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OPERATOR SPLITTING FOR ABSTRACT CAUCHY

PROBLEMS WITH DYNAMICAL BOUNDARY CONDITIONS

PETRA CSOMÓS, MATTHIAS EHRHARDT AND BÁLINT FARKAS

Abstract. In this work we study operator splitting methods for a certain class of coupled abstract
Cauchy problems, where the coupling is such that one of the sub-problems prescribes a “bound-
ary type” extra condition for the other one. The theory of one-sided coupled operator matrices
provides an excellent framework to study the well-posedness of such problems. We show that
with this machinery even operator splitting methods can be treated conveniently and rather effi-
ciently. We consider three specific examples: the Lie (sequential), the Strang, and the weighted
splitting, and prove the convergence of these methods along with error bounds under fairly gen-
eral assumptions. Simple numerical examples show that the obtained theoretical bounds can be
computationally realised.
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[13] P. CSOMÓS, A. BÁTKAI, B. FARKAS, AND A. OSTERMANN, Operator semigroups fur numerical
analysis, Lecture notes, TULKA Internetseminar,
https://www.math.tecnico.ulisboa.pt/∼czaja/ISEM/15internetseminar201112.pdf,
2012, p. 182 pages.

c© � � , Zagreb
Paper OaM-15-60

http://dx.doi.org/10.7153/oam-2021-15-60
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[18] K.-J. ENGEL, Spectral theory and generator property for one-sided coupled operator matrices, Semi-
group Forum 58 (1999), no. 2, 267–295.

[19] K.-J. ENGEL AND R. NAGEL, One-parameter semigroups for linear evolution equations, Graduate
Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.

[20] Y. EPSHTEYN AND Q. XIA, Difference potentials method for models with dynamic boundary condi-
tions and bulk-surface problems, Adv. Comput. Math. 46 (2020).

[21] T. FUKAO, S. YOSHIKAWA, AND S. WADA, Structure-preserving finite difference schemes for the
Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun.
Pure Appl. Anal. 16 (2017), 1915–1938.

[22] J. GEISER, Iterative Splitting Methods for Differential Equations, Chapman and Hall/CRC Numerical
Anal. and Sci. Comp. Series, CRC Press, Hoboken, NJ, 2011.

[23] F. GESZTESY, I. MITREA, D. MITREA, AND M. MITREA, On the nature of the Laplace-Beltrami
operator on Lipschitz manifolds, vol. 172, 2011, Problems in mathematical analysis, no. 52, pp. 279–
346.

[24] F. GESZTESY AND M. MITREA, Generalized Robin boundary conditions, Robin-to-Dirichlet maps,
and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, Perspec-
tives in partial differential equations, harmonic analysis and applications, Proc. Sympos. Pure Math.,
vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.

[25] F. GESZTESY AND M. MITREA, A description of all self-adjoint extensions of the Laplacian and
Kreı̆n-type resolvent formulas on non-smooth domains, J. Anal. Math. 113 (2011), 53–172.

[26] G. GREINER, Perturbing the boundary conditions of a generator, Houston J. Math. 13 (1987), no. 2,
213–229.

[27] M. HAASE, The functional calculus for sectorial operators, Operator Theory: Advances and Appli-
cations, vol. 169, Birkhäuser Verlag, Basel, 2006.
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