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HARNACK TYPE INEQUALITIES FOR OPERATORS

IN LOGARITHMIC SUBMAJORISATION
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Abstract. This paper studies the Harnack type logarithmic submajorisation and Fuglede–Kadison
determinant inequalities for operators in a finite von Neumann algebra. In particular, the Har-
nack type determinant inequalities due to Lin–Zhang [17] and Yang–Zhang [28] are extended to
the case of operators in a finite von Neumann algebra.
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theorem and outers for noncommutative Hp , Trans. Amer. Math. Soc. 360, 6131–6147 (2008).
[3] T. N. BEKJAN, M. RAIKHAN, An Hadamard-type inequality, Linear Algebra and its Application 443,

228–234 (2014).
[4] L. G. BROWN, Lidskii theorem in the type II case, Geometric methods in operator algebras, (Kyoto,

1983), 1–35, Pitman Res. Notes Math. Ser. 123, Longman Sci. Tech., Harlow, (1986).
[5] P. G. DODDS, T. K.-Y. DODDS, Unitary approximation and submajorization, Proc. Centre Math.

Appl. Austral. Nat. Univ., Austral. Nat. Univ., Canberra, 29, 42–57, (1992).
[6] P. G. DODDS, B. DE PAGTER, F. SUKOCHEV, Theory of noncommutative integration, unpublished

manuscript.
[7] P. G. DODDS, T. K. DODDS, F. A. SUKOCHEV, D. ZANIN, Logarithmic submajorization, uniform
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