Thomsen has
generalized this result to the group equivariant setting, that is, to the category KKG .

Quite straightforward, in [2] we described KKG -theory by generators and rela-
tions based on Cuntz and Higsons’s findings. We denoted it by GK -theory (‘generators
K -theory’, the group G is not indicated) for better clearity. One advantage of this basic
construction is that it may be straightforwardly generalized to other modes of equiv-
ariance, that is, to other objects than groups G , for example semigroups G , categories
G and so on. Also, one may change the category C∗ to another category of (topolog-
ical) algebras under adaption of the stability property, say. Another advantage is that
it is more elementary than Kasparov’s original definition. Its definition is also clearer
motivated by its relative naturality, whereas the definition of the original KK -theory
appears highly unmotivated at first (without further background like the Atyiah–Singer
index theory). Also Cuntz’s picture of KK -theory by quasi isomorphisms in [8] appears
still rather technical and difficult.

A disadvantage of GK -theory is that the Kasparov product is not computed. It
remains a formal, uncomputed product f ·g . On the other hand, this makes GK -theory
also easy, again. Also, the general construction of the Kasparov product in KK -theory
uses the indirect, unexplicit axiom of choice. In concrete computations the product has
to be guessed, which is rather difficult.

We are going to briefly recall GK -theory. For more details see [2].

DEFINITION 3.1. (C∗ -category C∗ ) Let G be a second-countable locally com-
pact group, or a discrete countable inverse semigroup. Denote by C∗ the category with
objects being the C∗ -algebras equipped with an action by G , and morphisms being the
G-equivariant ∗ -homomorphisms.

If nothing else is said, we could also allow that G is another equivariance-inducing
object like a general topological group, or a groupoid, or a category, or a semigroup and
so on.
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DEFINITION 3.2. (Synthetical morphisms) We introduce two types of synthetical
morphisms.

(a) For each corner embedding c ∈C∗(A,A⊗K ) , that is a map defined by c(a) =
a⊗ e for a one-dimensional projection e ∈ K (where the G-action on A⊗K
need not be diagonal but may be any) introduce one synthetical morphism (in-
verse map, localization) c−1 : A⊗K → A .

(b) For each short split exact sequence

S : 0 �� A
i �� D

f ��
B ��

s
�� 0 (2)

in C∗ introduce one synthetical morphism P−1
S : D → A⊕B (inverse map, local-

ization).

DEFINITION 3.3. (Preadditive Category W ) Let W be the preadditive category
with object class Obj(C∗) . The morphism class W (A,B) from object A to object B let
be the collection of all formal expressions

±a11a12 · · ·a1n1 ±·· · · · ·±ak,1ak,2 · · ·ak,nk , (3)

where each letter ai j is either a morphism in C∗ or one of the synthetical morphisms
c−1 or P−1

S of Definition 3.2. Each ± stands here either for a single + -sign or a single
− -sign.

We think of a word ai1 · · ·ai,ni as a composition of morphisms (=arrows) ai j going
from the left to the right with start point A and end point B , that is, as a picture

A = Ai1
ai1 �� Ai2

ai2 �� Ai3
ai3 �� · · · ai,ni�� Ai,ni = B

for objects Ai j . We require here that the range object Ai, j+1 of the morphism ai j

coincides with the source object of the morphism ai, j+1 for all i j .
Composition and addition of morphisms in W is given formally (i.e. freely). That

is, we add and multiply morphisms of the from (3) like in a ring by using the distributive
law.

DEFINITION 3.4. (GK -theory) The category GK is defined to be additive cat-
egory which comes out when dividing the preadditive category W by the following
relations:

(a) The canonical assignment C∗ → GK is a functor, i.e. we require f g = g ◦ f in
GK(A,C) for all elements f ∈C∗(A,B) and g ∈C∗(B,C) .

(b) The category GK is additive, i.e. we require pAiA + pBiB = 1A⊕B in GK(A⊕
B,A⊕B) for all natural diagrams A

iA �� A⊕B
pB ��

pA
�� B

iB
�� (canonical injections

and projections) in C∗ .
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(c) The category GK is homotopy invariant, that is, every pair of homotopic G-
equivariant ∗ -homomorphisms f0, f1 : A → B (homotopic within C∗ ) satisfies
the identity f0 = f1 in GK .

(d) The category GK is stable, that is, every corner embedding c is invertible in GK
with inverse c−1 as introduced in Definition 3.2.(a).

(e) The category GK is split exact, that is, for every split exact sequence (2) in C∗
the morphism PS := pAi+ pBs in the following diagramm

A⊕B

pA

����
��

��
��

��
��

��
��

�

pB

���
��

��
��

��
��

��
��

��

PS

��
A

i ��

iA

�������������������
D

f ��
tS

��

PS
−1

��

B
s

��

iB

		�����������������

(4)

is invertible in GK with inverse P−1
S as introduced in Definition 3.2.(b). (Here,

pA, pB, iA, iB are the canonical projections and injections, and the dotted arrow
tS may be ignored here.)

The category GK is just another model for Kasparov’s KKG -theory:

PROPOSITION 3.5. ([2]) Let G be a locally compact second-countable group,
or a discrete countable inverse semigroup. Let C∗ be restricted to the subcategory of
separable C∗ -algebras.

Then, the categories KKG and GK are isomorphic.

Proof. Almost evident as KKG -theory and GK -theory are characterized by the
same universal property. See [2, Theorem 5.1] for more details. �

In this section we are going to show that expression (3) of a morphism in GK may
be considerably simplified. A first simplification will be reduction of sum, where the
notion word is defined in Definition 3.3:

LEMMA 3.6. In GK we may rewrite any plus-signed sum x1 + . . .+ xn of words
xi as a single word x . In particular, any morphism in GK is presentable as a difference
x− y of some words x,y ∈ GK .

Proof. By induction, it clearly suffices to show that any sum x+ y of two words
x,y ∈ GK is presentable as a single word.

Assume that we have given a split exact sequence S , see (2), for which we con-
sider ϑ := PS = pAi+ pBs ∈ GK(X ,Y ) of Definition 3.4. Define

(ϑ ⊕ idX) : X ⊕X → Y ⊕X :
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ϑ ⊕ idX := pAi⊕ idX + pBs⊕0X = (pA ⊕ idX)(i⊕ idX )+ (pB⊕0X)(s⊕0X).

Notice that ϑ ⊕ idX is just PT for the split exact sequence

T : 0 �� A⊕X
i⊕idX �� D⊕X

f⊕0 �� B ��
s⊕0
�� 0 .

Consider the canonical projections and embeddings

X
i1 �� X ⊕X
p1

��
p2 �� X ,
i2

�� Y Y ⊕X
p′2 ��

p′1�� X .

Set ϑ−1 := P−1
S . Then observe that

p1i1 = (ϑ ⊕ idX)p′1ϑ−1i1, p2i2 = (ϑ ⊕ idX )p′2i2,

so that with p1i1 + p2i2 = idX⊕X we get

(ϑ ⊕ idX )−1 = p′1ϑ−1i1 + p′2i2, (5)

(ϑ ⊕ idX ) = (idX⊕X)(ϑ ⊕ idX) = p1ϑ i1 + p2i
′
2. (6)

If we have given a corner embedding ϑ := c ∈C∗(X := A,Y := A⊗K ) then we
set (ϑ ⊕ idX ) : X ⊕X → Y ⊕X obvious and get again relations (5) and (6). Notice that
in this case (ϑ ⊕ idX )−1 is just the word (idA⊗K ⊕ e)d−1 for the corner embeddings
d ∈C∗(A⊕X ,A⊗K ⊕X ⊗K ) and e ∈C∗(X ,X ⊗K ) .

By some abuse of notation, in the sequel we shall omit notating the primes in p′1
and p′2 and simply write p1 and p2 instead. In other words, we shall not indicate the
involved spaces X and Y in our notation, even when we are going to have different
spaces. As already above, the index 1 will mean projection or embedding on the first
(left hand sided) coordinate, and 2 on the second (right hand sided) coordinate.

Let us be given two words xε1
1 . . .xεn

n and yε1
1 . . .yεm

m in GK(X ,Y ) , where xi ∈
GK(Xi,Xi+1) and y j ∈ GK(Yj,Yj+1) are either morphisms in C∗ or morphisms PS ,
and let εi,ε j ∈ {1,−1} present exponents in case letters are invertible by synthetical
inverses as defined in Definition 3.2. The expression x1

i = P1
S is not allowed, because

PS can be expressed by morphisms in C∗ .
Let j : X → X ⊕ X be defined by j(x) = (x,x) . Let d : Y ⊕Y → M2(Y ) be

the diagonal embedding d(x,y) =
(

x 0
0 y

)
and k : B → M2(Y ) the corner embedding

k(x) =
(

x 0
0 0

)
. Using the identities (5) and (6) and their analogs, and the orthogonality

relations i2p1 = 0 and i1p2 = 0, the following computation shows our claim. Simply
consider the word

j(x1 ⊕ idX )ε1 · · ·(xn ⊕ idX )εn(idX ⊕ y1)ε1 · · · (idX ⊕ ym)εmdk−1

= j(p1x
ε1 i1 + p2i2) · · · (p1x

εn
n i1 + p2i2)

·(p1i1 + p2y
ε1
1 i2) · · · (p1i1 + p2y

εm
m i2)dk−1

= j(p1x
ε1 · · ·xεn

n i1 + p2y
ε1
1 · · ·yεm

m i2)dk−1

= xε1 · · ·xεn
n + yε1

1 · · ·yεm
m ,
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where for the last identity we have used that the ∗ -homomorphism i2d is homotopic to
the ∗ -homomorphism i1d by rotation, and i1dk−1 = idY . �

Instead of the split exactness axiom in the definition of GK we may use alterna-
tively the following axiom without difference.

LEMMA 3.7. Instead of introducing the synthetical arrows P−1
S in Definition 3.2.(b)

and using axiom 3.4.(e) we may alternatively introduce the dotted arrow tS for each
split exact sequence (2) and the axiomatic relations

itS = 1A, tS i+ f s = 1D

(as a replacement of Definition 3.4.(e)) without changing the definition of GK .

It would not make any difference in the definition of GK if we added both P−1
S

and tS simultaneously, because they automatically define each other as follows in GK :

LEMMA 3.8. P−1
S and tS of diagram (4) define each other as follows:

tS = P−1
S pA, P−1

S = tS iA + f iB

Proof of Lemmas 3.7 and 3.8. Let GK be the category with the usual split exact-
ness axiom involving PS , and GK′ the category with the alternative split exactness
axiom involving tS . Let Φ : GK →GK′ and Ψ : GK′ →GK be the functors which are
identical on C∗ and on the synthetical inverses of corner embeddings, and according to
the ‘transformation’ rules defined to be

Φ(P−1
S ) = tS iA + f iB, Ψ(tS ) = P−1

S pA

for each split exact sequence S .
We remark that stS = 0 because stS = stS itS = s(1− f s)tS = 0. To see that Φ

is well-defined we compute

Φ(PS )Φ(P−1
S ) = (pAi+ pBs)(tS iA + f iB) = 1A⊕B, Φ(P−1

S )Φ(PS ) = 1D.

To show that Ψ is well-defined we calculate

Ψ(i)Ψ(tS ) = iP−1
S pA = iApAiP−1

S pA = iA(PS − pBs)P−1
S pA = iApA = 1A,

Ψ(tS )Ψ(i)+ Ψ( f )Ψ(s) = P−1
S pAi+ f s = P−1

S (PS − pBs+PS f s) = 1D.

That Ψ and Φ are inverses to each other follows then from the observation

Ψ◦Φ(P−1
S ) = P−1

S (pAiA +PS f iB) = P−1
S , Φ◦Ψ(tS ) = tS . �

We remark that we have also shown in the last proof that stS = 0. (That shows
even more more clearly that D ∼= A⊕B in GK .) Again, the element tS is uniquely
defined by its defining relations. Also, Lemma 3.6 would hold if we had introduced
tS instead of P−1

S . All these follows immediately as a corollary from the formula
tS = P−1

S pA of Lemma 3.8.
We can always move the inverse c−1 of a corner embedding c ∈C∗ to the right in

a word if the stabilization is equipped with a diagonal action:
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LEMMA 3.9. Let (A,α) and (B,β ) be G-algebras. If f : A → B is a morphism
in C∗ , c : (A,α) → (A⊗K ,α ⊗ γ) (the diagonal action is essential here) a corner
embedding, then there exists a corner embedding c′ : B → B⊗K and a morphism
f ′ : A⊗K → B⊗K in C∗ such that c−1 f = f ′c′−1 .

Analogously, we have c−1tS = tS ′c′−1 . Similarly, c−1P−1
S = P−1

S ′ ϕ−1c′−1 , where
ϕ is the canonical isomorphism (A⊕B)⊗K → A⊗K ⊕B⊗K .

Proof. This follows from the commutation relation c( f ⊗ idK ) = f c′ for the mor-
phism f ′ = f ⊗ idK and the diagonal action β ⊗ γ on B⊗K . The case P−1

S is ana-
log: since K is an exact C∗ -algebra we can tensor the diagrams (2) and (4) with K ,
then check PS c = c′ϕPS ′ , where c : D → D⊗K , c′ : A⊕B → (A⊕B)⊗K and
S ′ = S ⊗K (also with additivity, Definition 3.4.(b)). The case tS follows from that
and tS = P−1

S pA of Lemma 3.8. �

A drastical simplification of morphisms in GK goes by the Cuntz picture:

PROPOSITION 3.10. Let G be a locally compact second-countable group or a
countable inverse semigroup and the category C∗ be restricted to separable C∗ -algebras.

Every morphism z in GK may be written in the form

z = ad−1 · tS · e f−1 · tT · c−1

for some homomorphism a ∈ C∗ , some split exact sequences S and T , and some
corner embeddings c,d,e, f ∈C∗ .

If the morphism z is in GK(A,B) and B is unital we can omit tT (i.e. tT = 1 ).
If G is the trivial group then d−1, f−1 and e can be omitted (i.e. d−1 = f−1 = e = 1 ).
Both simplifications can be combined simultaneously.

Proof. By the universal property of KKG and GK there is an isomorphism of
categories Ĝ : KKG → GK , see Proposition 3.5. The idea is now to keep track of
the formulas appearing in the proof of this fact and see how a morphism z ∈ KKG is
presented as Ĝ(z) in GK . The original proof of the universal property of KK is by
Cuntz [7] and Higson [10], and by Thomsen [18] in the group equivariant setting for
KKG . We shall refer here to our exposition in the inverse semigroup equivariant setting
[3]. All we shall do here may be read verbatim topological group equivariantly.

Let us be given fixed objects A,B ∈ C∗ . Assume at first that B is stable, i.e.
B ∼= B⊗K in C∗ (K equipped with the trivial G-action).

In [3, Theorem 8.5], there is stated an isomorphism

Φ : F
G(A,B) → KKG(A,B).

Here, FG(A,B) is just the Cuntz-picture of G-equivariant KK -theory by quasi homo-
morphisms and G-cocycles, see [3, Def. 7.1 and Def. 7.8]. To recall it, an element
x = [ϕ+,ϕ−,u+,u−] ∈ FG(A,B) is given by two G-equivariant ∗ -homomorphisms
ϕ± : A → M (B) and two α -cocycles u± : G → M (B) , see [3, Def. 5.1].
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One has two split-exact sequences (for + and − )

S± : 0 �� (B,Γ±)
j �� (Ax,Γ±)

p �� (A,α) ��
s±

�� 0

for Ax := {A⊕M (B)|ϕ+(a) = m mod B} by [3, Def. 9.1 and 9.4].
Define the split-exact, homotopy invariant, stable functor F from C∗ to the abelian

groups by

F(B) = GK(A,B) and F( f : B →C) : GK(A,B) → GK(A,C) : z �→ z f .

For an α -cocycle u ∈ M (A) , recall [3, Def. 5.4, 6.1 and 6.2] for the definition of
an abelian group isomorphism

u# = F(Tu,A)−1 ◦F(Su,A) : F(A,α) → F(A,uαu∗)

and corner embeddings Su,A,Tu,A : A → M2(A,δu) .
As in [3, Def. 9.4], define an abelian group homomorphism

Ψx : F(A) → F(B) : Ψx = u−−1
# ◦F( j)−1 ◦ (

u# ◦F(s+)−F(s−)
)

(7)

(here u is the cocycle for Ax of [3, Def. 9.1]!).
Now assume that B is not necessarily stable. In [3, Def. 10.2] there appears a

similar variant

Ψ′
z : F(A) → F(B) : Ψ′

z = F(cB)−1 ◦F( jB)−1 ◦Ψ jB∗cB∗(Φ−1(z))

of Ψx , where z ∈ KKG(A,B) . Here cB : B → B⊗K is the corner embedding, see [3,
Def. 10.1], and jB appears in some split exact sequence

T : 0 �� B⊗K
jB �� B+⊗K

pB �� C∗(E)⊗K �� 0

in [3, Def. 10.2]. The stars in jB∗ and cB∗ are defined in [3, Def. 8.6].
By [3, Def. 11.1] there is a natural transformation

ξ : KK(A,−) → F(−) : ξB(z) = Ψ′
z(1GK(A,A)).

We are now applying [3, Thm. 1.3] (= [3, Thm. 12.4]) to the canonical quotient
functor G : C∗ → GK , which is split-exact, homotopy invariant and stable. The claim
and proof of [3, Thm. 12.4] show that there is a functor Ĝ : KKG → GK defined by

Ĝ(z) = ξB(z)

for all z ∈ KKG(A,B) such that G factorizes over Ĝ (i.e. G = Ĝ◦G2 for the canonical
quotient functor G2 :C∗ → KKG ). This functor is an isomorphism, since GK itself has
the universal properties of KKG , confer [2, 5.1].
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In details we get

Ĝ(z) = ξB(z) = Ψ′
z(1GK(A,A)) = F(cB)−1 ◦F( jB)−1 ◦Ψ jB∗cB∗(Φ−1(z))(1GK(A,A)).

Now observe that for the corner embedding cB , the inverse map F(cB)−1 is just
realized by right multiplication with the synthetical inverse c−1

B in GK . Similarly, ac-
cording to the split-exactness of GK the (one-sided) inverse map F( jB)−1 is just right
multiplication with the synthetical (one-sided) inverse tT . Indeed, by the definition of
F , if z in GK is of the form z = F( j)(w) = wj then w = ztT .

We choose now the x from above as x := jB∗cB∗(Φ−1(z)) ∈ FG(A,B+ ⊗K ) and
put formula (7) into the formula of Ĝ(z) . Here, z is the given morphism in KKG that
we want to present in GK via Ĝ . Then we have

Ĝ(z) = F(cB)−1 ◦F( jB)−1 ◦ u−−1
# ◦F( j)−1 ◦ (

u# ◦F(s+)−F(s−)
)

(1GK(A,A))

= 1GK(A,A) · (s+Su,AT−1
u,A − s−) · tS−Tu−,AS−1

u−,A · tT c−1
B

= ad−1 · tS−e f−1tT · c−1

in GK(A,B) by Lemma 3.9 for a suitable homomorphism a ∈ C∗ and corner embed-
dings c,d,e, f . We used here the fact that s−tS− = 0 by the remark after Lemma 3.8.

If B is unital we can omit jB in the definition of Ψ′
z . If G is trivial all cocycles

satisfy u = 1 and thus all u# = 1. �
It is however rather difficult to bring a product of such standardized elements as

in Proposition 3.10 again to such a standard form, see Cuntz [7]. It is not really easier
than forming the Kasparov product of Kasparov cycles.

REMARK 3.11. A further slight simplification of the split exactness axiom could
be done by observing that the split exact sequence (2) is isomorphic in C∗ to an idem-
potent ∗ -homomorphisms P : D →D (translation is P = f s). Then split exactness just
says that every idempotent P ∈ C∗ has an orthogonal split tS : D → ker(P) in GK
(orthogonal projection: tS i = 1D −P).

4. E -continuity and Hausdorff property

In this section we shall see that the groupoid associated to an inverse semigroup
is Hausdorff if and only if the inverse semigroup is E -continuous. This condition is
technically easier and more intrinsic to the inverse semigroup. We shall see that E -
continuity is a necessary and sufficient condition to define a non-degenerate C0(X)-
compatible C0(X)-valued L2(G)-module.

Let G be a discrete inverse semigroup.

DEFINITION 4.1. (E and X ) Let E denote the subset of idempotent elements of
G . The free universal abelian C∗ -algebra C∗(E) generated by the commuting self-
adjoint projections of E has a totally disconnected Gelfand spectrum X . That is we
have C∗(E) ∼= C0(X) . Under this isomorphism we identify E as a subset of C0(X)
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(under the formula e(x) = x(e)). To this end, we also use the suggestive notation
1e ∈ C0(X) for the corresponding element of e ∈ E in C0(X) . We write “x ∈ e” for
x ∈ X and e ∈ E iff x is an element of the support of 1e ∈ C0(X) (also denoted by
carrier(1e)). For e, f ∈ E we use the usual order e � f in a C∗ -algebra. This order
can be extended to G by saying that g � h for g,h ∈ G iff g = hg∗g (or equivalently
iff g = gg∗h ).

DEFINITION 4.2. (G-action) In this note we understand under a G-action on a
C∗ -algebra A a semigroup homomorphism α : G→End(A) such that αe(a)b = aαe(b)
(compatibility) for all e in E . In this case, A is called a G-algebra. A G-action on
a Hilbert A-module E is a semigroup homomorphism U : G → LinMaps(E ) (linear
maps) such that Ue is an adjointable operator for all e ∈ E , and

〈Ug(ξ ),Ug(η)〉 = g(〈ξ ,η〉), Ug(ξa) = Ug(ξ )αg(a), Ue(ξ )a = ξ αe(a)

(the last identity being called compatibility or C0(X)-compatibility of U ) for all ξ ,η ∈
E ,a ∈ A,g ∈ G and e ∈ E . Then E is called a (compatible) G-Hilbert A-module.
Often we write the G-action in the form g(ξ ) := Ug(ξ ) and g(a) := αg(a) .

DEFINITION 4.3. (G-action on X ) The C∗ -algebra C0(X) is equipped with the
G-action g(1e) := 1geg∗ for e ∈ E,g ∈ G . This G-action may be extended to the
bigger C∗ -algebra �∞(X ,μ) , where μ is the discrete counting measure, by setting
(g( f ))(x) := 1{x·g �=0} f (x ·g) for g ∈ G, f ∈ �∞(X ,μ) and characters x ∈ X , where the
(possibly zero) character x · g : C∗(E) → C is defined by (x · g)(e) = x(geg∗) for all
e ∈ E .

We are going to recall the E -continuity property of an inverse semigroup. For
more details see [4] or [5].

Immediately after publishing a preprint of this paper, Benjamin Steinberg and Ruy
Exel came in contact with us per email and kindly pointed out to us that they have
already considered this condition. Steinberg refers to [16] and [17], and Exel to [9]. We
thank them for informing us about their work.

In the next few paragraphs (until Lemma 4.7) we shall identify elements e ∈ E
with their corresponding characteristic functions 1e in C0(X) . Write Alg∗(E) for the
dense ∗ -subalgebra of C0(X) generated by the characteristic functions 1e for all e∈E .
Moreover, write

∨
i fi : X → C for the pointwise supremum of a family of functions

fi : X → C .

DEFINITION 4.4. An inverse semigroup G is called E -continuous if the function∨{e ∈ E|e � g} ∈ CX (in precise notation:
∨{1e ∈ C0(X)|e ∈ E, e � g} ∈ CX ) is a

continuous function in C0(X) for all g ∈ G .

A simple compactness argument shows the following, see [4] or [5]:

LEMMA 4.5. An inverse semigroup G is E -continuous if and only if for every
g ∈ G there exists a finite subset F ⊆ E such that

∨{e ∈ E|e � g} =
∨{e ∈ F |e � g} .
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DEFINITION 4.6. (Compatible C0(X)-valued L2(G)-module, [4] or [5]) Let G be
an E -continuous inverse semigroup. Write c for the linear span of all functions ϕg :
G → C (in the linear space CG ) defined by

ϕg(t) := 1{t�g}

(characteristic function) for all g,t ∈ G . Endow c with the G-action g(ϕh) := ϕgh for
all g,h ∈ G . Turn c to an Alg∗(E)-module by setting ξ e := e(ξ ) for all ξ ∈ c and
e ∈ E . Define an Alg∗(E)-valued inner product on c by

〈ϕg,ϕh〉 :=
∨
{e ∈ E |eg = eh, e � gg∗hh∗}. (8)

The norm completion of c is a G-Hilbert C0(X)-module denoted by �̂2(G) .

LEMMA 4.7. ([4] or [5]) The vectors (ϕg)g∈G ⊆ �̂2(G) are linearly independent.

We recall the well-known topological groupoid associated to an inverse semigroup
by Paterson [15]:

DEFINITION 4.8. (Groupoid associated to an inverse semigroup) Let G be a dis-
crete inverse semigroup and X the Gelfand spectrum of C∗(E) . Consider the topolog-
ical subspace G∗X = {(g,x) ∈ G×X |g ∈ G, x ∈ g∗g} of the topological space G×X
(product topology with G having the discrete topology). Two points (g,x),(h,y) in
G∗X are called equivalent, also denoted (g,x)≡ (h,y) , iff x = y and ge = he for some
e ∈ E with x ∈ e . Let π : G ∗X → G ∗X/ ≡ denote the set-theoretical quotient map.
The quotient is a groupoid under the multiplication: π(g,x)π(h,y) = π(gh,y) if and
only if for all e ∈ E such that y ∈ e one has x ∈ (he)(he)∗ . Otherwise the composition
is declared to be undefined.

We now regard the quotient G∗X/≡ as a topological groupoid under the quotient
topology and call it the groupoid asscociated to the inverse semigroup G . (Recall that
a subset Y ⊆ G∗X/≡ is declared to be open if and only if π−1(Y ) is open.)

Usually the groupoid associated to G is a non-Hausdorff topological space. We
are going to prove that the Hausdorff condition is equivalent to E -continuity of G .

LEMMA 4.9. The sets of the form π(g×U) , where g ∈ G and U ⊆ X is an open
subset of X with U ⊆ carrier(g∗g) , are open and generate the topology of G∗X/ ≡ .
(Here g×U := {g}×U .)

Proof. We claim that the inverse π−1(π(g×U)) is open. Indeed if (h,x) ∈
π−1(π(g×U)) then it is equivalent to some (g,x) ∈ g×U . Hence there exists some
e ∈ E with x ∈ e and he = ge . Let V = carrier(e)∩U ∩carrier(h∗h) . Then h×V is an
open subset of π−1(π(g×U)) containing (h,x) .

If π−1(O) is open and contains the point (g,x) together with its open neighbor-
hood g×U then π−1(π(g×U)) ⊆ π−1(O) . Thus π(g×U) ⊆ O . Hence such sets
generate the topology. �

We call π(g×U) the open set in G∗X/≡ generated by g×U .
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LEMMA 4.10. If G is E -continuous then its associated groupoid is Hausdorff.

Proof. Let (g,x),(h,x) ∈ G ∗X be two points such that (g,x) �≡ (h,x) . Then for
all e ∈ E with x ∈ e and e � g∗gh∗h one has ge �= he , and so e �� h∗g . Since G is
E -continuous the function F :=

∨
f∈E, f�h∗g f is continuous. Note that x /∈ F .

Let t ⊆ X be the (open!) complement of the carrier of F . Consider Ug := {g}×
t ∩ carrier(g∗g) and Uh := {h}× t∩ carrier(h∗h) . Clearly x ∈ t and so (g,x) ∈Ug and
(h,x) ∈Uh .

Consider the open subsets Wg and Wh that Ug and Uh generate in G ∗ X/ ≡ .
Assume Wg and Wh would intersect. Then there are (g,y) ∈ Ug , (h,z) ∈ Uh such
that (g,y) ≡ (h,z) . That is, there is a e ∈ E such that y = z ∈ e , e � g∗gh∗h and
ge = he . Hence y ∈ e � F . By definition of Ug one has also certainly y ∈ t . A
contradiction. This shows that Wg and Wh are disjoint neighborhoods which separate
(g,x) and (h,x) . �

LEMMA 4.11. If its associated groupoid is Hausdorff then G is E -continuous.

Proof. Let g ∈ G . Assume the projection F :=
∨

f∈E, f�g f would be discontinu-
ous, say in the point x ∈ X .

Then for any neighborhoods U of x there is at least one f � g ( f ∈ E ) such that
U has nonempty intersection with the carrier of f . On the other hand x is not in the
carrier of any f ∈ E with f � g , because there F is continuous.

Consider the points (g,x) and (g∗g,x) in G ∗ X . They must be distinct in the
quotient G∗X/ ≡ because assuming to the contrary the existence of some e ∈ E with
x ∈ e and g∗ge = ge would imply g∗ge � g ; a contradiction to what we said above.

Let U ⊆ carrier(g∗g) ⊆ X be an open neighborhood of x . Consider the open
neighborhoods Wg and Wg∗g in G ∗X/ ≡ generated by {g}×U and {g∗g}×U . As
remarked above we may choose y ∈U, f ∈ E such that y ∈ f and f � g . Then (g,y)
and (g∗g,y) are equivalent because y ∈ f and g∗g f = g f .

Hence Wg , Wg∗g intersect. Hence (g,x) and (g∗g,x) cannot be separated. Con-
tradiction. �

COROLLARY 4.12. An inverse semigroup is E -continuous if and only if its asso-
ciated groupoid is Hausdorff.

We have seen in Definition 4.6 that for E -continuous inverse semigroups there
exist non-degenerate compatible L2(G)-modules with coefficients in C0(X) . The next
example indicates that we cannot construct such L2(G)-modules for E -discontinuous
inverse semigroups.

Before that, for the discussion of another L2(G)-module, we recall the following
discretized coefficient algebra ε(E) of C0(X) , see [1].

DEFINITION 4.13. (Discretized coefficient algebra ε(E) of C0(X) , [1]) Recall that
there exists a map ε : E → X assigning to each e ∈ E the character εe on C∗(E) de-
termined by the formula εe( f ) = 1{ f�e} for every f ∈ E . The image ε(E) is dense in
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X , see [15] or [12, 3.2]. We have a G-invariant sub-C∗ -algebra

ε(E) := c0
(
ε(E)

) ⊆ �∞(X)

(complex-valued functions on the image of ε vanishing at infinity). Given e ∈ E , we
write εe for the characteristic one-point supported function 1{εe} ∈ ε(E)⊆ �∞(X) . One
checks that G acts through g(εe) = εgeg∗ if e � g∗g , and g(εe) = 0 otherwise.

EXAMPLE 4.14. (Elementary abelian E -discontinuous example) Let us discuss
one of the most simplest examples of an (even abelian) inverse semigroup G which
is not E -continuous. Let G = {1,S,e1,e2,e3, . . .} consist of an identity element 1, a
strictly increasing sequence of projections e1 < e2 < e3 < .. . < 1, and a symmetry S �=
1 (i.e. S2 = 1,S∗ = S ) such that Sen = enS = en for all n� 1. (A concrete representation
of G on a direct sum Hilbert space H⊕H may be given as 1 = idH ⊕ idH , S = s⊕ idH

with s a symmetry and en � 0⊕ idH .)
The associated C∗ -algebra C∗(G) is an AF-algebra. Indeed it is the union of its

finite-dimensional sub-C∗ -algebras An generated by {1,S,e1, . . . ,en} . One has An
∼=

C
n+2 for all n � 0. The two generating projections of A0

∼= C
2 are (1± S)/2. The

projection (1− S)/2 is orthogonal to all projections en , and en < (1 + S)/2. Hence
K0(C∗(G)) =

⊕
N Z�{1} (here 1 denotes an adjoint unit). As an abelian group, this is

again isomorphic to K0(C∗(G)) ∼= ⊕
N Z .

If we compare this with ε(E)�G then we have that it is the union of the sub-C∗ -
algebras Bn generated by ε1 �1,ε1 �S,εe1 � e1, . . . ,εen � en . Again Bn

∼= Cn+2 . Thus
K0(ε(E)�G) =

⊕
N Z as the projection ε1 � (1+S)/2 is orthogonal to all projections

εen � en .
Hence C∗(G) and its “discretized” version ε(E)�G have the same K -theory.
We are now coming to the most important point, namely that it appears not pos-

sible to construct a non-degenerate C0(X)-compatible C0(X)-valued L2(G)-module.
Somehow we should have some sort of generators δ1,δS,δe1 , . . . ,δen , . . . of the module.
The G-action should be g(δh) = δgh to be regarded as an L2(G)-module. By com-
patibility of the module product we naturally have δge = δg · e(1) = e(δg) ·1 = δeg for
e ∈ E ⊆C0(X) . Naturally we should choose 〈δen ,δen〉 = en for the inner product. By
compatibility of the inner product we have 〈δS,δS〉en = 〈δSen,δSen〉= en for all n � 1.
Consequently C0(X) � 〈δS,δS〉 = 1 (because the carriers of the elements e ∈ E gener-
ate the topology of X ) and similarly 〈δS,δ1〉 = 〈δ1,δ1〉 = 1. But then ‖δ1 − δS‖ = 0
and the module degenerates.

Let us discuss another module. We may construct the non-degenerate ε(E)-valued
L2(G)-module of [1, Def. 5.5]. The generators are the characteristic functions δg : G→
C with δg(h) = 1{g=h} for g,h ∈ G . The G-action is given by h(δg) = 1{h∗h�gg∗}δhg .
The inner product is determined by 〈δg,δh〉 = 1{g=h} , 〈δp,δp〉 = εp for the projec-
tions p in G , and 〈δS,δS〉 = ε1 . The module product computes as δpεq = 1{p=q} for
projections p,q , and δSε1 = δS and δSεen = 0.

EXAMPLE 4.15. (Dense E -discontinuity example) In Example 4.14 we had some
kind of E -discontinuity only at S (or we may say at 1). We may construct such an E -
discontinuity at every e in E by the same method. Start with a given inverse semigroup
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G = E consisting only of projections. Adjoin to G for every e in E a symmetry Se

such that Se f = f Se = f for all f < e . Other relations we do not add. The resulting
inverse semigroup G is E -discontinuous in those Se in the sense that

∨
f∈E, f�Se

f is
discontinuous where e has no precursor f < e . If no element of E has a precursor in
E then the E -discontinuity points are dense in X (at the points εe we may say, which
form a dense subset of X ).

EXAMPLE 4.16. (Finitely presented E -discontinuous inverse semigroup) A fini-
tely presented E -discontinuous inverse semigroup may be defined as follows. Consider
the finitely presented inverse semigroup

G = 〈t, l,e |tl = lt, t∗l = lt∗, te = e, t∗e = e〉.
That is t and t∗ commute with l and l∗ , and e absorbs t and t∗ .

Between l and e we have no relations, they are free in G , so that we get infinitely
many distinct projections

p0 := e, p1 := lee∗l∗, p2 := llee∗l∗l∗, . . . , pn := lnee∗l∗n, . . .

in G . Now t pn = pn by the defining relations of G . The projections pn cannot be
compared among each other, i.e. pn � pm implies n = m . Hence the criterion for
E -continuity of Lemma 4.5 fails for t , as the supremum of {e ∈ E|e � t} will not
be attained at a finite set of projections of E . To see this, let us first note that we
have no single projection q ∈ E such that t � q � p0, p1, p2, . . . . Indeed, every such
projection q would require to include the letter e to obtain t � q , and consequently
any letter t or t∗ in q would be absorbed by e . So q would allow a presentation with
letters l and e and their adjoints only, and such a q � p1, p2, p3, . . . as required does
not exist. One can similarly argue that we also cannot choose q1, . . . ,qn ∈ E such that
t � q1∨ . . .∨qn � p0, p1, p2, . . . . So by Lemma 4.5 we get that G is not E -continuous.

REMARK 4.17. (Baum–Connes map for inverse semigroups) In [4] we have tried
to define a Baum–Connes map for inverse semigroup crossed products parallel to the
method of Meyer and Nest in [13] for group crossed products, which automatically
would include some theoretical method to compute the left hand side of the Baum–
Connes map. On that way, C0(X)-compatible Hilbert modules and their KK -theory
appeared the better choice than the corresponding, C0(X)-structure ignoring incom-
patible tools. Thus C0(X) is the natural coefficient algebra. But since L2(G)-spaces
are in the center and the core of any Baum–Connes theory, and Example 4.14 shows
that a compatible C0(X)-valued L2(G)-module requires E -continuity of G , it appears
not possible to overcome the E -discontinuity barrier when defining a Baum–Connes
map, at least not with the known (group) L2(G)-space methods. That is, as soon as the
associated groupoid of G is non-Hausdorff the method fails. More generally, Tu [19]
has tried to develop a Baum–Connes theory for non-Hausdorff groupoids, and came to
the same conclusion that for non-Hausdorff groupoids the known methods fail, even
one may be able to formally write down the Baum–Connes map also for non-Hausdorff
groupoids.
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REMARK 4.18. (Baum–Connes theory for discretized crossed products) Where as
we have no approach to handle the K -theory of a crossed product A�G for an inverse
semigroup G , we have a Baum–Connes map and additionally at least theoretically an
approach to treat the K -theory of (ε(E)⊗C0(X) A) � G by [1]. Even though the K -
theories of the latter two crossed products are different in general, they might have
some aspects in common in certain good interesting cases as the latter two crossed
products are also similar. For example, if G = E consists only of projections then
both C0(X)� E and ε(E)� E are the direct limit of canonically ∗ -isomorphic finite
dimensional sub-C∗ -algebras. Only the direct limit embedding maps are different in
both cases. Anyway, the K0 -group of both algebras C0(X)�E and ε(E)�E are free
abelian groups with cardinality card(E) . Hence both algebras have the same K -theory.
In Example 4.14 we have already observed this on a concrete example.

EXAMPLE 4.19. That being said, let us remark that the discretized crossed prod-
uct and the usual crossed product may however also be rather distinct. Write for ex-
ample the Cuntz algebra On as the inverse semigroup crossed product On

∼= A � G
(Sieben’s crossed product, which is the universal crossed product subject to the rela-
tions e(a)�g≡ a�eg for all a∈ A,e∈ E,g∈G), where G is defined to be the inverse
semigroup G ⊆ On generated by the standard generators S1, . . . ,Sn of the Cuntz alge-
bra, and A ⊆ On denotes the smallest G-invariant C∗ -subalgebra of the Cuntz algebra
generated by the identity 1 ∈ On under the (incompatible) G-action g(a) = gag∗ for
a ∈ On,g ∈ G . Note that A is the commutative G-algebra (in the sense of Definition
4.2) generated by the elements of the form gg∗ for g ∈ G . The isomorphism is

ϕ : On → A�G : ϕ(Si) = 1�Si.

Then we have that

0 = (ε(E)⊗C0(X) A)�G �= A�G = On,

because in the left hand sided crossed product we have

(ε1 ⊗1)�1 =
(
ε1 ⊗ (S1S

∗
1 + . . .+SnS

∗
n)

)
�1 = 0

as SiS∗i (ε1) = 0 (action of SiS∗i on ε1 ) for all i , and by similar reasoning (εe⊗1)�1 =
0 for all e∈E . We see thus that the discretized crossed product is not an approximation
of the crossed product A � G at all as it collapses to zero. (As already the discretized
coefficient algebra ε(E)⊗C0(X) A is zero.) Still the K -theory of both crossed products
is finitely generated. But this need not be in general true, as we may replace A by an
infinite sum of copies of A , and so

K0((
⊕
N

A)�G) =
⊕
N

K0(A�G)

is infinitely generated whereas the K -theory of the discretized crossed product is an
infinite sum of zeros, so zero and thus finitely generated.
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