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NEW BEREZIN SYMBOL INEQUALITIES FOR OPERATORS

ON THE REPRODUCING KERNEL HILBERT SPACE

RAMIZ TAPDIGOGLU

(Communicated by F. Kittaneh)

Abstract. We use Kittaneh and Manasrah inequality and Kian’s functional calculus method to
prove some new inequalities for Berezin symbols and Berezin numbers of operators. In particu-
lar, we prove that

ber
(

f (A)2
)

� ber

(
f (A)p

p
+

f (A)q

q

)
for all self-adjoint operators A on the reproducing kernel Hilbert space H (Ω) with spectrum
in J ⊂ (−∞,+∞) and all continuous nonnegative functions f defined on J. We also prove new
upper and lower bounds for Berezin numbers of reproducing kernel Hilbert space operators.
Among our results, we prove that if A : H (Ω)→H (Ω) is a bounded pseudo-hypornormal op-
erator on the reproducing kernel Hilbert space H (Ω) , then for all non-negative non-decreasing
pseudo-operator convex function f on [0,∞) , we have

f (ber (A)) � 1
2

∥∥∥∥∥∥ f

⎛⎝ |A|
1+

ξ 2
|A|
8

⎞⎠+ f

⎛⎝ |A∗|
1+

ξ 2
|A|
8

⎞⎠∥∥∥∥∥∥
Ber

,

where ‖.‖Ber denotes the Berezin norm of operator.

1. Introduction

Let Ω be a subset of a topological space X such that the boundary ∂Ω is nonempty.
Let H be an infinite-dimensional Hilbert space of complex-valued functions defined
on Ω. We say that H is a reproducing kernel Hilbert space if the following two con-
ditions are satisfied:

(i) for any λ ∈ Ω, the evaluation functionals f → f (λ ) are continuous on H ;
(ii) for any λ ∈ Ω, there exists fλ ∈ H such that fλ (λ ) �= 0 (or equivalently,

there is no λ0 ∈ Ω such that f (λ0) = 0 for every f ∈ H ).
According to the classical Riesz representation theorem, the assumption (i) implies

that, for every λ ∈ Ω there exists a unique function kλ ∈ H such that

f (λ ) = 〈 f ,kλ 〉H , f ∈ H .

Mathematics subject classification (2020): 47B35.
Keywords and phrases: Reproducing kernel Hilbert space, Berezin symbol, Berezin number, Berezin

norm, self-adjoint operator, functional calculus.

c© � � , Zagreb
Paper OaM-15-64

1031

http://dx.doi.org/10.7153/oam-2021-15-64


1032 R. TAPDIGOGLU

The function kλ (z) is called the reproducing kernel of H at point λ . It is well
known that every reproducing kernel Hilbert space is separable. So, if {en (z)}n�0 is
any orthonormal basis of H , then (see Aronzajn [2])

kλ (z) =
∞

∑
n=0

en (λ )en (z) .

By virtue of assumption (ii), we surely have kλ �= 0 and we denote by k̂λ the nor-
malized reproducing kernel, that is k̂λ := kλ

‖kλ ‖H
. Recall that if B (H ) is the Banach

algebra of all bounded linear operator on H , then the Berezin symbol Ã of any oper-
ator A ∈ B (H ) is the complex-valued function defined on the Ω by the formula (see,
Nordgren and Rosenthal [24] and Berezin [6])

Ã(λ ) :=
〈
Ak̂λ , k̂λ

〉
H

, λ ∈ Ω.

The Berezin set of operator A is defined by

Ber(A) =
{〈

Ak̂λ , k̂λ

〉
: λ ∈ Ω

}
= Range

(
Ã
)

,

and Berezin number ber(A) of operator A is the following number (see [16, 17])

ber(A) := sup
λ∈Ω

∣∣∣Ã(λ )
∣∣∣ .

Since,
∣∣∣Ã(λ )

∣∣∣ � ‖A‖ , Berezin symbol is a bounded function on Ω. Also, it is trivial by

Cauchy-Schwarz inequality that ber(A) � ‖A‖ . The Berezin norm ‖A‖Ber of operator
A ∈ B (H (Ω)) is defined by (see, [13])

‖A‖Ber := sup
λ∈Ω

∥∥∥Ak̂λ

∥∥∥
H

.

It is easy to verify that ‖A‖Ber determines a new norm in the algebra B (H (Ω)) , since
the set of reproducing kernels span H (see [2]). It is also known that the Berezin norm
‖A‖Ber is not equivalent to the usual operator norm ‖A‖ (see Engliś [7] and [23]), while
the inequality ‖A‖Ber � ‖A‖ is trivial; also it is obvious that ber(A) � ‖A‖Ber .

In the present article, we prove some new inequalities for the Berezin number
of operators, and also we give some inequality between ‖A‖Ber and ber(A) for some
operators A. Related results are contained in [3, 4, 5, 8, 9, 10, 13, 11, 12, 27, 28, 29].

2. Berezin symbol inequalities via refinements of the scalar
Young inequality and related inequalities

Recall that an operator A∈B (H ) is called positive if 〈Ax,x〉� 0 for all x∈H .
In this case we will write A � 0. The classical operator Jensen inequality for the positive
operators S ∈ B (H ) is

〈Sx,x〉r � (�)〈Srx,x〉 , r � 1 (0 � r � 1) .
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Kittaneh and Manasrah [22] obtained the following result which is a refinement of
scalar Young inequality.

LEMMA 1. Let a,b � 0, and p,q > 1 such that 1
p + 1

q = 1. Then

ab+min

{
1
p
,
1
q

}(
a

p
2 −b

q
2

)2
� ap

p
+

bq

q
. (1)

Note that for p = 2, we have equality in (1) .
In this section, we will use inequality (1) and a method of the paper [20] to prove

new inequalities for the Berezin number of some operators on the reproducing kernel
Hilbert space H (Ω) .

Let B (H )+ denote the set of all positive operators in B (H ) , and let B (H )h
be the real space of all self-adjoint operators on H . It is well known (and easy
to verify) that every bounded positive operator on H is self-adjoint. So, always
B (H )+ ⊂ B (H )h .

THEOREM 1. Let f ,g be two continuous functions defined on an interval J ⊂
(−∞,+∞) and f ,g � 0. If p > 1, 1

p + 1
q = 1, then:

(i) ˜( f g)(A)(λ )+min
{

1
p , 1

q

}[(
f (A)

p
2 −g(A)

q
2

)2
]∼

(λ ) �
[

f (A)p

p + g(A)q

q

]∼
(λ )

for all operators A ∈ B (H )h with spectrum contained in J and all λ ∈ Ω;

(ii) ber
(

f (A)2
)

� ber
(

f (A)p

p + f (A)q

q

)
for all A ∈ B (H )h with spectrum con-

tained in J and all λ ∈ Ω.

(iii) ber

(
A+min

{
1
p , 1

q

}(
f (A)p/2−g(A)q/2

)2
)

� ber
(

f (A)p

p + g(A)q

q

)
for all

A ∈ B (H )h with spectrum contained in J.

Proof. Let t,s ∈ J. Following Kian [20], noticing that f (t) � 0 and g(t) � 0 for
all t ∈ J, and putting a = f (t) and b = g(t) in inequality (1) , we obtain

f (t)g(t)+min

{
1
p
,
1
q

}(
f (t)

p
2 −g(t)

q
2

)2
� f (t)p

p
+

g(t)q

q
(2)

for all t ∈ J. Using the functional calculus for A to inequality (2) , we have that

f (A)g(A)+min

{
1
p
,
1
q

}(
f (A)

p
2 −g(A)

q
2

)2
� f (A)p

p
+

g(A)q

q
.

Whence 〈
f (A)g(A) k̂λ , k̂λ

〉
+min

{
1
p
,
1
q

}〈(
f (A)

p
2 −g(A)

q
2

)2
k̂λ , k̂λ

〉
�

〈(
f (A)p

p
+

g(A)q

q

)
k̂λ , k̂λ

〉
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for all λ ∈ Ω , which means that

˜f (A)g(A)(λ )+min

{
1
p
,
1
q

}[(
f (A)

p
2 −g(A)

q
2

)2
]̃

(λ ) �
[

f (A)p

p
+

g(A)q

q

]̃
(λ ) ,

or equivalently,

˜( f g)(A) (λ )+min

{
1
p
,
1
q

}[(
f (A)

p
2 −g(A)

q
2

)2
]̃

(λ ) �
[

f (A)p

p
+

g(A)q

q

]̃
(λ ) (3)

for all λ ∈ Ω , which proves (i).
Replacing g by f in (3) , we get

˜f (A)2 (λ ) �
[

f (A)p

p
+

f (A)q

q

]̃
(λ ) , ∀λ ∈ Ω,

which implies by taking sup in both side that

ber
(

f (A)2
)

� ber

(
f (A)p

p
+

f (A)q

q

)
,

which proves (ii). For the proof of (iii), it suffices to take functions f and g in (i)
satisfying f (t)g(t) = t. The theorem is proven. �

Manasrah and Kittaneh [1] have generalized inequality (1) as follows:

LEMMA 2. If a,b > 0 and p,q > 1 such that 1
p + 1

q = 1, then for m = 1,2, . . . ,

(
a

1
p b

1
q

)m
+ rm

0

(
a

m
2 −b

m
2

)2
�

(
ar

p
+

br

q

)m
r

, r � 1, (4)

where r0 = min
{

1
p , 1

q

}
. In particular, if p = q = 2, then(

a
1
2 b

1
2

)m
+

1
2m

(
a

m
2 −b

m
2

)2
� 2−

m
r (ar +br)

m
r .

For m = 1 (
a

1
2 b

1
2

)
+

1
2

(
a

1
2 −b

1
2

)
� 2−

1
r (ar +br)

1
r .

THEOREM 2. Let f ,g be two continuous functions defined on an interval J ⊂
(−∞,+∞) and f ,g � 0 , and let p,q > 1 be numbers such that 1

p + 1
q = 1. Then, for

m = 1,2, . . . , we have:
(i) [(

f (A)
1
P g(A)

1
q

)m]̃
(λ )+ rm

0

[(
f (A)

m
2 −g(A)

m
2

)2
]̃

(λ )

�
[(

f (A)r

p
+

g(A)r

q

)m
r
]̃

(λ ) ,r � 1, (5)
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where r0 = min
{

1
p , 1

q

}
, for all operators A ∈B (H )+ with σ (A)⊂ J ⊂ [0,+∞) and

all λ ∈ Ω;
(ii)

ber

(
A

m
2 +

1
2m

(
f (A)

m
2 −g(A)

m
2

)2
)

� inf
r�1

ber

((
f (A)r +g(A)r

2

)m
r
)

,

for every operator A ∈ B (H )+ with σ (A) ⊂ J ⊂ [0,+∞) .

Proof. The proof of this theorem uses Lemma 2 and it is quite similar to the proof
of Theorem 1, and therefore, we omit details only saying that the proof of (i) is obtained
from inequality (4) by applying the functional calculus arguments of Kian and for the
proof of (ii), it is enough to choose in (i) functions f and g such that f (t)g(t) = t (for
example f (t) = tr and g(t) = t1−r with 0 < r < 1) and p = q = 2. �

Recall that the Schwarz inequality for positive operators reads that

|〈Ax,y〉|2 � 〈Ax,x〉〈Ay,y〉 (6)

for all vectors x,y ∈ H .
Reid [26] proved that for all operators A , B such that A ∈ B (H )+ and AB ∈

B (H )h , we have
|〈ABx,y〉| � ‖B‖〈Ax,x〉 , ∀x,y ∈ H , (7)

which is in some sense a variant of Schwarz inequality. Halmos [15] presented his
stronger version of inequality (7) by replacing r (B) , the spectral radius, instead of
‖B‖ . Kato [18] introduced a companion inequality of Schwarz inequality (6) , called
the mixed Schwarz inequality, which asserts

|〈ABx,y〉|2 �
〈
|A|2α x,x

〉〈
|A∗|2(1−α) y,y

〉
, 0 � α � 1, (8)

for every operators A ∈ B (H ) and any vectors x,y ∈ H .
Finally, Kittaneh [21] proved an interesting extension combining both the Halmos-

Reid inequality (7) and the mixed Schwarz inequality (8) , which reads that

|〈ABx,y〉| � r (B)‖ f (|A|)x‖‖g(|A∗|)y‖ (9)

for all vectors x,y∈H , where A,B∈B (H ) such that |A|B =B∗ |A| and f ,g are non-
negative continuous functions defined on [0,∞) satisfying that f (t)g(t) = t (t � 0) .

Now by putting x = k̂λ and y = k̂λ in Halmos version of (7) , (8) and (9) , we
obtain the following important inequalities for Berezin numbers and Berezin norms of
operators:

ber(AB) � r (B)ber(A) .

(ber(A))2 � ber
(
|A|2α

)
ber

(
|A∗|2(1−α)

)
, (0 � α � 1) .

ber(AB) � r (B)‖ f (|A|)‖Ber ‖g(|A∗|)‖Ber .
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3. Other inequalities

3.1. Upper bounds for the Berezin numbers

For A ∈ B (H ) , we denote by |A| the absolute value operator of A, that is,

|A|= (A∗A)
1
2 , where A∗ is the adjoint operator of A . So, |A∗|= (AA∗)

1
2 . A continuous

real-valued function f defined on an interval Δ is said to be pseudo-operator convex if

f (αA+(1−α)B) � α f (A)+ (1−α) f (B)

in the sense that

(α f (A)+ (1−α) f (B))∼ (λ ) � (α f (A)+ (1−α) f (B))∼ (λ )

for all λ ∈ Ω, for all self-adjoint operators A,B with spectra contained in Δ and all
α ∈ [0,1] .

The following lemma is well known, which is called the mixed Schwarz inequality
(see Halmos [15]).

LEMMA 3. If A ∈ B (H ) , then

|〈Ax,y〉| � 〈|A|x,x〉 1
2 〈|A∗|y,y〉 1

2

for all x,y ∈ H .

LEMMA 4. ([25]) For each α � 1 , we have

α −1
α +1

� lnα. (10)

Recall that an operator A∈B (H ) is said to be hyponormal, if [A∗,A]∈B (H )+ ,
i.e., A∗A−AA∗ � 0, or equivalently ‖A∗x‖ � ‖Ax‖ for every x ∈ H .

Typical examples are subnormal operators and singular integral operators on the
line with Cauchy type integral (see [14]).

DEFINITION 1. We say that an operator A ∈B (H ) is a pseudo-hyponormal op-

erator if
∥∥∥A∗k̂λ

∥∥∥ �
∥∥∥Ak̂λ

∥∥∥ , or equivalenty, if [̃A∗,A] (λ ) � 0 for all λ ∈ Ω .

It is clear that every hyponormal operator is pseudo-hyponormal. The following
example shows that the set of hyponormal operators is a proper subset in the set of
pseudo-hyponormal operators on H .

EXAMPLE 1. Let θ be a non-constant inner function and Nθ := Tθ
(
I−TθT ∗

θ
)

be an operator on the Hardy space H2 := H2 (D) over the unit disc D . Then Nθ is a
pseudo-hyponormal operator, but it is not hyponormal.
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Proof. Since θ is an inner function (i.e., |θ (z)| � 1 for all z ∈ D and |θ (ξ )| = 1
for almost all ξ ∈ ∂D), an analytic Toeplitz operator Tθ is isometry on H2 , that is
T ∗

θ Tθ = 1. So, it is easy to verify that N2
θ = 0 and ‖Nθ‖ = 1, i.e., Nθ is a nonzero

nilpotent operator on H2 . Therefore Nθ is not hyponormal operator, because for hy-
ponormal operators their norm and spectral radius coincide (see, for instance, [14]).

However, Nθ is pseudo-hyponormal. In fact, for every λ ∈ D we have:

˜[
N∗

θ ,Nθ
]
(λ ) =

〈
(N∗

θ Nθ −Nθ N∗
θ ) k̂H2,λ , k̂H2,λ

〉
=

〈
[(I−Tθ T ∗

θ )T ∗
θ Tθ (I−Tθ T ∗

θ )−Tθ (I−Tθ T ∗
θ ) (I−Tθ T ∗

θ )T ∗
θ ] k̂H2,λ , k̂H2,λ

〉
=

〈(
I−2TθT ∗

θ +T 2
θ T ∗2

θ
)
k̂H2,λ , k̂H2,λ

〉
= 1−2 |θ (λ )|2 + |θ (λ )|4 =

(
1−|θ (λ )|2

)2
� 0,

which shows that Nθ is a pseudo-hyponormal operator on H2 , as desired. �
This section motivated by the paper [25], where upper bounds for the numerical

radii are proved. In the present section, we prove the similar results for the Berezin
numbers.

THEOREM 3. Let A ∈ B (H ) be a pseudo-hyponormal operator. Then

f (ber(A)) � 1
2

∥∥∥∥∥∥ f

(
1

1+
ξ 2
|A|
8

|A|
)

+ f

(
1

1+
ξ 2
|A|
8

|A∗|
)∥∥∥∥∥∥

Ber

for all nonnegative non-decreasing pseudo-operator convex f on [0,∞) , where ξ|A| =

inf
λ∈Ω

{
˜|A|−|A∗|(λ )
˜|A|+|A∗|(λ )

}
.

Proof. Since A is pseudo-hyponormal, we have

1 �

〈
|A| k̂λ , k̂λ

〉
〈
|A∗| k̂λ , k̂λ

〉 =
|̃A|(λ )

|̃A∗|(λ )

for each λ ∈ Ω. Putting α = |̃A|(λ )
|̃A∗|(λ )

in (10), we get

(0 �)
˜|A|− |A∗|(λ )
˜|A|+ |A∗|(λ )

� ln
|̃A|(λ )

|̃A∗|(λ )
,

hence

inf
λ∈Ω

˜|A|− |A∗|(λ )
˜|A|+ |A∗|(λ )

� ln
|̃A|(λ )

|̃A∗|(λ )
. (11)
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We set

ξ|A| := inf
λ∈Ω

˜|A|− |A∗|(λ )
˜|A|+ |A∗|(λ )

.

On the other hand, it is known that (see [30] )(
1+

(lna− lnb)2

8

)√
ab � a+b

2

for each a,b > 0.

By taking a = |̃A|(λ ) and b = |̃A∗|(λ ) , and by considering that ξ|A| � ln |̃A|(λ )
|̃A∗|(λ )

,

we infer that (
|̃A|(λ )|̃A∗|(λ )

)1/2
�

˜|A|+ |A∗|(λ )

2

(
1+

ξ 2
|A|
8

) .

By applying Lemma 3, we obtain

|̃A|(λ ) �
˜|A|+ |A∗|(λ )

2

(
1+

ξ 2
|A|
8

) .

Now, by taking supremum over λ ∈ Ω, we get

ber(A) � 1

2
(
1+ ξ 2

|A|/8
)ber(|A|+ |A∗|) � 1

2
(
1+ ξ 2

|A|/8
) ‖|A|+ |A∗|‖Ber .

Therefore,

f (ber(A)) � f

⎛⎜⎜⎝ 1

2

(
1+

ξ 2
|A|
8

) ‖|A|+ |A∗|‖Ber

⎞⎟⎟⎠

=

∥∥∥∥∥∥∥∥ f

⎛⎜⎜⎝ 1

2

(
1+

ξ 2
|A|
8

) |A|+ 1

2

(
1+

ξ 2
|A|
8

) |A∗|

⎞⎟⎟⎠
∥∥∥∥∥∥∥∥

Ber

� 1
2

∥∥∥∥∥∥ f

⎛⎝ 1

1+
ξ 2
|A|
8

|A|
⎞⎠+ f

⎛⎝ 1

1+
ξ 2
|A|
8

|A∗|
⎞⎠∥∥∥∥∥∥

Ber

.

This proves the theorem. �
Since ξ|A| = 0 for any normal operator A ∈ B (H ) , then we have from Theorem

3 the following.
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COROLLARY 1.

f (ber(A)) � 1
2
‖ f (|A|)+ f (|A∗|)‖Ber

for every normal operator A on H (Ω) .

COROLLARY 2. Let A∈B (H ) be a pseudo-hyponormal operator. Then, for all
1 � r � 2 we have

berr (A) � 1

2

(
1+

ξ 2
|A|
8

) ‖|A|r + |A∗|r‖Ber ,

where

ξ|A| = inf
λ∈Ω

˜|A|− |A∗|(λ )
˜|A|+ |A∗|(λ )

.

In particular,

ber(A) � 1

2

(
1+

ξ 2
|A|
8

) ‖|A|+ |A∗|‖Ber ,

and

ber2 (A) � 1

2

(
1+

ξ 2
|A|
8

) ‖A∗A+AA∗‖Ber .

The following lemma can be proved by slight modification of the proof of Example
3.6 of the paper [19] (the proof is omitted).

LEMMA 5. Let A1, ..An be positive operators, then∥∥∥∥ n
∑
i=1

ciAi

∥∥∥∥r

Ber

�
∥∥∥∥ n

∑
i=1

ciA
r
i

∥∥∥∥
Ber

− inf
λ∈Ω

{
n
∑
i=1

ci

〈∣∣∣∣∣Ai −
n
∑
j=1

c j

〈
Ajk̂λ , k̂λ

〉∣∣∣∣∣
r

k̂λ , k̂λ

〉}
, r � 2, (12)

for each c1, ..cn with
n
∑
i=1

ci = 1.

THEOREM 4. Let A ∈ B (H ) , then

ber2 (A) � 1
2

(∥∥∥|A|2 + |A∗|2
∥∥∥

Ber
− inf

λ∈Ω
ξ (λ )

)
,

where

ξ (λ ) :=

〈(∣∣∣∣|A|−1
2

(
˜|A|+ |A∗|(λ )I

)∣∣∣∣2 +
∣∣∣∣|A∗|−1

2

(
˜|A|+ |A∗|(λ )I

)∣∣∣∣2
)

k̂λ , k̂λ

〉
, λ ∈Ω.



1040 R. TAPDIGOGLU

Proof. It is easy to verify that for any A ∈ B (H )

ber(A) � 1
2
‖|A|+ |A∗|‖Ber ,

or equivalently,

ber2 (A) � 1
4
‖|A|+ |A∗|‖2

Ber . (13)

Taking n, r = 2, c1 = c2 = 1
2 , A1 = |A| and A2 = |A∗| in inequality (12) in Lemma

5, we infer

‖|A|+ |A∗|‖2
Ber � 2

(∥∥∥|A|2 + |A∗|2
∥∥∥

Ber
− inf

λ∈Ω

{(∣∣∣∣|A|− 1
2

(
|̃A|(λ )+ |̃A∗|(λ )

)∣∣∣∣2
)∼

(λ )

+

(∣∣∣∣|A∗|− 1
2

(
|̃A|(λ )+ |̃A∗|(λ )

)∣∣∣∣2
)∼

(λ )

})
.

It follows from (13) that

ber2 (A) � 1
4
‖|A|+ |A∗|‖2

Ber

� 1
2

(
‖|A|+ |A∗|‖2

Ber − inf
λ∈Ω

{(∣∣∣∣|A|− 1
2

(
|̃A|(λ )+ |̃A∗|(λ )

)∣∣∣∣2
)∼

(λ )

+

(∣∣∣∣|A∗|− 1
2

(
|̃A|(λ )+ |̃A∗|(λ )

)∣∣∣∣2
)∼

(λ )

})
.

This proves the theorem. �
Note that infλ∈Ω ξ (λ ) > 0 if and only if

0 /∈ closBer

(∣∣∣∣|A|−1
2

(
|̃A|(λ )+|̃A∗|(λ )

)∼
(λ )

∣∣∣∣2 +
∣∣∣∣|A∗|−1

2

(
|̃A|(λ )+|̃A∗|(λ )

)∼
(λ )

∣∣∣∣2
)

.

3.2. Lower bounds for the Berezin numbers

Here we give some lower bounds for the Berezin numbers of operators.

THEOREM 5. Let A ∈ B (H ) , then

‖A‖Ber

(
1− 1

2

∥∥∥∥I− A
‖A‖

∥∥∥∥2

Ber

)
� ber(A) . (14)

Proof. It is easy to see that

1− 1
2

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥2

� 1
‖x‖‖y‖ |〈x,y〉| (15)
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for every x,y ∈ H . If we choose ‖x‖ = ‖y‖ = 1 in (15), we have

1− 1
2
‖x− y‖2 � |〈x,y〉| . (16)

Now taking x = k̂λ and y = Ak̂λ
‖Ak̂λ‖ in (16), we infer

1− 1
2

∥∥∥∥∥∥k̂λ − Ak̂λ∥∥∥Ak̂λ

∥∥∥
∥∥∥∥∥∥

2

�

∣∣∣∣∣∣
〈

k̂λ ,
Ak̂λ∥∥∥Ak̂λ

∥∥∥
〉∣∣∣∣∣∣ ,

or equivalently, ∥∥∥Ak̂λ

∥∥∥
⎛⎜⎝1− 1

2

∥∥∥∥∥∥k̂λ − Ak̂λ∥∥∥Ak̂λ

∥∥∥
∥∥∥∥∥∥

2

�
∣∣∣Ã(λ )

∣∣∣
⎞⎟⎠ (17)

for all λ ∈ Ω. Since
∥∥∥Ak̂

∥∥∥ � ‖A‖Ber , we get from (17) that

∥∥∥Ak̂λ

∥∥∥(
1− 1

2

∥∥∥∥I− A
‖A‖

∥∥∥∥2

Ber

)
�

∣∣∣Ã(λ )
∣∣∣

for all λ ∈ Ω. Hence, by taking supremum over λ ∈ Ω , we deduce the required in-
equality (14). The theorem is proved. �

The following lemma is proved in [25].

LEMMA 6. Let x,y,zi, i = 1, . . . ,n be nonzero vectors and
〈
z j,zi

〉 �= 0, then∣∣∣∣∣∣∣
〈

x−∑
i

〈x,zi〉
∑
j

∣∣〈z j,zi
〉∣∣zi,y

〉∣∣∣∣∣∣∣
2

� ‖y‖2

⎛⎜⎝‖x‖2−∑
i

∣∣〈x,z j
〉∣∣2

∑
j

∣∣〈zi,z j
〉∣∣

⎞⎟⎠ . (17)

THEOREM 6. Let A ∈ B (H ) be an invertible operator. Then

inf
λ∈Ω

ξ 2(λ )+ber2 (A) � ‖A‖2
Ber , (18)

where

ξ (λ ) :=

∣∣∣∣〈A2k̂λ , k̂λ

〉
−

〈
Ak̂λ , k̂λ

〉2
∣∣∣∣∥∥∥A∗k̂λ

∥∥∥ .

Proof. Simplifying (17) for the case n = 1, we find that (see [25])∣∣∣∣∣〈x,y〉− 〈x,z〉
‖z‖2 〈z,y〉

∣∣∣∣∣
2

+
|〈x,z〉|2
‖z‖2 ‖y‖2 � ‖x‖2 ‖y‖2 .
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Apply these consideration to x = Ax, y = A∗x and z = x with ‖x‖ = 1, we obtain⎛⎝
∣∣∣〈A2x,x

〉−〈Ax,x〉2
∣∣∣

‖A∗x‖

⎞⎠2

+ |〈Ax,x〉|2 � ‖Ax‖2 . (19)

Now let us put x = k̂λ in (19). Then, we have that⎛⎝
∣∣∣Ã2(λ )− Ã(λ )2

∣∣∣∥∥∥A∗k̂λ

∥∥∥
⎞⎠2

+
∣∣∣Ã(λ )

∣∣∣2 �
∥∥∥Ak̂λ

∥∥∥2
(20)

for all λ ∈ Ω. We denote ξ (λ ) :=

∣∣∣Ã2(λ )−Ã(λ )2
∣∣∣

‖A∗k̂λ‖ , λ ∈ Ω.

Then, inequality (20) implies that

inf
λ∈Ω

ξ 2(λ )+
∣∣∣Ã(λ )

∣∣∣2 �
∥∥∥Ak̂λ

∥∥∥2
, ∀λ ∈ Ω,

and thus, by taking the supremum over all points λ in Ω, we have the desired inequality
(18). The theorem is proven. �
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