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Abstract. In this paper, we consider the compactness and the spectrum of the generalized dif-
ference operator Δab on the Banach sequence spaces �∞ , of bounded sequences, and bv , of
bounded variation sequences, which allows us to generalize and extend some existing results for
the operator Δab . Furthermore, the results for the operator Δab on �∞ are new even in the case
where Δab is reduced to the difference operator Δ .

1. Introduction and the results

In this paper, we concern ourselves with the generalized difference operator Δab ,
which is defined on a sequence space μ by

Δabx := (akxk +bk−1xk−1)
∞
k=0 , x := (xk) = (xk)∞

k=0 ∈ μ ,

where b−1 = x−1 = 0. Here, (ak) and (bk) are sequences of real numbers [5]. If ak = 1
and bk = −1 for k � 0, then the operator Δab is reduced to the difference operator Δ .
Suppose that Δ acts on �∞ . The spectrum of Δ is σ(Δ, �∞) = {λ ∈ C : |λ −1|� 1} ;
see [9, Theorem 2.12]. If ak = r and bk = s �= 0 for k � 0, where r,s ∈ R , then the
operator Δab is reduced to the generalized difference operator B(r,s) ; see [10]. Let us
remark that B(r,s) = −sΔ +(r + s)I , where I is the identity operator. Then the spectra
of B(r,s) are obtained from the corresponding spectra of Δ by the application of the
transformation λ ′

= −sλ + r + s . This is an obvious consequence of the fact, that the
equations

(B(r,s)−λ
′
I)x = −sy, (Δ−λ I)x = y

are equivalent when λ ′
= −sλ + r+ s .

We are interested in the boundedness, the compactness and spectra of the gener-
alized difference operator Δab on the sequence space �∞ , as well as on the sequence
space bv. That is, we consider a small perturbation of B(r,s) = −sΔ +(r + s)I , where
r,s ∈ R , and observe what happens to the spectra in both compact and noncompact
cases of the operator.

Among other Banach sequence spaces, we take up �∞ and bv. Recall that �∞

is the Banach space of bounded sequences of complex numbers with the well known
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�∞ -norm. The Banach space bv is defined by bv := {x = (xk) : ∑∞
k=0 |xk − xk−1| < ∞} ,

with the norm

‖x‖bv := ∑∞
k=0 |xk − xk−1| , (x−1 := 0) .

By the triangle inequality, bv is continuously embedded into �∞ . From the proof of
this proposition, we feel that these two spaces are close to each other. Thus, one of the
aims of this paper is to detect the difference between them in the study of spectra of
Δab .

The spectral problem of infinite matrices, in general, has deserved the attention of
researchers, and some of them are motivated by the numerous applications of this scien-
tific area. For example. Hilbert studied the eigenvalues of integral operators by viewing
the operators as infinite matrices [30, p. 1063]. Further, it is known that infinite system
of linear equations can be represented alternatively by infinite ”coefficient“ matrix. In
[45] Shivakumar and Wong discussed infinite systems for algebraic equations, while
Chew, Shivakumar and Williams [17] discussed systems of differential equations. In
[44], Shivakumar, Williams and Rudraiah discussed eigenvalues of infinite matrices as
operators acting on �1 and �∞ . Further, Shivakumar and Williams [43] discussed the
existence and uniqueness of solutions to infinite linear systems in �∞ ; they obtained
necessary and sufficient conditions for the convergence of certain iteration scheme in
terms of the spectral radius of the associated operator.

Spectral problems for infinite matrices arise frequently in mathematics and engi-
neering. We find the theoretical and computational difficulties both in finite and infinite
cases. For finite matrices, we have some technique both in theory and in computation.
However, for a general infinite matrix, there is no known method for obtaining its spec-
trum. To the authors’ knowledge, Brown, Halmos and Shields started the investigation
of this problem in their paper [15] where they investigated and solved the problem in
the case of the Cesàro matrix C1 as an operator on the sequence space �2 . More papers
by different authors were devoted to the spectra of C1 on the sequence spaces c [32],
c0 [32, 38], �p (1 < p < ∞) [15, 18, 32], �∞ [32, 37], bv0 [35], bv [36], and to the
Bachelis space Np (1 < p < ∞) [19] and the weighted �p (1 � p < ∞) spaces [1, 2].
Motivated by the paper [15], in [39], Rhoades started (see also the later papers of Lei-
bowitz [33] and Rhoades and Sharma [40]) to deal with the above problems in the case
of certain classes of Hausdorff matrices. Başar overviewed the extensive literature on
the spectrum of matrix operators in [12]; see also [53] and [34, Chapter 5].

The spectra of the generalized difference operator Δab in various sequence spaces
have attracted a lot of attention. For example, we mention the works in �1 [7, 46, 47],
�p (1 � p < ∞) [8], c [5, 6], c0 [22], bv0 [23], h [23] and cs [42]. For the operator
B(r,s) , the problem was studied in the Banach spaces c0 , c , �p (1 � p < ∞) , bvp

(1 � p < ∞) , cs , bv0 and h ; see [10, 13, 21, 23, 25]. The spectra of the difference
operator Δ was also considered in [3, 4, 9]. In similar investigations [20, 24, 28, 29,
42, 52], the problem was studied for the upper triangular double-band matrix Δab as
an operator in the Banach spaces �p (1 � p < ∞) , c0 , c , cs and bv, where Δab is the
transpose of Δab . We observed that the spectral problem of the generalized difference
operator on �∞ is not completely settled down in the literature.

This work is a continuation of the works by El-Shabrawy and Abu-Janah [23] and
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Sawano and El-Shabrawy [41, 42].
Below, we formally state and discuss our main results in full detail. The proofs of

these results are given in Sections 3, 4 and 5.
The boundedness and the compactness of the operator Δab are characterized in the

following theorem, which is our starting point in this paper.

THEOREM 1.1.

(1) The operator Δab is bounded on �∞ if and only if

M1 = sup
j∈N0

(|a j|+ |b j−1|
)

< ∞.

If this is the case, the operator norm of Δab equals to M1 .

(2) The operator Δab is compact on �∞ if and only if

lim
j→∞

a j = lim
j→∞

b j = 0.

(3) The operator Δab is bounded on bv if and only if

M2 = sup
j∈N0

(
|a j|+ |a j+1−a j +b j|+∑∞

k= j+2 |ak −ak−1 +bk−1−bk−2|
)

< ∞.

If this is the case, the operator norm of Δab is less than or equal to M2 .

(4) The operator Δab is compact on bv if and only if

∑∞
k=0 |ak −ak−1 +bk−1−bk−2| < ∞, lim

j→∞
a j = lim

j→∞
b j = 0.

In Theorem 1.1, there is a gap between �∞ and bv as the following example shows:

EXAMPLE 1.1. The operator Δab need not be bounded on the space bv even

though (ak) and (bk) have finite limits as the example of ak = (−1)k
k+1 and bk = 0 shows.

Before we discuss a more detailed description, we give further examples.

EXAMPLE 1.2. Suppose that bk �= 0 for all k and lim
k→∞

ak = lim
k→∞

bk = 0. If λ = a j

for infinitely many j , then λ = 0 does not belong to the point spectrum; λ = a j = 0 /∈
σp(Δab, �

∞) .

It should be observed that if bk = 0 for some k , then we will need to decompose
the action of Δab into the direct sum. So to avoid this situation, we assume that bk �= 0
for any k .
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EXAMPLE 1.3. Suppose that bk �= 0 for all k and lim
k→∞

ak = lim
k→∞

bk = 0. If λ =

an0 = 0 for some n0 ∈ N0 for finitely many n0 , we may not be able to generally deter-
mine whether 0 ∈ σp(Δab, �

∞) or 0 /∈ σp(Δab, �
∞) . This will depend on the choice of

(ak) and (bk) .

To avoid the situation in Examples 1.2 and 1.3, it seems natural to assume that
ak �= 0 for all k . Thus, the following assumptions are natural.

ASSUMPTION 1.1. Let (ak) and (bk) satisfy

ak,bk �= 0 (k ∈ N0), lim
k→∞

ak = lim
k→∞

bk = 0. (1)

ASSUMPTION 1.2. Let (ak) and (bk) satisfy

∑∞
k=0 |ak+1−ak +bk−bk−1| < ∞.

So, based on Assumption 1.1, we consider the case of the small perturbation of the
zero operator.

We write

A := {ak : k = 0,1,2, . . .} . (2)

Under Assumption 1.1, together with Assumption 1.2 in the case of bv, the oper-
ator Δab will be compact in �∞ and bv as we will see in the next theorem.

THEOREM 1.2. Suppose we have sequences (ak) and (bk) satisfying Assumption
1.1. Let μ ∈ {�∞,bv} and assume in addition Assumption 1.2 if μ = bv . Then Δab :
μ �→ μ is a compact operator and the following hold:

(1) σ(Δab,μ) = A∪{0} .

(2) σp(Δab,μ) = A.

(3) σr(Δab,μ) = {0} .

(4) σc(Δab,μ) = ∅ .

(5) III2σ(Δab,μ) = {0} .

(6) III3σ(Δab,μ) = A.

No wonder that with different assumptions we obtain different results; it is a well-
known fact that if assumptions are different, the results may (although they need not) be
different. This will be demonstrated in determining the point spectrum by the following
example.
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EXAMPLE 1.4. Let (ak) and (bk) satisfying limk→∞ bk = 0 and a0 = a1 = a2 =
· · · = 0. Suppose that (Δab−λ I)x = 0, x = (xk) ∈ �∞ . Then

λx0 = 0, bkxk −λxk+1 = 0, k ∈ N0.

It is clear that λ /∈ σp (Δab, �∞) for all λ �= 0. Now, λ = 0 /∈ σp (Δab, �∞) whenever
bk �= 0 for all k ∈ N0 . But λ = 0 ∈ σp (Δab, �∞) whenever bk = 0 for some k ∈ N0 .
Similar results can be obtained in bv.

Note that if b0 = b1 = b2 = · · · = 0 and lim
k→∞

ak = 0, then the results remain valid

in Theorem 1.2.

Next, we consider another assumption.

ASSUMPTION 1.3. Let (ak) and (bk) have finite limits and

bk �= 0 (k ∈ N0), lim
k→∞

ak = a, lim
k→∞

bk = b �= 0.

In Assumption 1.3, we assumed b j �= 0 for any j . This is a reasonable assumption.
In fact, lim

j→∞
b j �= 0 implies b j can be zero only for a finite number of j . Choosing the

maximal j with b j = 0, we can decompose the operator Δab into direct sum of two
operators. One is generated by a finitely supported (small) matrix and the other is an
operator satisfying Assumption 1.3. To avoid the effect of this small matrix, we assume
b j �= 0 for any j .

If ak = 1 and bk = −1 for all k ∈ N0 , then Assumptions 1.2 and 1.3 are satisfied.
In this case Δab is nothing but the difference operator Δ .

Now, under Assumption 1.3, let λ ∈ ∂Δ(a, |b|) = {λ ∈ C : |λ −a|= |b|} . Then
we have

lim
i→∞

|λ −ai| = |λ −a|= |b| �= 0.

Let N(λ ) denote the smallest N ∈ N for which λ �= a j for all j � N . Based on this
notation, consider the set

K∞ :=

{
λ ∈ A∩∂Δ(a, |b|) : sup

k�1
∏k+N(λ )

i=N(λ )

∣∣∣∣ bi−1

λ −ai

∣∣∣∣< ∞

}
.

We have the following main result:

THEOREM 1.3. Let the sequences (ak) and (bk) satisfy Assumption 1.3. Then,
the operator Δab : �∞ → �∞ is a bounded operator with

‖Δab‖�∞ = sup
j∈N0

{∣∣a j
∣∣+ ∣∣b j−1

∣∣} .

Furthermore, the following hold:

(1) σ(Δab, �
∞) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|))) .
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(2) σp(Δab, �
∞) =

(
A∩ (C�Δ(a, |b|)))∪K∞ .

Some difficulties caused some problems in characterizing the residual and the con-
tinuous spectra of the operator Δab : �∞ → �∞ in general. However, we give specific
results; see Theorems 1.4, 1.5, 1.6 and Corollary 1.1 below. We hope to have advances
regarding these results in another publication.

THEOREM 1.4. Assume that Assumption 1.3 holds and that ∑∞
k=0 |ak +bk| is con-

vergent (clearly, in this case a = −b �= 0 ) . If 0 /∈ σp(Δab, �
∞) , then 0 ∈ σr(Δab, �

∞) .

We assert that the class of the operator Δab , under the assumptions in Theorem 1.4,
includes in particular the generalized difference operator Δυ investigated in [7, 46].

The following theorem gives an inclusion region for the residual spectrum.

THEOREM 1.5. Under Assumption 1.3, the following hold:

(1) σr(Δab, �
∞)∪σc(Δab, �

∞) = Δ(a, |b|)�K∞ .

(2) {λ ∈ C : ∑∞
k=0 |λ −ak −bk| < ∞}�σp(Δab, �

∞) ⊆ σr (Δab, �
∞) .

(3) A∩ (Δ (a, |b|)�K∞
)⊆ σr(Δab, �

∞) .

Note that {λ ∈ C : ∑∞
k=0 |λ −ak−bk| < ∞} contains at most one element.

A complete characterization of the spectra of the difference operator Δ on �∞ is
settled in the following main theorem of the present paper.

THEOREM 1.6. The following hold:

(1) σ(Δ, �∞) = {λ ∈ C : |λ −1|� 1} .

(2) σp(Δ, �∞) = ∅ .

(3) σr(Δ, �∞) = {λ ∈ C : |λ −1|� 1} .

(4) σc(Δ, �∞) = ∅ .

(5) III1σ(Δ, �∞) = {λ ∈ C : |λ −1|< 1} .

(6) III2σ(Δ, �∞) = {λ ∈ C : |λ −1|= 1} .

Theorem 1.6 can be extended easily for the operator B(r,s) ;

COROLLARY 1.1. The following hold:

(1) σ(B(r,s), �∞) = {λ ∈ C : |λ − r| � |s|} .

(2) σp(B(r,s), �∞) = ∅ .

(3) σr(B(r,s), �∞) = {λ ∈ C : |λ − r| � |s|} .
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(4) σc(B(r,s), �∞) = ∅ .

(5) III1σ(B(r,s), �∞) = {λ ∈ C : |λ − r| < |s|} .

(6) III2σ(B(r,s), �∞) = {λ ∈ C : |λ − r| = |s|} .

The reader can easily prove Corollary 1.1 by observing that the spectra of the
operator B(r,s) = −sΔ +(r + s)I are obtained from the corresponding spectra of Δ by
using the transformation λ ′

= −sλ + r+ s to the λ -plane.
To state the next theorem, we adopt the following additional notation:

Kb :=
{

λ ∈ A∩∂Δ(a, |b|) :

(
∏k+N(λ )

i=N(λ )
bi

λ −ai+1

)
∈ bv

}
,

Hb :=
{

λ ∈ ∂Δ(a, |b|) :

(
∏k

i=0

λ −ai

bi

)
∈ bs � bv∗

}
.

One can easily observe that Kb ⊆ K∞ ⊆ Hb .
For any complex number λ ∈C�A , let

(
tmk
)

be a double sequence which is given
by

tmk = tmk (λ ) =
1
bk

∑m
j=0

(
∏k

i= j

bi

λ −ai

)
, k,m ∈ N0.

and consider the set

Fb =
{

λ ∈ C�
(
Δ(a, |b|)∪A

)
: sup

m
∑∞

k=0

∣∣tmk − tmk+1

∣∣= ∞
}

.

Note that Fb = ∅ in the special case where (ak) and (bk) are constant sequences.

THEOREM 1.7. Let (ak) and (bk) satisfy Assumptions 1.2 and 1.3. Then

(1) σ(Δab,bv) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|)))∪Fb .

(2) σp(Δab,bv) =
(
A∩ (C�Δ(a, |b|)))∪Kb .

(3) σr(Δab,bv) = Δ(a, |b|)∪ ((Hb∪{a+b})�Kb) .

(4) σc(Δab,bv) = [∂Δ(a, |b|)�(Hb∪{a+b})]∪Fb .

(5) III3σ (Δab,bv) =
(
A∩ (C�Δ(a, |b|)))∪Kb .

(6) III1σ (Δab,bv)∪ III2σ (Δab,bv) = Δ(a, |b|)∪ ((Hb ∪{a+b})�Kb) .

(7) II2σ (Δab,bv) = [∂Δ(a, |b|)�(Hb∪{a+b})]∪Fb .

Further subdivision of the spectrum will be given in Theorem 5.8.
We organize this paper as follows: Section 2 collects some preliminary facts and

results. We prove Theorem 1.1 in Section 3. Section 4 is devoted to the proof of
Theorem 1.2, while Section 5 proves Theorems 1.3–1.7.

Here, we explain the standard notation used in this paper.
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• Denote the set of all natural numbers by N and the set of all nonnegative integers
by N0 .

• The set of complex numbers is denoted by C .

• The set of all complex sequences is denoted by �0 = �0(N0) .

• We use the conventions that ∑m
k=n ck = 0 and ∏m

k=n ck = 1, for any n,m ∈ N0

with n > m . Also, any term with negative index is equal to zero.

• We write θ := (0,0,0, . . .) .

• Let r > 0 and z ∈ C . Then we write

Δ(z,r) := {λ ∈ C : |λ − z|< r} ,

Δ∗(z,r) := {λ ∈ C : 0 < |λ − z|< r} ,

Δ(z,r) := {λ ∈ C : |λ − z|� r} ,

∂Δ(z,r) := {λ ∈ C : |λ − z|= r} .

2. Preliminary facts and results

To make this paper self-contained, we briefly overview notation used in this paper.
Let μ1 and μ2 be two Banach sequence spaces, and let A = (an,k) an infinite

matrix. We identify the matrix A with the linear operator A : μ1 → μ2 if for every
sequence x := (xk) ∈ μ1 , the sequence

Ax = ((Ax)n) :=
(
∑∞

k=0 an,kxk

)
,

the A-transform of x , is in μ2 . We denote the class of all matrices A that maps μ1 into
μ2 by (μ1 : μ2) . Thus we write A ∈ (μ1 : μ2) , called matrix transformation from μ1

into μ2 , if and only if Ax ∈ μ2 for every x ∈ μ1 .
By bs we denote the Banach space of all sequences x = (xk) for which

‖x‖bs = sup
n∈N0

∣∣∣∑n
k=0 xk

∣∣∣
is finite. It is known that bv = C⊕bv0 , where bv0 = bv∩c0 is a subspace of bv. Then,
bv∗ = C∗⊕bv∗0 = C⊕bs= bs. The last isomorphism is given by (L,(x1,x2,x3, . . . ,)) �→
(L,x1,x2,x3 . . .) , where L = limk→∞ xk . (cf. [14, 7.5.11(b), p. 385]).

If T : bv→ bv is a bounded linear operator with matrix A =
(
an,k
)
, then its adjoint

T ∗ : bv∗ � C⊕bs→ bv∗ � C⊕bs has the matrix representation of the form (cf. [36])

T ∗ =

⎛
⎜⎜⎜⎝

ψ ω0 −ψ ω1−ψ ω2−ψ · · ·
v0 r00 − v0 r10− v0 r20− v0 · · ·
v1 r01 − v1 r11− v1 r21− v1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ ,
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where vn = limm→∞ rm,n , ωn = ∑∞
m=0 rn,m and ψ = limn→∞ ωn .

The operator Δab may be considered as a generalized summability method, so that
it can be represented by the infinite matrix

Δab = (ank) =

⎛
⎜⎜⎜⎝

a0 0 0 · · ·
b0 a1 0 · · ·
0 b1 a2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

So, for the generalized difference operator Δab acting on bv, we have

Δ∗
ab =

⎛
⎜⎜⎜⎜⎜⎝

a+b a0−a−b a1 +b0−a−b a2 +b1−a−b · · ·
0 a0 b0 0 · · ·
0 0 a1 b1 · · ·
0 0 0 a2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

We assume some familiarity with the basic concepts of spectral theory of bounded
linear operators, principally the spectrum and the classical subdivisions of the spectrum
and we refer to the books by Stone [49], Taylor and Lay [51] and Kubrusly [31] for
basic definitions.

Let X be an infinite dimensional complex Banach space. The set of all bounded
linear operators on X into itself is denoted by B (X) . For T ∈ B (X) , we use R(T ) to
denote the range of T . Write Tλ = T −λ I , where λ is a complex number and I is the
identity operator acting on X .

There are different types of classification of the spectrum of a bounded linear op-
erator on a Banach space; all of them are based on the possible behaviors of R(Tλ ) and
T−1

λ . The first classification provides a disjoint subdivision of the spectrum into the
point spectrum σp (T,X) , the residual spectrum σr (T,X) and the continuous spectrum
σc (T,X) . This is the customary classification of the spectrum [49].

Following Appell et al. [11], more subdivisions of the spectrum can be defined;
the approximate point spectrum σap (T,X) , the defect spectrum σδ (T,X) and the com-
pression spectrum σco (T,X) .

Another classification is due to Taylor and Halberg [50]; we can classify the spec-
trum into seven disjoint sets I2σ(T,X) , I3σ(T,X) , II2σ(T,X) , II3σ(T,X) , III1σ(T,X) ,
III2σ(T,X) and III3σ(T,X) .

For the sequel we need the following lemmas.

LEMMA 2.1. [26, 27] Let T be a bounded linear operator on a complex Banach
space X . Then III1σ(T,X) and I3σ(T,X) are open sets.

LEMMA 2.2. [41, Lemma 2.2] Let T be a linear operator on a Banach sequence
space X that has a lower triangular matrix representation A = (an,k) . Then the point
spectrum of T on X is at most countable. More precisely, we have σp(T,X) ⊆ {an,n :
n ∈ N0} .
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The proof of Theorem 1.1 hinges on the following fact on matrix operators on �1

and �∞ .

PROPOSITION 2.1. Let V =(v jk) j,k∈N0 be an infinite matrix with complex entries.
The following holds:

(1) The matrix V = (v jk) j,k∈N0 generates a bounded linear operator on �∞ into itself
if and only if

I = sup
j∈N0

(
∑∞

k=0 |v jk|
)

< ∞.

If this is the case, the operator norm of V is equal to I .

(2) The matrix V = (v jk) j,k∈N0 generates a compact linear operator on �∞ into itself
if and only if

lim
L→∞

{
sup
j∈N0

(
∑∞

k=L |v jk|
)}

= 0.

(3) The matrix V = (v jk) j,k∈N0 generates a bounded linear operator on �1 into itself if
and only if

II = sup
j∈N0

(
∑∞

k=0 |vk j|
)

< ∞.

If this is the case, the operator norm of V is equal to II .

(4) The matrix V = (v jk) j,k∈N0 generates a compact linear operator on �1 into itself if
and only if

lim
L→∞

{
sup
j∈N0

(
∑∞

k=L |vk j|
)}

= 0.

Proof.

1. Although (1) is recorded in [48, Formula (1)], we can quickly prove the assertion
if we test the operator on (eiϕ0 ,eiϕ1 , . . .) for ϕ0,ϕ1, . . . ∈ R .

2. The “if” part is clear since

lim
L→∞

‖V −VL‖�∞→�∞ = 0,

where
VL = (χ[0,L](k)v jk) j,k∈N0

is a finite rank operator for each L ∈ N .

The converse, or the “only if” part is proved by contrapositive. Assume

lim
L→∞

{
sup
j∈N0

(
∑∞

k=L
|v jk|

)} �= 0,
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so that there exists a constant κ > 0 such that

sup
j∈N0

(
∑∞

k=L
|v jk|

)
> κ > 0

for each L ∈ N0 . Thus we can find jL ∈ N0 such that

∑∞
k=L

|v jL,k| > κ > 0.

Furthermore, we can also find KL > L such that

∑KL

k=L
|v jL,k| > κ > 0.

We define a sequence by the recurrence formula:

A0 = 1, AL+1 = KAL +1 (L ∈ N0).

Then for each L ,

∑AL+1−1
k=AL

|v jL,k| = ∑KAL
k=AL

|v jL,k| > κ .

If we set

xL = (0, . . . ,0,sgn(v jL,AL),sgn(v jL ,AL+1), . . . ,sgn(v jL ,AL+1−1),0 . . .),

then we have

‖VxL −VxL′ ‖�∞ � ‖VxL‖�∞ � ∑KAL
k=AL

|v jL,k| > κ (1 � L < L′ < ∞).

This means that {VxL}∞
L=1 is not a Cauchy sequence, while {xL}∞

L=1 is bounded.
So, V is not compact.

3. Simply take the transpose of (1) using the duality �1(N0)–�∞(N0) or resort to
[48, Formula (77)].

4. Simply take the transpose of (2) using the duality �1(N0)–�∞(N0) . �

3. Proof of Theorem 1.1: Boundedness and compactness of Δab

Assertions (1) and (2) are consequences of Proposition 2.1(1)-(2).
We prove (3). We use the isomorphism

U : (xk) ∈ �1(N0) �→
(
∑k

j=0 x j

)
∈ bv

and its inverse
(xk) ∈ bv �→ (xk − xk−1) ∈ �1.
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We consider the following commutative diagram.

�1(N0)
U−−−−→ bv

K

⏐⏐� ⏐⏐�Δab

�1(N0)
U−−−−→ bv

We calculate

Δab ◦Ux =
(
ak ∑k

j=0 x j +bk−1∑k−1
j=0 x j

)
∈ bv

and

Kx = U−1 ◦Δab ◦Ux

=
(
ak ∑k

j=0 x j +bk−1∑k−1
j=0 x j −ak−1∑k−1

j=0 x j −bk−2∑k−2
j=0 x j

)
=
(
akxk +(ak−ak−1 +bk−1−bk−2)∑k−2

j=0 x j +(ak −ak−1 +bk−1)xk−1

)
∈ �1.

Here K is a linear operator given by

Kx =
(
a jx j +(a j −a j−1 +b j−1)x j−1 +(a j −a j−1 +b j−1−b j−2)∑ j−2

k=0 xk

)
.

Using Proposition 2.1(3), we obtain the desired result.

Finally we prove (4). If the conditions in (4) are satisfied, then

lim
m→∞

sup
(x j)∈bv\{0}

‖Δab(x j)−Δab((χ[0,m]( j)x j)∞
j=0)‖bv

‖(x j)‖bv
= 0.

In fact,

sup
(x j)∈bv\{0}

‖Δab(x j)−Δab((χ[0,m]( j)x j)∞
j=0)‖bv

‖(x j)‖bv

� sup
j∈N0

|χ[m+1,∞)( j)a j|

+ sup
j∈N0

|χ[m+1,∞)( j +1)a j+1− χ[m+1,∞)( j)a j + χ[m+1,∞)( j)b j|

+ sup
j∈N0

∑∞
k= j+2 |χ[m+1,∞)(k)ak − χ[m+2,∞)(k)(ak−1 −bk−1)− χ[m+3,∞)(k)bk−2|.
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By the triangle inequality,

sup
(x j)∈bv\{0}

‖Δab(x j)−Δab((χ[0,m]( j)x j)∞
j=0)‖bv

‖(x j)‖bv

� sup
j∈N0∩[m+1,∞)

|a j|+ |am+1|+ sup
j∈N0∩[m+1,∞)

|a j+1−a j +b j|

+ |am|+ |am−1|+ |bm|+ |bm−1|+ |am−1|+ |am−2|+ |bm−1|+ |bm−2|
+ sup

j∈N0∩[m+1,∞)
∑∞

k= j+2 |ak −ak−1 +bk−1−bk−2|

→ 0

as m → ∞ . So Δab is a compact operator.
Conversely, assume that Δab is a compact operator. Observe that the j -th elemen-

tary vector e j is mapped to a je j +b je j+1 for each j . Thus, if lim
j→∞

a j �= 0 or lim
j→∞

b j �= 0

then (a je j + b je j+1) does not have any convergent subsequence. In fact, if this is the
case, there exists κ > 0 so that either |a j| > κ for infinitely many j or |b j| > κ for
infinitely many j . Let us write J for the set of all such j . Then if j, j′ ∈ J satisfies
j +2 < j′ , then ‖a je j +b je j+1 −a j′e j′ −b j′e j′+1‖bv > κ . Thus (a je j +b je j+1) does
not have any convergent subsequence. So the conditions lim

j→∞
a j = 0 and lim

j→∞
b j = 0

are necessary for Δab is compact. Since the compactness of Δab implies that Δab is
bounded, ∑∞

j=0 |a j −a j−1 +b j−1−b j−2| < ∞ is necessary as well.

4. Proof of Theorem 1.2: Spectra of Δab (compact case)

We specify the spectra of the generalized difference operator Δab as a compact
linear operator in the sequence space �∞ , as well as in the sequence space bv. To the
best of our knowledge, no contribution has appeared so far to study this problem in the
space �∞ even in the case of the operator B(r,s) . Theorem 1.2 will be decomposed into
Theorems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8, which will be proved in the next two
subsections.

4.1. The case of �∞

Throughout this subsection, we assume that Assumption 1.1 holds. It follows from
Theorem 1.1(2) that the operator Δab is compact on �∞ .

THEOREM 4.1. σp(Δab, �
∞) = A.

Proof. Applying Lemma 2.2, we learn that the only possible eigenvalues of Δab

are the diagonal elements; σp(Δab, �
∞)⊆A . To prove the reverse inclusion, let λ = an0 ,

for some fixed n0 ∈ N0 , and consider the relation (Δab−λ I)x = θ for some x = (xk) ∈
�0(N0) . Then, as a candidate of the solution x , we define (x j)

∞
j=n0

which is subject to
the following recurrence formula

xn0 = 1, bkxk +(ak+1−λ )xk+1 = 0, for all k � n0,
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where it is understood that n0 is the largest k so that λ = ak = an0 . Hence ak �= an0

for all k > n0 . We also define x j = 0 if j < n0 . Since bk �= 0 for all k ∈ N0 , each xk is
well defined and satisfies xk �= 0 as long as k � n0 . We see that x ∈ �∞ since

lim
k→∞

∣∣∣∣xk+1

xk

∣∣∣∣= lim
k→∞

∣∣∣∣ bk

λ −ak+1

∣∣∣∣= 0.

Consequently, we conclude λ = an0 ∈ σp(Δab, �
∞) . This completes the proof. �

Now, we arrive at one of the main theorems of this subsection.

THEOREM 4.2. σ(Δab, �
∞) = A∪{0} .

Proof. Since Δab is compact, the spectrum consists of the point zero together with
the non-zero eigenvalues. �

THEOREM 4.3. σr(Δab, �
∞) = {0} and σc(Δab, �

∞) = ∅.

Proof. Using Theorems 4.1 and 4.2, we obtain σr(Δab, �
∞)∪σc(Δab, �

∞) = {0} .
So we need to specify which set does 0 belong to. But, the range of the operator
Δab is contained in c0 . In fact, let x = (xn) ∈ �∞ . Then y = (yn) = Δabx , where
yn = anxn +bn−1xn−1.Then

|yn| � sup
k
|xk|(|an|+ |bn−1|) → 0 as n → ∞.

That is, R(Δab) ⊆ c0 . So, since c0 is closed in �∞ , R(Δab) is not dense in �∞ . Thus
0 ∈ σr(Δab, �

∞) . The second statement follows directly from the fact that

σc(Δab, �
∞) = σ(Δab, �

∞)�
(
σp(Δab, �

∞)∪σr(Δab, �
∞)
)
.

This completes the proof. �
Furthermore, we have the following:

THEOREM 4.4. The following hold:

(1) III2σ(Δab, �
∞) = {0} .

(2) III3σ(Δab, �
∞) = A.

Proof.

(1) As in Lemma 2.1, III1σ(Δab, �
∞) is an open set. Meanwhile,

III1σ(Δab, �
∞)∪ III2σ(Δab, �

∞) = σr(Δab, �
∞) = {0}.

Thus, III1σ(Δab, �
∞) is empty and III2σ(Δab, �

∞) = {0} .
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(2) Let λ = an0 ∈ σp(Δab, �
∞) with n0 ∈ N0 . Then R(Δab−λ I) is contained in

{y = (y0,y1, . . . ,yn0 , . . .) ∈ �∞ : r0y0 + r1y1 + · · ·+ rn0yn0 = 0}.
for some (r0, . . . ,rn0) ∈ Rn0+1 \ {0} . So, R(Δab−λ I) is not dense. Note that
I3σ(Δab, �

∞) = ∅ by Lemma 2.1. Thus, I3σ(Δab, �
∞) = II3σ(Δab, �

∞) = ∅ . It
remains to use Theorem 4.1 and the fact that

σp(Δab, �
∞) = I3σ(Δab, �

∞)∪ II3σ(Δab, �
∞)∪ III3σ(Δab, �

∞). �

4.2. The case of bv

In this subsection, we assume that Assumption 1.1 holds, as well as Assumption
1.2. That is, the operator Δab is compact on bv; see Theorem 1.1(4).

THEOREM 4.5. σp(Δab,bv) = A.

Proof. The proof is similar to that of Theorem 4.1, and so is omitted. �

LEMMA 4.1. σp(Δ∗
ab,bv∗) = σp(Δ∗

ab,bs) = A∪{0} .

Proof. Suppose Δ∗
ab f = λ f for f = ( fk) �= θ in bs � bv∗ . Then

−λ f0 +∑∞
k=0 (ak +bk−1) fk+1 = 0,

(ak −λ ) fk+1 +bk fk+2 = 0, for all k ∈ N0.

It is observed that (1,0,0, . . .) is an eigenvector associated with the eigenvalue λ =
0. That is, 0 ∈ σp(Δ∗

ab,bv∗) . Moreover, one can easily show that A ⊆ σp(Δ∗
ab,bv∗) .

Furthermore, for all λ /∈ A∪{0} , we have

lim
k→∞

∣∣∣∣ fk+1

fk

∣∣∣∣= lim
k→∞

∣∣∣∣λ −ak−1

bk−1

∣∣∣∣= ∞.

That is, f = ( fk) /∈ bs � bv∗ . This completes the proof. �
Similar to Theorem 4.2, we can specify σ(Δab,bv) :

THEOREM 4.6. σ(Δab,bv) = A∪{0} .

THEOREM 4.7. σr(Δab,bv) = {0} and σc(Δab,bv) = ∅.

Proof. Simply observe that

σr(Δab,bv) = σp(Δ∗
ab,bv∗)�σp(Δab,bv),

(cf. [11, Relation 1.56, Proposition 1.3(e)]) and then apply Theorem 4.5 and Lemma
4.1. The second result follows immediately;

σc(Δab,bv) = σ(Δab,bv)�
(
σp(Δab,bv)∪σr(Δab,bv)

)
.
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Alternatively, the result follows from the fact that the range of the operator Δab is
contained in c0∩bv =: bv0 , so that the range is not dense in bv. �

Furthermore, the following theorem gives the spectra of Δab on bv, where its
proof is omitted since it is similar to that of Theorem 4.4.

THEOREM 4.8. The following hold:

(1) III2σ(Δab,bv) = {0} .

(2) III3σ(Δab,bv) = A.

REMARK 4.1. The reader can check that

σδ (Δab,μ) = σco(Δab,μ) = σap(Δab,μ) = σ(Δab,μ), μ ∈ {�∞,bv} .

That is, no subdivision of the spectrum with respect to{
σδ (Δab,μ),σco(Δab,μ),σap(Δab,μ)

}
for each μ ∈ {�∞,bv} . However, under Assumptions 1.2 and 1.3, one will have a
different situation, as presented in the next section.

5. Proof of Theorems 1.3-1.7: Spectra of Δab (noncompact case)

Throughout this section we assume that Assumption 1.3 holds.

5.1. Proof of Theorem 1.3

COROLLARY 5.1. The operator Δab is in the class (�∞ : �∞) with

‖Δab‖ = sup
j∈N0

{∣∣a j
∣∣+ ∣∣b j−1

∣∣} .

Proof. The proof follows by a direct application of Theorem 1.1(1) �

THEOREM 5.1. The spectrum of the operator Δab is

σ(Δab, �
∞) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|))) .

Proof. From [6, Theorem 2] (see also [5, Theorem 2.2]), we have σ(Δab,c) =
Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|))) . Now, the required result follows by applying [16,
Lemma 4.8, p. 33]; σ(Δab,c) = σ(Δab, �

∞) . �

THEOREM 5.2. The point spectrum of Δab on �∞ is

σp(Δab, �
∞) =

(
A∩ (C�Δ(a, |b|)))∪K∞.
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Proof. From Lemma 2.2, we know that the set A = {ak : k ∈ N0} contains the
eigenvalues; σp (Δab, �

∞) ⊆ A . Now, let λ ∈ A . That is, λ = ak0 for some k0 ∈ N0 .
Consider the eigenvalue problem Δabx = ak0x for x = (xk) in �∞ . We obtain the system

bk−1xk−1 +
(
ak −ak0

)
xk = 0, k ∈ N0. (3)

Then, we have two cases; ak0 = a , or ak0 �= a .
If ak0 = a , then ak0 /∈ σp (Δab, �

∞) since, in this case, any nonzero solution for (3)
will not be an element in �∞ . In fact, we obtain either x = θ or

lim
k→∞

∣∣∣∣xk+1

xk

∣∣∣∣= ∞.

In the other case, ak0 �= a , we note that ak0 = ak �= a for finitely many k since
lim j→∞

∣∣a j −ak0

∣∣= ∣∣a−ak0

∣∣ �= 0. Put

k1 = max{k ∈ N0 : ak = ak0}.
If xk1 = 0, then x = θ . Otherwise, from (3), we have

lim
k→∞

∣∣∣∣xk+1

xk

∣∣∣∣=
∣∣∣∣ b
ak0 −a

∣∣∣∣ .
Therefore, ak0 /∈ σp(Δab, �

∞) if ak0 ∈ Δ∗ (a, |b|) , while ak0 ∈ σp (Δab, �
∞) if ak0 ∈

A∩ (C�Δ(a, |b|)) . Finally, for ak0 ∈ A∩ ∂Δ(a, |b|) , we observe that any nonzero
solution satisfies

xk = x j1 ∏k−1
i= j1

bi

ak0
−ai+1

,

for k > j1 . Thus, ak0 ∈ σp (Δab, �
∞) if ak0 ∈ K∞ . This completes the proof. �

5.2. Proof of Theorem 1.4

To prove Theorem 1.4 we need to review some information about the space f of
almost convergent sequences [14, p. 17]:

Let

f =
{

x = (xk) | 1
n+1 ∑n+p

k=p xk converges (as n → ∞) uniformly over p

}
.

Then f is a sequence space. The notion of convergence generated in this way is called
almost convergence, and the elements of f are called almost convergent sequences.
Further, let

f0 :=
{

x = (xk) | 1
n+1 ∑n+p

k=p
xk → 0 (as n → ∞) uniformly over p

}
.

Then f0 is a sequence subspace of f .
Important properties of almost convergence are stated in the following lemma.
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LEMMA 5.1. [14, Theorem 1.2.18, p. 17] We have f0 � f � �∞ .

LEMMA 5.2. [14, Lemma 2.4.11, p. 56, Exercise 2.9.11, p. 97]We have bs � f0 .
Moreover, the space bs is a proper dense subspace in ( f0,‖.‖�∞) .

REMARK 5.1. From Lemmas 5.1 and 5.2, we conclude that bs is not dense in �∞ .

Proof of Theorem 1.4. It can be shown that the range of the operator Δab is con-
tained in bs. Indeed, let x = (xk) ∈ �∞ . Then y = Δabx = (yk) , where

yk = akxk +bk−1xk−1.

Then

sup
n∈N0

∣∣∣∑n
k=0 yk

∣∣∣� sup
n∈N0

|xn|
(

∑∞
k=0 |ak +bk|+ sup

n∈N0

|bn|
)

< ∞.

Therefore, for all x = (xn) ∈ �∞ , we have Δabx = y ∈ bs. That is,

R(Δab) ⊆ bs.

So

R(Δab) ⊆ f0 �= �∞.

This implies that R(Δab) is not dense in �∞ . The result follows immediately. �

5.3. Proof of Theorem 1.5

Proof.

(1) Theorems 5.1 and 5.2 directly imply that

σr(Δab, �
∞)∪σc(Δab, �

∞) = Δ(a, |b|)�K∞.

(2) The proof follows by a similar argument as in the proof of Theorem 1.4.

(3) If λ = an0 ∈ Δ(a, |b|)�K∞ for some n0 ∈ N0 , then

R(Δab−λ I)⊆ {y = (y0,y1, . . . ,yn0 , . . .) ∈ �∞ : y0 + r0y1 + · · ·+ rn0yn0 = 0},

for some (r0, . . . ,rn0) ∈ Rn0+1 \ {0} . Therefore λ = an0 ∈ σr(Δab, �
∞) . �
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5.4. Proof of Theorem 1.6

Statements (1) and (2) follow immediately from Theorem 1.3 for ak = 1 and bk =
−1, for all k ∈ N0 .

Now, we prove Statement (3). The proof is via three steps:

Step 1 The set {λ ∈ C : |λ −1|< 1} is contained in σr(Δ, �∞) .

Indeed, for any λ ∈ Δ(1,1) = {λ ∈ C : |λ −1|< 1} , Δ−λ I does not have dense
range. In fact, if we let

y0 = (1−λ )x0, y1 = −x0 +(1−λ )x1, y2 = −x1 +(1−λ )x2, . . . ,

then we have
y0 +(1−λ )y1 +(1−λ )2y2 + · · · = 0.

So, the range of Δ−λ I is included in a closed subspace whose codimension is 1. Thus,
any element in Δ(1,1) is the residual spectrum of Δ .

Step 2 The set {λ ∈ C : |λ −1|= 1} is also contained in σr(Δ, �∞) .

Let λ ∈ ∂Δ(1,1) = {λ ∈ C : |λ −1|= 1} and define U(xn) = (ρnxn) with ρ =
(1− λ )−1 . Then U−1(Δ− λ I)U(xn) = (1− λ )Δ(xn) . Consequently, λ ∈ σr(Δ, �∞)
if and only if 0 ∈ σr(Δ, �∞) . We will show that 0 ∈ σr(Δ, �∞) by checking that the
distance d between (1,1,1, . . .) and the range of Δ is more than or equal to 1, so that
∂Δ(1) ⊂ σr(Δ, �∞) .

Let d′ > d be fixed and (yn)∈ �∞ be chosen suitably. Then we have |1− yn + yn−1|
< d′, so that 1−d′ < Re(yn − yn−1) < 1+d′. If d < 1, then by choosing d′ ∈ (d,1) ,
we would have Re(yn) → ∞ . This contradicts (yn) ∈ �∞ .

Alternatively, from Theorem 1.4, it follows that 0 ∈ σr(Δ, �∞) .
It follows from Steps 1 and 2 that Δ(1,1) ⊆ σr(Δ, �∞) .

Step 3 The set σr(Δ, �∞) is actually contained in Δ(1,1) .

It follows from the Neumann expansion that σ(Δab, �
∞) ⊆ Δ(1,1) .

This completes the proof of Statement (3).
Statement (4) can be easily observed.
To prove Statements (5) and (6) of Theorem 1.6 we need to review some informa-

tion about the minimum modulus of an operator. Let T : X −→ X be a bounded linear
operator, where X is a normed space. Define

μ(T ) = inf
x∈X
‖x‖=1

‖Tx‖ .

We call μ(T ) the minimum modulus of T [26]. It is non-negative real number. If λ is
in the boundary of the spectrum σ(T,X) , then μ(T −λ I) = 0 [26, Theorem 3.2]. For
each scalar λ ∈ C , define

Φ(λ ) = μ(T −λ I).
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It is clear that Φ is a continuous non-negative function. Further, since Φ is con-
tinuous, the set {λ ∈ C : Φ(λ ) > 0} is an open set. We have

{λ ∈ C : Φ(λ ) > 0} = ρ(T,X)∪ III1σ(T,X);

see [26, page 19]. However, any connected open subset of the set {λ ∈ C : Φ(λ ) > 0}
lies entirely in ρ(T,X) or entirely in III1σ(T,X) [26, Theorem 3.4].

PROPOSITION 5.1. [26, Theorem 3.8] Let T : X −→ X be a bounded linear op-
erator on a normed space X . Suppose Φ(λ0) > 0 . Let

E = {λ ∈ C : |λ −λ0| < r} ,

where

r =
{

sup
n

[μ ((T −λ0I)
n)]
} 1

n

.

Then E lies either all in ρ(T,X) or all in III1σ(T,X) .

Furthermore, let us recall the notion of the frame of the spectrum.
The set II2σ(T,X)∪ II3σ(T,X)∪ III2σ(T,X)∪ III3σ(T,X) is referred to as the

frame of the spectrum and denote it by Fσ(T,X) .

LEMMA 5.3. [27, Corollary 2.4] If T is a bounded linear operator on a com-
plex Banach space X , then the frame, Fσ(T,X) , is a nonvoid compact subset of the
spectrum σ(T,X) , containing the boundary ∂σ(T,X) .

Now, we are ready to prove Statements (5) and (6) of Theorem 1.6 as follows:
For the difference operator Δ : �∞ −→ �∞ , we have

Φ(1) = μ ((Δ− I)n) = r = 1.

One can easily observe that 1 ∈ III1σ(Δ, �∞) . Then E = {λ ∈ C : |λ −1|< 1}
⊆ III1σ(Δ, �∞) . But

III1σ(Δ, �∞) ⊆ σr(Δ, �∞) = {λ ∈ C : |λ −1|� 1} .

Therefore, since III1σ(Δ, �∞) is open,

III1σ(Δ, �∞) ⊆ {λ ∈ C : |λ −1|< 1} .

This completes the proof of statement (5). Further, since

σr(Δ, �∞) = {λ ∈ C : |λ −1|� 1}
= III1σ(Δ, �∞)∪ III2σ(Δ, �∞),

then
III2σ(Δ, �∞) = {λ ∈ C : |λ −1|= 1} .
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This completes the proof of Theorem 1.6.
The result in Theorem 1.6(5) asserts that III1σ(Δ, �∞) must be an open set; Lemma

2.1. Further, for the difference operator Δ : �∞ −→ �∞ , we have

II2σ(Δ, �∞) = II3σ(Δ, �∞) = III3σ(Δ, �∞) = ∅.

This implies that

Fσ(Δ, �∞) = III2σ(Δ, �∞) = {λ ∈ C : |λ −1|= 1} .

This asserts the fact that Fσ(Δ, �∞) must be compact and containing the boundary of
the spectrum; ∂σ(Δ, �∞) .

5.5. Proof of Theorem 1.7

In this subsection, we assume that Assumption 1.2 holds as well as Assumption
1.3. It follows directly from Theorem 1.1(3)-(4), that Δab is bounded but not compact
on bv. Theorem 1.7 will be decomposed into Theorems 5.3, 5.4, 5.5, 5.6 and 5.7, which
will be presented as follows.

THEOREM 5.3. σp(Δab,bv) =
(
A∩ (C�Δ(a, |b|)))∪Kb .

Proof. The proof is omitted since it is similar to that of Theorem 5.2. In fact, the
proof can be easily adapted to the space bv. �

LEMMA 5.4. σp(Δ∗
ab,bv∗) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|)))∪Hb∪{a+b}.

Proof. Suppose that Δ∗
ab f = λ f for f ∈ bv∗ , where f = ( fk) �= θ and bv∗ ∼= bs.

Then, we have

(a+b−λ ) f0 +∑∞
n=0 (an +bn−1−a−b) fn+1 = 0,

and

fk+1 =
(

λ −ak−1

bk−1

)
fk, k � 1.

There are five possibilities:
(1) Let λ = a+b . It follows that f = (1,0,0, . . .)∈ bs is an eigenvector associated

with the eigenvalue λ = a+b .
(2) Let λ ∈A , so that λ = ak0 �= a+b for some k0 ∈N0 . Then, f = ( f0, f1, f2, . . . ,

fk0+1 = 1,0,0, . . .) ∈ bs is an eigenvector associated with the eigenvalue λ = ak0 . Thus
A = {ak : k ∈ N} ⊆ σp(Δ∗

ab,bv∗) .
(3) Let λ ∈ Δ(a, |b|)\ (A∪{a+b}) . Then

lim
k→∞

∣∣∣∣ fk+1

fk

∣∣∣∣=
∣∣∣∣λ −a

b

∣∣∣∣< 1.

That is, f = ( fk) ∈ cs ⊂ bs. Thus Δ(a, |b|) ⊆ σp(Δ∗
ab,bv∗) .
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(4) Let λ ∈ Hb�(A∪{a+b}) . Then,

sup
n∈N0

∣∣∑n
k=2 fk

∣∣= sup
n∈N0

∣∣∣∣∑n
k=2

(
∏k−2

i=0

λ −ai

bi

)
f1

∣∣∣∣< ∞,

and so, f = ( fk) ∈ bs is the desired eigenvector. Thus Hb ⊆ σp(Δ∗
ab,bv∗) .

(5) It is now easy to observe that λ /∈ σp(Δ∗
ab,bv∗) for all λ /∈ Δ(a, |b|) ∪(

A∩ (C�Δ(a, |b|)))∪Hb∪{a+b} . �

THEOREM 5.4. σr(Δab,bv) = Δ(a, |b|)∪ ((Hb∪{a+b})�Kb) .

Proof. This follows from the fact that σr(Δab,bv) = σp(Δ∗
ab,bv∗)�σp(Δab,bv) .

We apply Theorem 5.3 and Lemma 5.4. �
Using Lemma 5.4, we deduce that

Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|)))⊆ σ(Δab,bv).

Now, we will give the result concerning the spectrum of the operator Δab on bv.

THEOREM 5.5. σ(Δab,bv) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|)))∪Fb .

Proof. Suppose that λ /∈Δ(a, |b|)∪(A∩ (C�Δ(a, |b|)))∪Fb , namely,
∣∣∣ b
a−λ

∣∣∣< 1,

λ /∈ Fb and λ �= ak for all k ∈ N0 . Once we check that (Δab−λ I)−1 ∈ B(bv) , we will
have λ /∈ σ(Δab,bv) .

Since λ �= ak for all k ∈ N0 , it follows that Δab −λ I is lower triangular and has
inverse at least formally, which is given by the matrix

(
dn,k
)
, where dn,k = 0 for k > n

and

dn,k =
(−1)n+k

bn
∏n

j=k

b j

a j −λ
= − 1

bn
∏n

j=k

b j

λ −a j

for k � n .
We need to apply the result in [48, Formula (99)] for the matrix

(
dn,k
)
. Firstly,

since
(
dn,k
)

is a lower triangular matrix, condition (1) of the result in [48, Formula
(99)] is satisfied; ∑∞

k=0 dn,k is trivially convergent for all n∈ N0 . Next, we aim to prove
that supm∈N0

Cm < ∞ , where

Cm = ∑∞
n=1

∣∣∣∑m
k=0(dn−1,k −dn,k)

∣∣∣ .
One can show that

Cm = ∑∞
k=0

∣∣tmk − tmk+1

∣∣ ,
where

tmk =
1
bk

∑m
j=0

(
∏k

i= j

bi

λ −ai

)
, k,m ∈ N0.

Since λ /∈ Fb , then supmCm = supm ∑∞
k=0

∣∣tmk − tmk+1

∣∣< ∞ . Thus λ /∈ σ (Δab,bv) . This
completes the proof. �
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THEOREM 5.6. σc(Δab,bv) = [∂Δ(a, |b|)�(Hb∪{a+b})]∪Fb .

Proof. Simply observe that σc(Δab,bv)= σ(Δab,bv)�
(
σp(Δab,bv)∪σr(Δab,bv)

)
.

It remains to apply Theorems 5.3, 5.4 and 5.5 �
Other spectra of the operator Δab are given in the following theorems.

THEOREM 5.7. The following hold:

(1) III3σ (Δab,bv) =
(
A∩ (C�Δ(a, |b|)))∪Kb,

(2) III1σ (Δab,bv)∪ III2σ (Δab,bv) = Δ(a, |b|)∪ ((Hb ∪{a+b})�Kb) ,

(3) II2σ (Δab,bv) = [∂Δ(a, |b|)�(Hb∪{a+b})]∪Fb.

THEOREM 5.8. The following hold:

(1) σap (Δab,bv) =
(
Δ(a, |b|)�III1σ (Δab,bv)

)∪ (A∩ (C�Δ(a, |b|)))∪Fb,

(2) σδ (Δab,bv) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|)))∪Fb,

(3) σco (Δab,bv) = Δ(a, |b|)∪ (A∩ (C�Δ(a, |b|)))∪Hb∪{a+b} .

REMARK 5.2. In comparison with Remark 4.1, it is noted that a subdivision (not
necessarily disjoint) of the spectrum with respect to{

σδ (Δab,bv),σco(Δab,bv),σap(Δab,bv)
}

exists properly.
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