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ON SEMIMONOTONE STAR MATRICES AND

LINEAR COMPLEMENTARITY PROBLEM

R. JANA ∗ , A. K. DAS, S. SINHA

Abstract. In this article, we introduce the class of semimonotone star (Es
0 ) matrices. We estab-

lish the importance of the class of Es
0 -matrices in the context of complementarity theory. We

show that the principal pivot transform of an Es
0 -matrix is not necessarily Es

0 in general. How-
ever, we prove that Ẽs

0 -matrices, a subclass of the Es
0 -matrices with some additional conditions,

is fully semimonotone matrix by showing this class is in P0. We prove that LCP (q,A) can be
processable by Lemke’s algorithm if A ∈ Ẽs

0 ∩P0. We find some conditions for which the solu-
tion set of LCP (q,A) is bounded and stable under the Ẽs

0 -property. We propose an algorithm
based on an interior point method to solve LCP (q,A) given A ∈ Ẽs

0.
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