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RECOGNITION OF MATRICES WHICH ARE

SIGN–REGULAR OF A GIVEN ORDER AND A

GENERALIZATION OF OSCILLATORY MATRICES

ROLA ALSEIDI AND JÜRGEN GARLOFF ∗

Abstract. In this paper, rectangular matrices whose minors of a given order have the same strict
sign are considered and sufficient conditions for their recognition are presented. The results are
extended to matrices whose minors of a given order have the same sign or are allowed to vanish.
A matrix A is called oscillatory if all its minors are nonnegative and there exists a positive integer
k such that Ak has all its minors positive. As a generalization, a new type of matrices, called
oscillatory of a specific order, is introduced and some of their properties are investigated.
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