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A NEW MATRIX INEQUALITY INVOLVING PARTIAL TRACES

YONGTAO LI, WEIJUN LIU AND YANG HUANG ∗

(Communicated by Y.-T. Poon)

Abstract. Let A be an m×m positive semidefinite block matrix with each block being n -square.
We write tr1 and tr2 for the first and second partial trace, respectively. In this paper, we prove
the following inequality

(trA)Imn − (tr2A)⊗ In � ±(Im ⊗ (tr1A)−A
)
.

This inequality is not only a generalization of Ando’s result [ILAS Conference (2014)] and Lin
[Canad. Math. Bull. 59 (2016) 585–591], but it also could be regarded as a complement of
a recent result of Choi [Linear Multilinear Algebra 66 (2018) 1619–1625]. Additionally, some
new partial traces inequalities for positive semidefinite block matrices are also included.

1. Introduction

We use the following standard notation; see, e.g., [3] and [12]. The set of n× n
complex matrices is denoted by Mn(C) , or simply by Mn , and the identity matrix of
order n by In , or I for short. If A = [ai j] is of order m× n and B is of order s× t ,
the tensor product of A with B , denoted by A⊗B , which is an ms× nt matrix that
partitioned into m× n block matrix with the (i, j)-block being the s× t matrix ai jB .
By convention, if X ∈ Mn is positive semidefinite, then we write X � 0. For two
Hermitian matrices A and B of the same order, A � B stands for A−B � 0; see [21,
Chapter 1] and [22]. In this paper, we are interested in complex block matrices. Let
Mm(Mn) be the set of complex matrices partitioned into m×m blocks with each block
being an n× n matrix. The element of Mm(Mn) is usually written as A = [Ai, j]mi, j=1
with Ai, j ∈ Mn for every 1 � i, j � m .

For A = [Ai, j]mi, j=1 ∈ Mm(Mn) , we define the partial transpose of A by Aτ =
[Aj,i]mi, j=1 . It is clear that A � 0 does not necessarily imply Aτ � 0. For instance,
taking

A =
[
A1,1 A1,2

A2,1 A2,2

]
=

⎡⎢⎢⎣
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤⎥⎥⎦� 0.
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It follows by definition that

Aτ =
[
A1,1 A2,1

A1,2 A2,2

]
=

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ .

One could easily observe that Aτ is not positive semidefinite since it contains a principal
submatrix

[
0 1
1 0

]
� 0. If both A and Aτ are positive semidefinite, then A is said to be

positive partial transpose or PPT for short; see [16, 17, 14]. For more explanations
of the partial transpose and PPT, we recommend a comprehensive survey [4], and see,
e.g., [6, 7, 8, 20] for more recent results.

Now we introduce the definition and notation of partial traces, which comes from
Quantum Information Theory [19, pp. 10–12]. For A ∈ Mm(Mn) , the first partial trace
map A �→ tr1A∈ Mn is defined as the adjoint map of the imbedding map X �→ Im⊗X ∈
Mm ⊗Mn . Correspondingly, the second partial trace map A �→ tr2A ∈ Mm is similarly
defined as the adjoint map of the imbedding map Y �→ Y ⊗ In ∈ Mm ⊗Mn . Therefore,
we have

〈Im⊗X ,A〉 = 〈X , tr1A〉, ∀X ∈ Mn,

and
〈Y ⊗ In,A〉 = 〈Y, tr2A〉, ∀Y ∈ Mm.

Assume that A = [Ai, j]mi, j=1 with Ai, j ∈ Mn , equivalent forms of the first and second
partial trace are given in [4, pp. 120–123] as

tr1A =
m

∑
i=1

Ai,i and tr2A =
[
trAi, j

]m
i, j=1.

As we all know, these two partial traces maps are linear and trace-preserving.
Furthermore, if A = [Ai, j]mi, j=1 ∈ Mm(Mn) is positive semidefinite, it is easy to see that
both tr1A and tr2A are positive semidefinite; see, e.g., [23, p. 237] or [24, Theorem
2.1]. To some extent, these two partial traces are closely related. For instance, Ando
[1] established

(trA)Imn +A � Im ⊗ (tr1A)+ (tr2A)⊗ In.

We refer to [18] for an alternative proof. Equivalently, it can be written as

(trA)Imn− (tr2A)⊗ In � Im ⊗ (tr1A)−A. (1)

Moreover, Choi recently investigated the first partial trace in [6] and presented

Im ⊗ tr1A
τ � Aτ ,

Meanwhile, Choi also proved in [6] that if A ∈ M2(Mn) is positive semidefinite, then

I2⊗ (tr1A)+ (tr2A)⊗ In � A.
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Furthermore, Choi [8] gave a further extension and showed

(tr2Aτ)⊗ In � ±Aτ and Im ⊗ tr1A
τ � ±Aτ . (2)

We observe in (1) that the positivity of A leads to

(trA)Im =
m

∑
i=1

(trAi,i)Im =
(
tr(tr2A)

)
Im � tr2A,

which guarantees that (trA)Imn− (tr2A)⊗ In is positive semidefinite. However, the two
matrices of right hand side in (1) might be incomparable. A PPT condition on block
matrix A was proposed to ensure Im ⊗ (tr1A) � A ; see [8] or [15, Corollary 2.2] for
more details.

As we have already discussed above, and motivated by Choi’s result (2), we will
give a new partial traces inequality (Theorem 2.2), which could be viewed as a gener-
alization of Ando’s result (1) and also a complement of Choi’s result (2).

The paper is organized as follows. We first introduce an efficient and useful
lemma, which was first proved by Lin [16]. We will provide an alternative short proof
of this lemma for completeness and then utilize it to prove Theorem 2.2. Addition-
ally, we present some new partial traces inequalities (Theorem 2.5 and Corollary 2.6)
for positive semidefinite block matrices. As an application on numerical analysis, we
give some generalizations of the famous Cauchy-Khinchin inequality (Corollary 3.1
and 3.2).

2. Main result

A map (not necessarily linear) Φ : Mn → Mk is called positive if it maps positive
semidefinite matrices to positive semidefinite matrices. A map Φ : Mn → Mk is said to
be m-positive if for every [Ai, j]mi, j=1 ∈ Mm(Mn) ,

[Ai, j]mi, j=1 � 0 ⇒ [Φ(Ai, j)]mi, j=1 � 0. (3)

The map Φ is said to be completely positive if (3) holds for every positive integer
m � 1. It is well-known that both the trace map and determinant map are completely
positive; see, e.g., [23, p. 221, p. 237] and [24]. On the other hand, a map Φ is said to
be m-copositive if for every [Ai, j]mi, j=1 ∈ Mm(Mn) ,

[Ai, j]mi, j=1 � 0 ⇒ [Φ(Aj,i)]mi, j=1 � 0, (4)

and Φ is said to be completely copositive if (4) holds for every positive integer m � 1.
Furthermore, a map Φ is called a completely PPT if it is both completely positive and
completely copositive. A comprehensive survey on completely positive maps can be
found in [4, Chapter 3].

Before starting our proof of Theorem 2.2, we first introduce the following useful
Lemma 2.1, which is not only the main result in [16, Theorem 1.1], but also plays an
important role in our proof. We here provide an alternative proof for completeness;
see [15] for more potential applications and [10] for the relation with singular value
inequality.
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LEMMA 2.1. [16] The map Φ(X) = X +(trX)I is completely PPT.

Proof. We use the Choi’s criterion [5] to give a short proof. This criterion is now
becoming a standard tool for completely PPT map in quantum information theory. It
suffices to prove that for every positive integer m ,

[Φ(Ej,i)]mi, j=1 � 0,

where Ej,i ∈ Mn stands for the unit matrix, that is, the matrix with 1 in the ( j, i)-th
entry and 0 elsewhere. Note that [Φ(Ej,i)]mi, j=1 is symmetric and row diagonally domi-
nant with nonnegative diagonal entries. Then [Φ(Ej,i)]mi, j=1 is positive semidefinite for
each m . So [Φ(Aj,i)]mi, j=1 is positive semidefinite. On the other hand, let A = [Ai, j]mi, j=1
be positive semidefinite. Since [trAi, j]mi, j=1 is positive semidefinite [23, p. 237] and

[Φ(Ai, j)]mi, j=1 = [trAi, j]mi, j=1⊗ In +A,

then [Φ(Ai, j)]mi, j=1 is also positive semidefinite. This completes the proof. �

Now, we are ready to present the main result. Our result could be viewed as a
generalization and complement of both (1) and (2).

THEOREM 2.2. Let A = [Ai, j]mi, j=1 ∈ Mm(Mn) be positive semidefinite. Then

(trA)Imn − (tr2A)⊗ In � ±(Im⊗ (tr1A)−A
)
.

Proof. As Ando’s result (1), we only need to prove that

(trA)Imn− (tr2A)⊗ In � A− Im⊗ (tr1A). (5)

When m = 1, there is nothing to prove. We now prove the case m = 2. In this case, the
required inequality is[

(trA)In 0
0 (trA)In

]
−
[
(trA1,1)In (trA1,2)In
(trA2,1)In (trA2,2)In

]
�
[
A1,1 A1,2

A2,1 A2,2

]
−
[
A1,1 +A2,2 0

0 A1,1 +A2,2

]
,

or equivalently (note that trA = trA1,1 + trA2,2 ),

M :=
[

(trA2,2)In +A2,2 −A1,2− (trA1,2)In
−A2,1− (trA2,1)In (trA1,1)In +A1,1

]
� 0. (6)

By Lemma 2.1, we get[
(trA1,1)In +A1,1 (trA2,1)In +A2,1

(trA1,2)In +A1,2 (trA2,2)In +A2,2

]
� 0,
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and so

M =
[
0 −In
In 0

][
(trA1,1)In +A1,1 (trA2,1)In +A2,1

(trA1,2)In +A1,2 (trA2,2)In +A2,2

][
0 In

−In 0

]
� 0,

which confirms the desired (6).
Next, we turn to the general case. Our treatment in this case has its root in [1]. By

definition, setting

Γ := (trA)Imn + Im⊗ (tr1A)−A− (tr2A)⊗ In

=

(
tr

m

∑
i=1

Ai,i

)
Imn + Im⊗

(
m

∑
j=1

Aj, j

)
−A− ([trAj,k]mj,k=1

)⊗ In

=

[
δ j,k

( m

∑
i=1

trAii

)
In + δ j,k

( m

∑
i=1

Ai,i

)
−Aj,k− (trAj,k)In

]m

j,k=1

.

For each pair (p,q) with 1 � p < q � m , we define a 2×m matrix Ip,q as

Ip,q := [δ j,1δk,p + δ j,2δk,q]
2,m
j,k=1 =

⎡⎣ 0 · · · 0
p-th
1 0 · · · 0 0 0 · · · 0

0 · · · 0 0 0 · · · 0
q-th
1 0 · · · 0

⎤⎦ .

Upon a direct computation, it follows that

Γ = ∑
1�p<q�m

(Ip,q⊗ In)∗Mp,q(Ip,q⊗ In),

where Mp,q ∈ M2(Mn) are defined as

Mp,q :=
[

(trAq,q)In +Aq,q −Ap,q− (trAp,q)In
−Aq,p− (trAq,p)In (trAp,p)In +Ap,p

]
.

It is easy to see from the case m = 2 that the positivity of

[
Ap,p Ap,q

Aq,p Aq,q

]
yields Mp,q � 0.

Hence, we get Γ � 0. This completes the proof. �
Over the years, 2×2 block positive semidefinite matrices are well studied, such a

partition yields various elegant matrix inequalities; see [2, 11, 13, 17] for recent results.
Next, we will give a partial traces inequality in the form of 2×2 block matrix.

COROLLARY 2.3. Let A = [Ai, j]mi, j=1 ∈ Mm(Mn) be positive semidefinite. Then[
(trA)Imn A

A (trA)Imn

]
�
[
(tr2A)⊗ In Im ⊗ (tr1A)
Im ⊗ (tr1A) (tr2A)⊗ In

]
. (7)

Proof. Note that[
I I
I −I

][
X Y
Y X

][
I I
I −I

]
=
[
2(X +Y ) 0

0 2(X −Y )

]
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for any X and Y with same size. By this identity and Theorem 2.2, it follows that[
(trA)Imn − (tr2A)⊗ In Im⊗ (tr1A)−A

Im⊗ (tr1A)−A (trA)Imn − (tr2A)⊗ In

]
� 0.

By left and right-multiplying
[

I 0
0 −I

]
, the disired result (7) immediately holds. �

We next provide an analogous result of Theorem 2.2 under the PPT condition.

PROPOSITION 2.4. Let A = [Ai, j]mi, j=1 ∈ Mm(Mn) be PPT. Then

(trA)Imn +(tr2A)⊗ In � Im ⊗ (tr1A)+A.

Proof. The required proposition holds from the following

(trA)Imn � Im ⊗ (tr1A) and (tr2A)⊗ In � A.

The first inequality follows by

(trA)In =
m

∑
i=1

(trAi,i)In �
m

∑
i=1

Ai,i = tr1A,

and the second one is a direct consequence of Choi’s result (2). �
At the end of this section, we will provide more partial trace inequalities (The-

orem 2.5) by using a similar approach as in [8, Theorem 6]. Let us start with some
notation. Let A = [Ai, j]mi, j=1 ∈ Mm(Mn) and suppose that Ai, j =

[
ai, j

r,s
]n
r,s=1 . We define

Ã ∈ Mn(Mm) by

Ã := [Br,s]nr,s=1 , where Br,s =
[
ai, j

r,s

]m
i, j=1 ∈ Mm .

Clearly, we have ˜̃A = A , and it was shown in [7, Theorem 7] that Ã is unitarily similar
with A . This implies that if A is positive semidefinite, then so is Ã ; see, e.g., [6, 8] for
more datails. By a direct computation, we can see that

tr2Ã =
[
tr
[
ai, j

r,s

]m
i, j=1

]n
r,s=1

=
[

m
∑
i=1

ai,i
r,s

]n

r,s=1
=

m

∑
i=1

[
ai,i

r,s

]n
r,s=1

= tr1A. (8)

Moreover, for any X = [xi j]mi, j=1 ∈ Mm and Y = [yrs]nr,s=1 ∈ Mn , by definition,

X ⊗Y = [xi jY ]mi, j=1 =
[
[xi jyrs]nr,s=1

]m
i, j=1

.

Then, it follows that

X̃ ⊗Y =
[
[xi jyrs]mi, j=1

]n
r,s=1

= [yrsX ]nr,s=1 = Y ⊗X . (9)
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THEOREM 2.5. Let A = [Ai, j]mi, j=1 ∈ Mm(Mn) be positive semidefinite. Then

(trA)Inm − (tr1A)⊗ Im � ±(In⊗ (tr2A)− Ã
)
,

and
(trA)Inm +(tr1A)⊗ Im � In⊗ (tr2A)+ Ã.

Proof. Since Ã ∈ Mn(Mm) , by applying Theorem 2.2 to Ã , we get

(trÃ)Inm − (tr2Ã)⊗ Im � ±(In⊗ (tr1Ã)− Ã
)
,

Noth that tr Ã = trA and combining (8), it follows that

(trA)Inm − (tr1A)⊗ Im � ±(In⊗ (tr2A)− Ã
)
.

On the other hand, by taking ∼ both sides in Theorem 2.2, we obtain

˜(trA)Imn − ˜(tr2A)⊗ In � ±( ˜Im⊗ (tr1A)− Ã
)
,

which together with (9) leads to the following

(trA)Inm − In⊗ (tr2A) � ±((tr1A)⊗ Im− Ã
)
.

This completes the proof. �
After finishing the first version of this paper, M. Lin suggested the author that

an equivalent version of Theorem 2.5 could be added as a corollary, which not only
weakens the PPT condition in Proposition 2.4, but also can be regarded as a complement
of (5).

COROLLARY 2.6. Let A = [Ai, j]mi, j=1 ∈ Mm(Mn) be positive semidefinite. Then

(trA)Imn± (tr2A)⊗ In � A± Im⊗ (tr1A).

Equivalently, it also could be written as

(trA)Imn −A � ±(Im⊗ (tr1A)− (tr2A)⊗ In
)
.

3. Applications

As promised, we shall provide some applications of Theorem2.2 and Corollary 2.6
in the field of numerical inequalities. The Cauchy-Khinchin inequality is well-known
in the literature (see [9, Theorem 1]), it states that if X = (xi j) is a real m×n matrix,
then (

m

∑
i=1

n

∑
j=1

xi j

)2

+mn
m

∑
i=1

n

∑
j=1

x2
i j � m

m

∑
i=1

(
n

∑
j=1

xi j

)2

+n
n

∑
j=1

(
m

∑
i=1

xi j

)2

. (10)

Next, we will give a generallization and extension of (10) by using Theorem 2.2
and Corollary 2.6, respectively; see, e.g., [18] for more determinantal inequalities.
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COROLLARY 3.1. Let X = (xi j) be a real m×n matrix. Then

mn
m

∑
i=1

n

∑
j=1

x2
i j −n

n

∑
j=1

(
m

∑
i=1

xi j

)2

�

∣∣∣∣∣∣m
m

∑
i=1

(
n

∑
j=1

xi j

)2

−
(

m

∑
i=1

n

∑
j=1

xi j

)2
∣∣∣∣∣∣ .

Proof. Let vecX = [x11, . . . ,x1n,x21, . . . ,x2n, . . . ,xm1, . . . ,xmn]T be a vectorization
of X and let Jn be an n -square matrix with all entries 1. Then a simple calculation
gives

(vecX)T Imn(vecX) = (vecX)T vecX =
m

∑
i=1

n

∑
j=1

x2
i j,

(vecX)T (Im ⊗ Jn)(vecX) =
m

∑
i=1

(
n

∑
j=1

xi j

)2

,

(vecX)T (Jm ⊗ In)(vecX) =
n

∑
j=1

(
m

∑
i=1

xi j

)2

,

(vecX)T (Jm ⊗ Jn)(vecX) = (vecX)T Jmn(vecX) =

(
m

∑
i=1

n

∑
j=1

xi j

)2

.

Thus the desired inequality is equivalent to

(vecX)T (mnImn−nJm⊗ In)(vecX)

�
∣∣(vecX)T (mIm ⊗ Jn− Jm⊗ Jn)(vecX)

∣∣. (11)

Setting A = Jm ⊗ Jn in Theorem 2.2 yields

mnImn−nJm⊗ In � ±(mIm ⊗ Jn− Jm⊗ Jn),

and so (11) immediately follows. �

With the same method in the proof of Corollary 3.1, the following corollary can
be obtained from Corollary 2.6, we omit the details of the proof.

COROLLARY 3.2. Let X = (xi j) be a real m×n matrix. Then

mn
m

∑
i=1

n

∑
j=1

x2
i j +n

n

∑
j=1

(
m

∑
i=1

xi j

)2

� m
m

∑
i=1

(
n

∑
j=1

xi j

)2

+

(
m

∑
i=1

n

∑
j=1

xi j

)2

.

REMARK. Note that Jm ⊗ Jn is not only a positive semidefinite matrix but also a
PPT matrix, hence the weaker result Proposition 2.4 can also yields Corollary 3.2.
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4. Appendix

Motivated by the observation of Lin [18, Proposition 2.2], we next provide an
alternative proof of Theorem 2.2 by induction on the number of blocks of matrix. The
following proof is more transparent than that in Section 2. We remark here that this
proof has its root in [18] with slight differences.

Proof. The proof is by induction on m . Clearly, when m = 1, there is nothing to
show. Moreover the base case m = 2 was also proved in Section 2. Suppose the result
(5) is true for m = k−1 > 1, and then we consider the case m = k ,

Γ := (trA)Ikn + Ik ⊗ (tr1A)−A− (tr2A)⊗ In

=

(
tr

k

∑
i=1

Ai,i

)
Ikn + Ik ⊗

(
k

∑
j=1

Aj, j

)
−A−

(
[trAi, j]ki, j=1

)
⊗ In

=

⎡⎢⎢⎢⎣
∑k−1

i=1 (trAi,i)In
. . .

∑k−1
i=1 (trAi,i)In

0

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
(trAk,k)In

. . .
(trAk,k)In

∑k
i=1(trAi,i)In

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
∑k−1

i=1 Ai,i
. . .

∑k−1
i=1 Ai,i

0

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
Ak,k

. . .
Ak,k

∑k
i=1 Ai,i

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎣
A1,1 · · · A1,k−1 0

...
...

...
Ak−1,1 · · · Ak−1,k−1 0

0 · · · 0 0

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣

0 · · · 0 A1,k
...

...
...

0 · · · 0 Ak−1,k

Ak,1 · · · Ak,k−1 Ak,k

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎣
(trA1,1)In · · · (trA1,k−1)In 0

...
...

...
(trAk−1,1)In · · · (trAk−1,k−1)In 0

0 · · · 0 0

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣

0 · · · 0 (trA1,k)In
...

...
...

0 · · · 0 (trAk−1,k)In
(trAk,1)In · · · (trAk,k−1)In (trAk,k)In

⎤⎥⎥⎥⎦ .

By rearranging the terms, we may write

Γ = Γ1 + Γ2,
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where

Γ1 :=

⎡⎢⎢⎢⎣
∑k−1

i=1 (trAi,i)In
. . .

∑k−1
i=1 (trAi,i)In

0

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
∑k−1

i=1 Ai,i
. . .

∑k−1
i=1 Ai,i

0

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎣
A1,1 · · · A1,k−1 0

...
...

...
Ak−1,1 · · · Ak−1,k−1 0

0 · · · 0 0

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣

(trA1,1)In · · · (trA1,k−1)In 0
...

...
...

(trAk−1,1)In · · · (trAk−1,k−1)In 0
0 · · · 0 0

⎤⎥⎥⎥⎦ ,

and

Γ2 :=

⎡⎢⎢⎢⎣
(trAk,k)In

. . .
(trAk,k)In

∑k
i=1(trAi,i)In

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
Ak,k

. . .
Ak,k

∑k
i=1 Ai,i

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎣
0 · · · 0 A1,k
...

...
...

0 · · · 0 Ak−1,k

Ak,1 · · · Ak,k−1 Ak,k

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣

0 · · · 0 (trA1,k)In
...

...
...

0 · · · 0 (trAk−1,k)In
(trAk,1)In · · · (trAk,k−1)In (trAk,k)In

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
(trAk,k)In +Ak,k −A1,k − (trA1,k)In

. . .
...

(trAk,k)In +Ak,k −Ak−1,k − (trAk−1,k)In
−Ak,1− (trAk,1)In · · · −Ak,k−1− (trAk,k−1)In ∑k−1

i=1

(
(trAi,i)In +Ai,i

)
⎤⎥⎥⎥⎦ .

Now by induction hypothesis, we get that Γ1 is positive semidefinite. It remains to
show that Γ2 is also positive semidefinite.

Observing that Γ2 can be written as a sum of k−1 matrices, in which each sum-
mand is ∗ -congruent to

Hi :=
[

(trAk,k)In +Ak,k −Ai,k − (trAi,k)In
−Ak,i− (trAk,i)In (trAi,i)In +Ai,i

]
, i = 1,2, . . . ,k−1.

Just like the proof of the base case, we infer from Lemma 2.1 that Hi � 0 for all
i = 1,2, . . . ,k−1. Therefore, Γ2 � 0, thus the proof of induction step is complete. �
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