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L–MATRICES WITH LACUNARY COEFFICIENTS

LUDOVICK BOUTHAT AND JAVAD MASHREGHI ∗

(Communicated by F. Kittaneh)

Abstract. We show that an L -matrices A = [an] , with lacunary coefficients (an) is a bounded
operator on �2 , provided that (an) satisfy an explicit decay rate. Moreover, by a concrete ex-
ample, we see that the decay restriction is optimal. The extension to operators on �p spaces, for
p > 1 , is also discussed.

1. Introduction

Let (an)n�0 be a sequence of complex numbers. Then the infinite matrix

A = [an] =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a1 a1 a2 a3 · · ·
a2 a2 a2 a3 · · ·
a3 a3 a3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

is called an L-matrix. These matrices were introduced in [1]. Infinite matrices have
been the center of several recent studies. A very incomplete list is as follows: Bozkurt
[2], Solak [14], Solak–Bozkurt [15] and Orr [13] studied the norm of infinite matrices.
Ismail–Štampach [10] and Dai–Ismail–Wang [5] provided a complete spectral analysis
of self-adjoint operators action on �2(Z) and studied their connections to difference
equations. van de Mee–Seatzu [16] gave an algorithm to generate infinite multi-index
positive self-adjoint Toeplitz matrices. For further on history and relevant literature of
infinite matrices and in particular L-matrices, we refer to [11, 12, 1]. In [1], by provid-
ing two results, one necessary and the other sufficient, we studied the boundedness of
A as an operator on �2 . In particular, we could precisely evaluate the norm of

As =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
s

1
s+1

1
s+2 · · ·

1
s+1

1
s+1

1
s+2 · · ·

1
s+2

1
s+2

1
s+2 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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by showing that ‖As‖ = 4, for all s � 1/2. This is an interesting addition to a short
list of infinite matrices for which we can precisely determine the norm, e.g., the Hilbert
matrix H [9] with ‖H‖ = π [4, 7], the Cesàro matrix C [8] with ‖C‖ = 2 [3, 18], the
Bergman–Hilbert matrix [6], Hankel matrices [17]. However, for the general setting,
an estimation formula was provided. As a necessary condition, we showed that

an = O
( 1√

n

)
, (n → ∞), (1)

is required and, by providing a set of examples, we justified the sharpness of this con-
dition. One of the explicit examples provided was

a4n =
1

n2n , (n � 1),

and a j = 0 for other values of index. Then A is a Hilbert–Schmidt operator on �2 .
Furthermore,

√
mam =

{ log4
logm if m = 4n,

0 otherwise.

Moreover, using similar technique, the decay rate 1/ logm can be decreased as fast as
required.

This work started with an attempt to show that the operator A = [an] with

a4n =
1
2n , (n � 1), (2)

and a j = 0 for other values of index, is bounded on �2 , and thus the condition O(1/
√

n)
in (1) is the best possible. Surprisingly enough, even this simple looking matrix was
not easy to handle. As a matter of fact, verification of the boundedness of A with
coefficients (2) took a long period and eventually led to a more general result which is
discussed in Section 2. Briefly speaking, we will see that if (an) is a sparse sequence,
then, up to certain decay rate which is optimal, the operator A is bounded on �2 . The
proof is direct, but somehow nontrivial, and in particular requires a judicial application
of Cauchy-Schwarz and Hölder inequalities to different patterns in the formula of the
norm.

In the following, we will write an � bn whenever there are positive constants c
and C such that

c|an| � |bn| � C|bn|, n � 1.

2. The boundedness on �2

We say that the sequence (an) is lacunary if there is a constant ρ > 1 and a
subsequence (n j) such that n j+1/n j � ρ and an = 0 except possibly for indices n ∈
{n j : j � 1} . We were initially interested in the exponential case n j = 4 j , for which the
formulas in the following theorem are simpler. See Corollary 1. However, the result
can be extended to a more general setting as described below.
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THEOREM 1. Let A = [an] be an L-matrix with lacunary coefficient (an) satisfy-
ing

∞

∑
s= j

√
ns |ans |2 = O

(
1/

√
n j
)
, (as j → ∞).

Then A maps �2 to itself as a bounded operator.

Proof. Since
∥∥[an]

∥∥
�2→�2 �

∥∥[|an|]
∥∥

�2→�2 , without loss of generality, we assume
that an � 0, for all n � 0. Then we can write A = B+B∗−D , where

B =

⎛
⎜⎜⎜⎜⎜⎝

a0 0 0 0 · · ·
a1 a1 0 0 · · ·
a2 a2 a2 0 · · ·
a3 a3 a3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

and D = diag(a0,a1, . . .) is the diagonal matrix with entries (an) . Clearly, D is a
bounded operator. Hence, it is enough to show that B is bounded and then the result
follows. For this, we directly estimate ‖Bx‖ , where x = (xn) ∈ �2 and again, without
loss of generality, we assume that xn � 0.

Write y = Bx . Hence,

yn = an(x0 + x1 + · · ·+ xn), (n � 0),

which immediately shows that (yn) is also a lacunary series. The delicate part starts
from here where we estimate yn . Assuming n = ns , ans �= 0 and for simplicity x0 = 0,
write

yns/ans =
n1

∑
j=0

x j +
n2

∑
j=n1+1

x j + · · ·+
ns

∑
j=ns−1+1

x j.

Hence, by Cauchy–Schwarz inequality,

yns/ans � n1/2
1

(
n1

∑
j=1

x2
j

)1/2

+(n2−n1)1/2

(
n2

∑
j=n1+1

x2
j

)1/2

+ · · ·+(ns−ns−1)1/2

(
ns

∑
j=ns−1+1

x2
j

)1/2

� n1/2
1

(
n1

∑
j=1

x2
j

)1/2

+n1/2
2

(
n2

∑
j=n1+1

x2
j

)1/2

+ · · ·+n1/2
s

(
ns

∑
j=ns−1+1

x2
j

)1/2

.

Note that since

n j −n j−1 = n j

(
1− n j−1

n j

)
� n j

(
1− 1

ρ

)
,
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the above estimation, up to a multiplicative constant, is optimal. We need to apply the
Cauchy-Schwarz inequality one more time, but to the combination

n1/4
1 ·n1/4

1

(
n1

∑
j=1

x2
j

)1/2

+n1/4
2 ·n1/4

2

(
n2

∑
j=n1+1

x2
j

)1/2

+ · · ·+n1/4
s ·n1/4

s

(
ns

∑
j=ns−1+1

x2
j

)1/2

.

Hence,

(
yns/ans

)2 �
(
n1/2

1 +n1/2
2 + · · ·+n1/2

s

)
[
n1/2

1

(
n1

∑
j=1

x2
j

)
+n1/2

2

(
n2

∑
j=n1+1

x2
j

)
+ · · ·+n1/2

s

(
ns

∑
j=ns−1+1

x2
j

)]
.

That (n j) is a lacunary series is used here one more time to get

n1/2
1 +n1/2

2 + · · ·+n1/2
s � n1/2

s ,

and thus

y2
ns

� Ca2
ns

n1/2
s

[
n1/2

1

(
n1

∑
j=1

x2
j

)
+n1/2

2

(
n2

∑
j=n1+1

x2
j

)
+ · · ·+n1/2

s

(
ns

∑
j=ns−1+1

x2
j

)]
,

where C = C(ρ) is a constant. Therefore,

‖Bx‖2 =
∞

∑
n=0

y2
n =

∞

∑
s=1

y2
ns

� C

(
η1

n1

∑
j=1

x2
j + η2

n2

∑
j=n1+1

x2
j + · · ·

)
,

where

η j = n1/2
j

∞

∑
s= j

a2
ns

n1/2
s .

By assumption η j s are uniformly bounded, i.e., η j � C′ , for all j � 1. Therefore,
‖Bx‖2 � CC′ ‖x‖2 , for all x ∈ �2 . In other words, B is bounded, which in return shows
that A is bounded. �

3. Application

Fix an integer N � 2 and put

n j = N j, ( j � 1).

We also assume that
anj = Rj, ( j � 1),
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where R is a fixed ratio. To verify the required condition in Theorem 1, note that

η j =
√

n j

∞

∑
s= j

√
ns a

2
ns

= N j/2
∞

∑
s= j

Ns/2 R2s

= N j/2
∞

∑
s= j

(√
NR2)s

= N j/2

(√
NR2

) j

1−√
NR2

=
(NR2) j

1−√
NR2

,

provided that
√

NR2 < 1. However, η j s remain uniformly bounded if we put the
stronger assumption NR2 � 1.

COROLLARY 1. Let N � 2 be a positive integer and let 0 � R � 1/
√

N . Let
A = [an] be the L-matrix with lacunary coefficient

aN j = Rj, ( j � 1),

and an = 0 for other values of n. Then A is a bounded operator on �2 .

As a very special case, by taking N = 4 and R = 1/2, we see that the operator
A = [an] with coefficients (2) is bounded on �2 .

4. The boundedness on �p

With a similar techniques, but using the Hölder inequality, we can prove the fol-
lowing more general version of Theorem 1. Below, we provide a sketch of proof. In
the following, given 1 < p < ∞ , its exponent conjugate q is the unique real number
satisfying 1/p+1/q = 1.

THEOREM 2. Let p > 1 , with exponent conjugate q, and let A = [an] be an L-
matrix with lacunary coefficient (an) satisfying

∞

∑
s= j

|ans|pn(1−t)p/q
s = O

(
n−t p/q

j

)
, ( j → ∞),

for some t ∈ [0,1) . Then A maps �p to itself as a bounded operator.

Proof. As in the proof of Theorem 1, write y = Bx and

yns/ans =
n1

∑
j=0

x j +
n2

∑
j=n1+1

x j + · · ·+
ns

∑
j=ns−1+1

x j.
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Hence, by Hölder’s inequality,

yns/ans � n1/q
1

(
n1

∑
j=1

xp
j

)1/p

+(n2−n1)1/q

(
n2

∑
j=n1+1

xp
j

)1/p

+ · · ·+(ns−ns−1)1/q

(
ns

∑
j=ns−1+1

xp
j

)1/p

� n1/q
1

(
n1

∑
j=1

xp
j

)1/p

+n1/q
2

(
n2

∑
j=n1+1

xp
j

)1/p

+ · · ·+n1/q
s

(
ns

∑
j=ns−1+1

xp
j

)1/p

.

We apply the Hölder inequality one more time, but to the combination

n(1−t)/q
1 ·nt/q

1

(
n1

∑
j=1

xp
j

)1/p

+ · · ·+n(1−t)/q
s ·nt/q

s

(
ns

∑
j=ns−1+1

xp
j

)1/p

.

Hence,

yns/ans �
(
n1−t

1 +n1−t
2 + · · ·+n1−t

s

)1/q
(3)[

ntp/q
1

(
n1

∑
j=1

xp
j

)
+ntp/q

2

(
n2

∑
j=n1+1

xp
j

)
+ · · ·+ntp/q

s

(
ns

∑
j=ns−1+1

xp
j

)]1/p

.

Since (n j) is a lacunary series, we have

(
n1−t

1 +n1−t
2 + · · ·+n1−t

s

)1/q � n(1−t)/q
s (4)

and thus

yp
ns

�Cap
ns

n(1−t)p/q
s

[
ntp/q

1

(
n1

∑
j=1

xp
j

)
+ntp/q

2

(
n2

∑
j=n1+1

xp
j

)
+ · · ·+ntp/q

s

(
ns

∑
j=ns−1+1

xp
j

)]
,

where C = C(ρ) is a constant. Therefore,

‖Bx‖p
p =

∞

∑
n=0

yp
n =

∞

∑
s=1

yp
ns

� C

(
η1

n1

∑
j=1

xp
j + η2

n2

∑
j=n1+1

xp
j + · · ·

)
,

where

η j = ntp/q
j

∞

∑
s= j

ap
ns

n(1−t)p/q
s = O(1). (5)

We are done. �
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A similar result holds for the case t = 1. In fact, in the above proof, the estimation
(4) should be replaced with

(
n1−t

1 +n1−t
2 + · · ·+n1−t

s

)1/q � s1/q, if t = 1.

The rest of proof is the same, and thus the required condition of Theorem 2 becomes

∞

∑
s= j

|ans |psp/q = O
(
n−p/q

j

)
, ( j → ∞).

If so, A maps �p to itself as a bounded operator.

5. Quantitative estimations

Under the assumptions of Theorem 2, we proceed to find an upper bound for
‖A‖�p→�p . Hence, fix p > 1 and t ∈ (0,1) . Since (n j) is a lacunary series with ra-
tio ρ > 1, we have

n1−t
1 +n1−t

2 + · · ·+n1−t
s �

(
1+

1
ρ1−t +

1

ρ2(1−t) + · · ·
)

n1−t
s =

ρ1−t

ρ1−t −1
n1−t

s .

By (3), this estimation implies

‖Bx‖p
p �

(
ρ1−t

ρ1−t −1

)p/q
(

η1

n1

∑
j=1

xp
j + η2

n2

∑
j=n1+1

xp
j + · · ·

)
, (6)

where η j are given by (5). Define

η := sup
j�1

(
ntp/q

j

∞

∑
s= j

ap
ns

n(1−t)p/q
s

)1/p

.

Plugging back to (6), we deduce

‖Bx‖p � η
(

ρ1−t

ρ1−t −1

)1/q

‖x‖p,

or equivalently

‖B‖�p→�p � η
(

ρ1−t

ρ1−t −1

)1/q

. (7)

Since A = B+B∗−D , we conclude

‖A‖�p→�p � 2η
(

ρ1−t

ρ1−t −1

)1/q

+‖(an)‖∞.
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If we apply the estimation (7) to the matrix introduced in Corollary 1, with t =
1/2, we get

‖B‖�2→�2 �
√

N√
N−1

.

On the other hand, fixing J , let x = (1,1, . . . ,1,0,0,0, . . .) , where 1 repeats NJ times.
Then

‖x‖2 = NJ

while, by considering the coordinates of y = Bx ,

‖Bx‖2 � N +N2 + · · ·+NJ =
NJ+1 −N

N−1
.

Thus,

‖B‖2 � N−N1−J

N−1
.

Since J is arbitrary, letting J → ∞ , we get

‖B‖2 � N
N−1

.

Therefore, we have the estimation
√

N√
N−1

� ‖B‖ �
√

N√
N−1

.

Therefore, the estimation (7) is not far from being optimal.
We would like to thank the anonymous referee for his/her valuable remarks, which

improved the quality and sharpness of results. In particular, due to his/her insight, the
case t = 1 in Theorem 2 was considered separately.
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