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SPECTRA OF INFINITE GRAPHS: TWO METHODS OF COMPUTATION

LEONID GOLINSKII

Abstract. Two methods for computation of the spectra of certain infinite graphs are suggested.
The first one can be viewed as a reversed Gram–Schmidt orthogonalization procedure. It relies
heavily on the spectral theory of Jacobi matrices. The second method is related to the Schur
complement for block matrices. A number of examples including finite graphs with tails, chains
of cycles and ladders are worked out in detail.

Mathematics subject classification (2020): Primary 05C63; Secondary 05C76, 47B36, 47A10, 47B15.
Keywords and phrases: Adjacency operator, Jacobi matrices of finite rank, Jost function, block matrix,

right limit, Schur complement.

RE F ER EN C ES

[1] R. B. BAPAT, Graphs and Matrices, Springer, Universitext, 2011.
[2] A. BÖTTCHER AND B. SILBERMANN, Introduction to Large Truncated Toeplitz Matrices, Springer,

1999.
[3] J. BREUER, Singular continuous spectrum for the Laplacian on certain sparse trees, Comm. Math.

Phys., 269 (2007), 851–857.
[4] J. BREUER, Singular continuous and dense point spectrum fr sparse trees with finite dimension, in

“Probability and Mathematical Physics”, v. 47 (2007), 65–83.
[5] A. E. BROUWER, W. H. HAEMERS, Spectra of Graphs, Springer, Universitext, 2012.
[6] F. CHUNG, Spectral graph theory, volume 92 of CBMS Regional Conference Series in Mathematics.

Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
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