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ON GENERALIZED DAVIS-WIELANDT RADIUS
INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS
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Abstract. Let A be a positive (semidefinite) operator on a complex Hilbert space .7 and let
A= <g g) . We obtain upper and lower bounds for the A-Davis-Wielandt radius of semi-
Hilbertian space operators, which generalize and improve on the existing ones. Further, we de-
rive upper bounds for the A-Davis-Wielandt radius of the sum of the product of semi-Hilbertian
space operators. We also obtain upper bounds for the A -Davis-Wielandt radius of 2 x 2 operator
matrices. Finally, we determine the exact value for the A -Davis-Wielandt radius of two operator
matrices r X and ox

" \0o0 00
the identity operator, the zero operator on ¢ , respectively.

) , where X is a semi-Hilbertian space operator, and I, O are

1. Introduction and preliminaries

Let #() denote the C*-algebra of all bounded linear operators acting on a
complex Hilbert space % with inner product (-,-) and the corresponding norm || - ||.
The letters 7 and O stand for the identity operator and the zero operator on 7, re-
spectively. For T € #(), we denote by #(T) and .4 (T) the range and the null
space of T, respectively. By m we denote the norm closure of Z(T). Let T* be
the adjoint of T'. The cone of all positive semidefinite operators is given by:

B(A) ={A€c B(AH) : (Ax,x) >0,VxE H}.
Every A € B(#)" induces the following positive semidefinite sesquilinear form:
<'?'>A X — C? (x7y) I <xay>A = <Ax7y>a

and the sesquilinear form induces the seminorm, given by:

[x[[a = /{x,x)a, x €.

This makes . into a semi-Hilbertian space. It is easy to observe that ||x||4 =0 if and
only if x € #°(A). Therefore, ||- |4 is a norm on % if and only if A is injective.
Also we observe that (7, - ||4) is complete if and only if Z(A) is closed in 7.
Let us fix the alphabet A for positive (semidefinite) operator on .7 and we also fix
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DEFINITION 1.1. ([2]) Let T € #(¢). An operator S € #(7¢) is called an
A-adjoint of T if the equality (T'x,y)a = (x,Sy)4 holds, for all x,y € 7.

Therefore, S is an A-adjoint of 7 if and only if S is a solution of the equation
AX =T*A in B(H). For T € B(A), the existence of an A-adjoint of T is not
guaranteed. The set of all operators acting on 7 that admit A -adjoints is denoted by
B (H) . 1t follows from Douglas Theorem [13] that

Bu(H) = {T € B(A) : R(T*A)C R(A)}.

By Douglas Theorem [13], we have if T € %4(#) then the operator equation AX =
T*A has a unique solution, denoted by 7% , satisfying % (T%) C %(A). For a survey of
the recent results related to Douglas Theorem, we refer to [22]. Note that T =ATT*A,
where AT is the Moore-Penrose inverse of A (see [3]). Also, we have AT* = T*A and
T(AN(A)) C A (A) for every T € Ba(H). An operator T € HB() is said to be
A-bounded if there exists ¢ > 0 such that ||Tx||4 < c||x||4, for all x € 7. We observe
that 2,1/, () is the collection of all A-bounded operators, i.e.,

Bup(H)={T € B() : Ic>O0suchthat |Tx||4 <cllx|a, Vx €},

It is well-known that %, () and %,1/2(¢) are two subalgebras of %(.7°) which
are neither closed nor dense in %(.7¢). Moreover, the following inclusions

BA(H) C Byujp(H) C B(H)

hold with equality if A is injective and has closed range. The above inclusions may be
proper (see [14]). Let us now define A -selfadjoint, A-normal and A -unitary operators.

DEFINITION 1.2. ([2]) An operator T € #(5¢) is called A-selfadjointif AT is
selfadjoint, i.e., AT = T*A and it is called A -positive if AT > 0.

Observe that if T is A-selfadjoint then T € %4 (7). However, in general, it does
not always imply T = T . An operator T € B, () satisfies T = T if and only if
T is A-selfadjoint and Z(T) C Z(A).

DEFINITION 1.3. ([23]) An operator T € %4(7) is said to be A-normal if
TT% =TT,

We know that every selfadjoint operator is normal. But, an A -selfadjoint operator
is not necessarily A-normal (see [4, Example 5.1]).

DEFINITION 1.4. ([2]) An operator U € %4 () is said to be A-unitary if
|Ux||la = || U*x||4 = ||x]|a, for all x € 2.

It was shown in [2] that an operator U € %, (#) is A-unitary if and only if
UtAU = (U™ )faU* = Py, where P, denotes the orthogonal projection onto Z(A).
We mention here that if T € %4 (%) then T* € B, () and (T* ) = P,TP;.
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Let T € %,1)2(). The A-operator seminorm and the A-minimum modulus of
T are defined respectively as:

Tx||a
I = sup{ ”x[ <, x;eo} —sup {||Txla : x € 7, s =1}

and

17|

[1x]la

ma(T) = inf{ D xeZ(A), x;éO} =inf{||Tx||sa : x€ 2, |x|]a=1}.

Let T € #,12(s¢). The A-numerical range, the A-numerical radius and the A-
Crawford number of T are defined respectively as:

Wa(T) = {{Tx,x)a s x € A, ||x]la = 1},
wa(T) = sup{|c|: c € Wa(T)} and
ca(T) = inf{|c|: c € Wx(T)}.

The A-operator seminorm attainment set of 7', denoted as M4 | is defined as the set of
all A-unit vectors in J# at which T attains its A-operator seminorm, i.e.,

My ={x € ||Tx|a =T la,llxlla = 1}

Likewise the A -numerical radius attainment set and the A -Crawford number attainment
set of T, denoted as Wi and ¢4 respectively, are defined as:

Wit = {x €A |(Tx,x)a| = wa(T), |lxllx = 1}
and
f = {x e A |(Tx,x)a| = ca(T),[|x]la = 1}

It is well known that || - ||4 and w,(-) are equivalent seminorm on %,/2(5¢), satisfy-
ing the following inequality (see [5]):

Tl <wa(T) <N Tlas T € By ().

The first inequality becomes equality if AT?> = O and the second inequality becomes
equality if T is A-normal (see [14]). Various results about the A-numerical radius
of semi-Hilbertian space operators have been obtained, we refer the readers to [9, 10,
14, 15, 25, 26] and the references therein. For T € %, (), we write Res(T) =
LT +T*) and Imy(T) = 5 (T — T*). For every A-selfadjoint operator T, we have
(see [26])
wa(T) = [Tl
Also TT, TT? are A-selfadjoint and A-positive operators satisfying the following
equality:
TS T|a = TT* |4 = IT[1F = IT*]]3-
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For T, € Ba(A). (TS) = S4T% , |TS|la < | T|alSlla and [ Tx{la < [T ]lallx]la.
for all x € 7. For further readings we refer the readers to [2, 3].

Motivated by the study of the A-numerical radius of semi-Hilbertian space oper-
ators, we here study the A-Davis-Wielandt radius of semi-Hilbertian space operators.
This is a generalization of the Davis-Wielandt radius of Hilbert space operators. The
Davis-Wielandt shell and the Davis-Wielandt radius of an operator T € () are
defined respectively as (see [12, 24]):

DW(T) = {((Tx,x), || Tx|]*) :x € A, |x|| = 1}

and

dw(T) = sup{\/|<Tx,x>|2 +||Tx||*: x € 22, ||x| = 1}.

Recently many mathematicians [18, 19, 20, 27, 28] have studied the Davis-Wielandt
shell and the Davis-Wielandt radius of an operator T € A(¢ ). The A-Davis-Wielandt
shell and the A-Davis-Wielandt radius of an operator T € %,1/»() are defined re-
spectively as (see [17]):

DWA(T) = { ((Tx,x)a, | Tx[|3) : x € S, ||x||la =1}

and

dwy(T) = sup{\/|<Tx7x>A|2+ ||Tx||;§ ix € |x||a = 1}.

It is easy to see that the A-Davis-Wielandt radius of 7' € %,,,(¢) satistying the
following inequality:

max {wa (7). | T||3} < dwa(T) < \/wi(T)+||T][}. )

Recently, Feki in [16] have obtained some upper bounds for the A-Davis-Wielandt
radius of operators in B, ().

In section 2, we find the equality conditions of the lower bound for the A-Davis-
Wielandt radius of A-bounded operators mentioned in (1). We obtain upper and lower
bounds for the A -Davis-Wielandt radius of operators in %, (%), which generalize and
improve on the existing ones. Further, we obtain inequalities for the A-Davis-Wielandt
radius of 2 x 2 operator matrices in By (@ ). Next, we obtain upper bounds for
the A-Davis-Wielandt radius of the sum of the product operators in %4 (7€), i.e., if
P,0,X,Y € B4 () then for any 1t € R\ {0}, we have

1 1
dw} (PX Q™ £ QYP#) < ((|P|)5 + ) 112X |PX |15+ ) 1Y [13)*+ o?}
and

1 1
dwj (PAX Q% QMY P) < (2|l + QIR (Y PIZ + 51X QIR)* + 7},

where o =wy (g )0(> . Finally, we compute the exact value for the A -Davis-Wielandt
oX
]

radi f tw rator matri rx nd
adius of two operator matrices 00 a 0

) ,where X € B,,,,(H).
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2. Main results

We begin this section with the study of the equality conditions of both upper and
lower bounds of A-bounded operators mentioned in (1). Fisrt we mention the following
known result (see [17, Th. 11 and Prop. 4]).

THEOREM 2.1. Let T € %B,12(€). Then the following conditions are equiva-
lent:

(i) dwa(T) = \/wi(T) +[IT]3-
(ii) Tis A-normaloid, i.e, wa(T) = ||T||a-
(iii) There exist a sequence of A-unit vectors {x,} in € such that

Nim ([ Toxala = 7] and lim [(Tx,x0)4| = wa(T).

REMARK 2.2. If 27 is finite-dimensional then condition (iii) of Theorem 2.1
is replaced by M4 NW# # 0, i.e., there exists an A-unit vector x in # such that
ITx]la =T|la and [{Tx,x)a| = wa(T).

Now, in the following two theorems we find the equality conditions of the first
inequality in (1).

THEOREM 2.3. Let T € %B,12(€). Then the following conditions are equiva-
lent:

Proof. The part (ii) = (i) follows trivially. We only prove (i) = (ii). Since
T € B,12(H), there exists a sequence {x,} in 7 with |[x,[[4 =1 such that ws(T) =
limy,—co [{TXy,xn)4|. The sequence {||Tx,||4}, being a bounded sequence of real num-
bers has a convergent subsequence {|| T[4 }. Now w3 (T) =dw3 (T) = [{Txp, , X, )a|> +
|| T, || 4. Taking limit on both sides, we get w3 (T) = dw3 (T) = w4 (T) +limy_eo || T, || 4-
This implies that limy_.c. ||7x,, || = 0. Therefore, it follows from Cauchy-Schwarz in-
equality that wu (T) = limg e [ (T2, , X, ) a| < 1Moo || X, || = 0. So, we get wa (T) =
0 and hence, AT = 0. U

THEOREM 2.4. Let T € B1/2(H) and dwa(T) = ||T||3. Then either of the fol-
lowing condition holds:

(i) Let M} # 0. Then |(Tx,x)4| =0 if x € My, i.e., M} C 5.

(ii) Let M{} = 0. Then there exists a sequence {x,} in J with ||x,||a =1 such
that imy, e || Tx||a = ||T]|a and limy—eo | (Tx,xn)4| = 0.

Proof. (i) Let M4 # 0 and x € M4. So, || Tx|[4 = ||T |4 =aw(T) = (Tx,x)al* +
|| Tx||% . This implies that [(Tx,x)4| = 0. So x € c}. Therefore, M4} C cf.
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(i) Let M4 = 0. Since T € B,1/2(H), there exists a sequence {x,} in # with
||x2]]a = 1 such that ||T||4 = lim,—e || Txp||a. Since {|{Txu,xn)a|} is a bounded se-
quence of scalars, so it has a convergent subsequence {|(Tx,,,%,,)a|}. Now ||T|% =
dwA(T) = [(Txng s Xn, )4 |* + || Tx, || Taking limit on both sides, we get || T'|| = dw4 (T)
> iMoo [(T Xy, X, )a|> + || T4 and s0, limy—e. |(T X, X, )a| = 0. This completes the
proof. [

REMARK 2.5. We note that the converse part of Theorem 2.4 may not hold. As

A00 000
for example, we consider T= | 0 0 % ,A€Cand A= | 010 |. Thenby simple
000 001

calculations we have, |(Tx,x)4| = 0 for all x € M%, i.e., M} C c4. But, dwa(T) #
IT(I3 as dwa(T) > /16 + 5 > 5 = T3

Next we obtain lower bounds for the A-Davis-Wielandt radius of operators in

Bu(H).
THEOREM 2.6. Let T € Ba(H). Then
(i) awi (T) > max {wi () + A(T4T), T[4 + () },
(i1) dw} (T) = 2max {wa(T)ea(TAT),ea(T)| T3 }.
Proof. (i) Let x be an A-unit vector in .7 . Then from the definition of dw(T),
we get

dwi(T) = [{Tx,x)al” + || Tx[|%
\(Tx,x)A\2 + <Tﬁ/‘ Tx,x)i
> [(Tx,x)al* + A (THT).

Therefore, taking supremum over all A -unit vectors in 7#, we have
dwi(T) = wA(T) + A (T*T).
Again from dw?3(T) > |(Tx,x)a|> + ||Tx||3, where ||x[|4 = 1, we get
dwi(T) > &(T)+ | x4,
Taking supremum over all A-unit vectors in .7, we have
dwj(T) = c;(T) + | Tl}-

This completes the proof of (i).
(if) For all x € 5 with ||x|l4 = 1, we have

2 4 2
[(Tx,x)al” + I Tx[l5 = 2[(Tx,x)al [ Tx]3
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and so,
dwA(T) = 2(Tx, x)a|(T*ATx,x) 4 > 2|(Tx,x)a|ca(T*T).

Taking supremum over all A-unit vectors in 7, we get
dwA (T) = 2wa(T)ea(THT).
Again from [(Tx,x)a|> + || Tx[|% = 2|(Tx,x)l||Tx|3, we have
WA (T) > 2e(T) | T3
Taking supremum over all A-unit vectors in 7, we get
dwj (T) = 2ca(T)|IT|[3-

This completes the proof. [

REMARK 2.7. (i) It is easy to observe that the lower bound of the A-Davis-
Wielandt radius of T € %4 () obtained in Theorem 2.6 (i) is sharper than that in

(1.
(ii) Also, both the inequalities in [6, Th. 2.1] follow from Theorem 2.6 by consid-
ering A=1.

In the following theorem we obtain an upper bound for the A-Davis-Wielandt
radius of operators in B ().

THEOREM 2.8. Let T € Ba(H). Then

dwA (T) < supwi (€T + T*AT) — 24 (T)m4(T).
6eR

~ Proof. Let x €  with ||x[|4 = 1. Then there exists 6 € R such that |[(Tox,x)4| =
e'9(Tx,x),. Now,

(Tx,x)a? + (||} = (T, )3 + (T Tx,x)3
= ((eOTx,x) 4 + (T*ATx,x)4)> — 2(e0Tx, x) A (T*ATx,x)4.

Hence,

. 2
20T x, x) A (T Tx, x)p + (T, )4 >+ | Tx|[4 = ((9Tx,x)4 4 (T Tx, x)4 )

= 20T, W) (T T ) + (T, x)a 2+ T = (0T + T4 T)x,0)3
= 2(T, )l (T Tx,x)a + (T x)a P+ | Tl < w3 (9T +797).

Therefore,

2T x,x)a| (T Tx,x)a + |(Tx,x)a|* + || Tx||5 < supw? (T + T%T)
6eR
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and so,
2ea(TYm3(T) + |(Tx,x)a* + || Tx|[} < supw? (T +T%T).
0cR
Hence, taking supremum over all A -unit vectors in 7, we get
2e4(T)m3(T) +dw? (T) < supwi (€®T +T%T).
0cR
= dwA(T) < supwi (€T +T"T) — 2cA(T)m3(T). O
0eR

Next we obtain the following upper and lower bounds for the A-Davis-Wielandt
radius of operators in B4 ().

THEOREM 2.9. Let T € Ba(H). Then
1
. (WA +T4T) + (T = T47) } < i (T)

<

S

{wg(TJrTjAT) WA (T — TﬂAT)}.

N =

Proof. Let x € 2 with ||x||4 = 1. Then

1
|<Txvx>A‘2 + HTXH% |<Tx7x>A + <Txv Tx>A|2 + 5 |<Tx7x>A - <Txv Tx>A|2

2 1 2
(Tx,x)a + <TﬁATx,x>A) + 3 ‘(Tx,x)A — <Tj" Tx,x)A)

= N == N

(T + TjAT)x,x)A’z + % ‘((T CTAT)x,x)4 ’2

WV

2
{ )((T + TﬂAT)x,x>A) +cA(T — TjAT)} .
Therefore, taking supremum over all A -unit vectors in J¢, we get

1
5 {wi(T+TjAT) L AT - TﬁAT)}.

Again,

1 1
5 {Txx) 4+ (T Tx)a P + 5 (T, 204 = (T, T

2
2‘ (Tx,x)a+ (T Tx,x)4 ’ +- ‘ Tx,x)A—<TjATx,x>A’

2 4
(Tx,x)al” + (| T4

STl 5 \<<T‘T“T>X’X>A)2

N

1
5 {wf,(T+TﬁAT) WA (T — Tj/‘T)} .
Therefore, taking supremum over all A-unit vectors in 7, we get

1
(1)< 3 (WA +T4T)+w3(T-T%T)}. O
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REMARK 2.10. We would like to remark that the inequality obtained in Theorem
2.9 generalizes the inequality in [6, Th. 2.2].

In the next theorem we obtain upper bounds for the A-Davis-Wielandt radius of
T € #Ba(H). First we need the following lemma.

LEMMA 2.11. Let x,y,e € 5 with ||e|[a = 1. Then

[ e)ale,y)al < 5 (10y)al + llxllallylla) -

1
2

Proof. Forall a,b,c,d € R, we have (ac —bd)* > (a® — b*)(c> — d?). Using this
and the Cauchy Schwarz inequality, we get

[ (x— (v, e)ae,y = (veae)s I < = (x.e)ael A1y — (v e)acelld
= [{x, 34— (eedale.yal® < (Il =10 edal”) (VIA — [ e)al?)
= [{r,3)a— (eedale.yal® < (lallallylla =[x ehall (v e)al)?.

Since [(x,e)a| < [|x[la and [(y,e)a] < [[y[la, so ([[x[allylla — [(x,e)al[(y,€)al) = 0.
Therefore,

[0, y)a — (xe)ale,y)al < llxllallylla =[x, e)all (v, €)al
= [{xe)ale,y)al = [0 y)al < llxllallylla —[(x,€)all(e,y)al-

Hence,
2[(x,e)afe )l <1e,)al+ lIxlallylla-
This completes the proof of the lemma. [

THEOREM 2.12. Let T € Bp(H). Then the following inequalities hold:
(i) awd(T) < HTﬁAH (TT) H

(i) dwA(T) < 5 (wa(T2) +1T1R) + 1715,

Proof. Let x € A with ||x||4 = 1. Then using Lemma 2.11 we get,
(Tx,x)al? + || Tx||h = {(Tx,x)a (6, Tox)a| + (T Tx,x) 4 (x, T Tx)
< ST+ (Tx 7)) + S (TATR + (T T3, TATa) )
= (T*\Tx,x)5 + <(Tj"T)uA T*ATx,x)4
= (TS + (TAT)A T T)x, x) 0.

Now T*AT being an A-selfadjoint operator and Z(T*AT) C Z(A), we have (T*AT)% =
T*AT . Therefore,

(T, x)a 2+ | T[4 < ((TAT + (T]T) x,x),.
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Therefore, taking supremum over all A-unit vectors in 7, we get the inequality (i).
Again considering |(Tx,x)4|> = [(Tx,x)4(x,T%x)4| and then using Lemma 2.11, we
get the inequality (ii). [

REMARK 2.13. It is well-known that if T is A-normaloid then || 72| = ||T|3.
Therefore, it is easy to observe that both the inequalities in Theorem 2.12 becomes
equality if 7' is A-normaloid.

In the next theorem we obtain an upper bound for the A-Davis-Wielandt radius
of operators in %4 (7). For this we need the following lemma which follows from
Lemma 2.11.

LEMMA 2.14. Let x,y,e € 5 with ||e||a = 1. Then

IXIZIVIZ = 16 y)al® = 21(x,e)ale,)al (lellallylla = (x,v)al)-
THEOREM 2.15. Let T € Bu(H). Then
dwi(T) <3 H(Tj/‘T)z +Tj/‘THA
—cA(TT + T)ma(TAT +T) — co(TAT — TYma (T T —T).
Proof. Let x € 5 with ||x||4 = 1. Then using Lemma 2.14 and Lemma 2.11 we
get,

(Tx,x)al® < NTx|F %05 — 21(Tx, 204 e, ) (I Tx ] allxlla = [{Tx,x)a])
= |ITx[|3 +2/(Tx, x)a| | (x, Tx)a| = 2 (T, x)a || Tx]
< |Tx[1 3+ 1 Tx]3 + (Tx, Tx)a — 2¢a(T)|| Tx]|a

< 3T Tx,x) 5 — 2¢4(T)ma(T).

Using the above inequality, we get

(Tx,x)a > + I Tl

T3 + (T, x)a >+ (173 — (T, ) )

3
%(| (TAT 4 T)x.x)a P+ [{(TAT — T )
%<3< TjAT+T’ xx>A—2cA(TjAT+T)mA(T’jAT+T)

+

3 <’Tj/‘T - T’Ax,x>A —2eA(THT — T)mp(TAT — T))

2 2
- %< )TﬁAT+T)A+)TﬁAT—T‘A)x,x> —ea(TAT + T)ma(TAT +T)
A

—cA(T*AT = T)mu (T*AT —T)
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- 3<((Tj/‘T)jATﬁAT+Tj"T>x,x>A
—cA(T*AT + T)mp(T*AT +T) — cp(TAT — Tmy (T T —T)
= 3<<(Tj/‘T)2+TuAT>x,x>A
—cA(TT +T)ma(TAT +T) — co(TAT — TYma(TT —T).

Therefore, taking supremum over all A -unit vectors in .77, we get the required inequal-
ity, O

Next we prove the following lemma.

LEMMA 2.16. Let x,y € 7 and A € C. Then we have the following equality:

210,12 2 211412 2
ANl = 1Gey)al” = [l = Ay lIZIYIIA = [Gc— Ay y)al™

Proof. We have,
o= ARV = 1= Avy)al
= (x= Ayx = ANallyld = (e )a = AlVIAP
(I3 + 12 PIYIE = 2Re(R e, 0a) ) 913 = 1690l = 1Pl
+2Re (R (x,)a) I3
XI5 = a2 O

Using Lemma 2.16, we obtain the following upper bound for the A -Davis-Wielandt
radius of operators in %y ().

THEOREM 2.17. Let T € $BA(H). Then
dwi(T) < inf sup {2|7L ||cos ORes (T) + T T + sin OIm(T) — A1)
AERgeR
1
+5 | cos ORe(T) + T*T +sin 0Imy (T) — 21|13
1
+5 | cosOReA(T) —THT + sinelmA(T)Hﬁ}.
In particular,
2 1 : - 2
dwi(T) < = sup { Hcos@ Rea(T)+T*AT +5sin6 ImA(T)HA

2 ger

2
+ Hcose Rea(T) — TT +sin@ ImA(T)HA 3
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~ Proof. Let x € 7 with ||x[|4 = 1. Then there exists 6 € R such that [(Tx,x)4| =
e 19(Tx,x),. Using the Cartesian decomposition of 7', i.e., T = Rea(T) +i Ima(T),
we get,

(Tx,x)4] = (e 0Tx,x)4
= (((cos @ —isinO)(Rea(T) +1Imu(T)))x,x)a
= ((cos ORex(T) +sinOImy (T))x,x)a +i((cos OImy (T) — sinORea (T ) )x,x) 4.

Since [(Tx,x)a| € R, [(Tx,x)a| = {(cos ORea(T) + sin OImu(T))x,x)4. Now using
Lemma 2.16, we get forany A € R,

(Tx,x)4]* = |((cos ORea(T) + sin OImy (T))x,x)a|?
= ||(cos ORex (T) +sin 8Imu (T))x| 3
—||/(cos ORe, (T) 4 sin OIma (T ))x — Ax||
+|((cos ORex (T) + sin OIma (T))x — Ax,x) 4|3
= ((cos ORex (T) +sin OIma(T))?x,x)
—((cos ORe4 (T) 4 sinOImy (T) — AI)*x,x)a
+]{(cos ORea (T) + sin 0Imy (T) — A1)x,x)4|?
2

= <{ (cos ORes(T) +sin0Imy(T))
—(cos ORex(T) + sin OIma (T) — ll)z}x,x>A

+]{(cos ORea (T) + sin 0Imy (T) — A1)x,x)4|?
= ((24.(cos ORes (T) 4 sin 0Imy(T)) — A1)x,x)4
+]((cos ORea (T) + sin OIma (T) — Al)x,x)4|*.

Similarly, using Lemma 2.16, we have

T3 = (T*Tx,x)4
= ((QAT*AT — A2D)x,x) 4 + | ((T*AT — AD)x, x) 4.

Now,

(Tx,x)al* + |Tx||5 = (2A{cos ORes (T )+ T* T + sin OImy (T ) }x,x)4 — 24>
+%|<(cos ORes(T) +TAT + sin 0Imy (T) — 2A1)x,x) 4]
+%|<(cos ORe(T) — T*AT + sin 0Im(T) )x, x) 4 |*

< 2|A|||cos ORea(T) 4 T*AT + sin OImy (T) — A1) 4

1
+5 | cos ORea(T) + T*T +sin 0Im (T) — 21|13

1
+5 | cos ORe, (T) - T*T +sin 0Imy (T) |3
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< Sug {2\7L||| cos ORey (T )+ TAT + sin OImy (T) — M ||
€
+% | cos ORea(T) + T T + sin OImu (T) — 201||%
+%H cos ORea(T) — T*AT +sin ezmA(T)Hg}.
Therefore, taking supremum over all A -unit vectors in J¢, we get
dw?(T) < sup {zwu cos ORex(T) + TAT + sin 01ma (T) — M||x
€
+%|| cos ORey (T) + THAT +sin OIma(T) — 21|
+%||c0s ORea(T) — TﬁAT+sin91mA(T)H§}.

This inequality holds for all A € R, so we get the desired inequality. In particular, if
we choose A =0, then
2
dw?(T) < 3 sup { Hcose Re(T) +T*T +sin@ Imy (T )H
ee]R

+ Hcos@ Rea(T) — TAT 4 sin@ ImA(T)HA } O

A

Our next result reads as:
THEOREM 2.18. Let T € Bu(H). Then
_ 2
awi(T) < inf { (211Re(3) Rea(T) + (&) Ima ()] + HTﬂAT - 2ReA(7LT)HA>
S

+2l|Rea(XT)|a — AP +wi(T — A1) }.
In particular, dwa(T) < /Wi (T)+ || T||%.

Proof. Let x € 7 with ||x||]a = 1. Let A € C. Using Lemma 2.16 we get,
ITx([Z11xlZ — [(Tx,x)al* = 1Tx = Ax[|Z]|x][F — [(Tx — Ax,x)a|*.
Using Cartesian decomposition of T, i.e., T = Rea(T)+1iIma(T), we get,

ITx|3 = ((Rea(T)x,x)a)” — ((Rea(T — A1)x,x)4)* + (Ima(T)x,x)4)*
— ((Ima(T = AD)x,x)4)* + || Tx — Ax]3
= ((2Rea(T) — Re(A)I)x,x)a(Re(A)x, x)4
+((2Ima(T) = Im(A)D)x,x) (Im(A)x,x)a + || Tx — Ax|
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= 2Re(A)(Rea (T )x,x)a + 2Im(A)(Ima (T )x,x) A
—(Re(2))* = (Im(2))* + || Tx — Ax] %

= 2 (Re(A)(Rea(T)x,x) + Im(A) (Imp (T)x,x)4) — | A|?
+(Tx—Ax,Tx—Ax),

= 2(Re(A){Rea(T)x,x)a + Im(A){Ima(T)x,x)4)
+((T9T = 2Rea(AT))x.x)

< 2||Re(L) Rea(T) + Im(A) Ima(T)||, + HTﬁAT —2Res(AT) HA :
Again using Lemma 2.16 we get,

(T, x)al? = |1 T3 = 1T = A3 + [(Tx = Ax,x)4
= 2(Re(AT)x,x)4 — |A|? + [(Tx — Ax,x)4)?
< 2Rea(RT)|| ~ |A P+ WA(T - A1).

Hence,

[(Tox,x)al? + (| 7|3
< 2||Rea(AT)|| = [A]> + w3 (T — AD)
— 2
v (2 IRe(1) Rea(T) + Im(A) Ima(T)|| + HTjAT —2Rex(AT) HA) .

Therefore, taking supremum over all A-unit vectors in ¢, and then taking infimum
overall A € C, we get

dw(T) < { (2 IRe(A) Rea(T) + Im(A) Ima(T)||, + HTjAT - 2ReA(IT)HA)2

inf
AreC
+2l|Rea(XT)|a — AP +wi(T A1) }.

Taking A = 0, we get dwa (T) < \/wWA(T)+||T||%. O

REMARK 2.19. We would like to note that the inequality in [6, Th. 2.5] follows
from Theorem 2.18 by considering A = 1.

In the following theorem we obtain an upper bound for the A-Davis-Wielandt
radius of sum of two operators in %4 ().

THEOREM 2.20. Let X,Y € B (H). Then
dwa(X +Y) <dwa(X) +dwa(Y) +wa (XY +Y*X).
In particular, if A(X*Y +Y%X) = O then

dwa(X +Y) <dwa(X)+dwa(Y).
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Proof. From the definition of the A-Davis-Wielandt shell we get,
DWA(X+) = { ({(X+ )52, (X + )% (X+ V), ) sx e, lla =1}
= {((Xx XA, (Xx,Xx) )
+

(Yx,x)4, (Yx,YX)4 )
(0,<(XﬁAY+Yj/‘X A) xe s, HxIIA—l}
C

Hence, DW4 (X +Y) C DW4(X) + DW4(Y) + L, where
L={(0.4X*Y +YuX)x,x) ) 1 x €, xlla =1}

This implies the first inequality of the theorem. In particular, if we consider A(X®*Y +
yiax ) = O, then we get the second inequality. [

REMARK 2.21. If we consider A =1 in Theorem 2.20 then we get the inequalities
in [6, Th. 2.6 and Cor. 2.2].

Next we state the following lemma, proof of which can be found in [8, Lemma
3.1].

LEMMA 2.22. Let Tjj € Ba(FC), for i,j =1,2. Then (T;j)2x2 € B (H B )

and
T T\ _ (T T
To1 Tz T TS |
Using Theorem 2.20 and Lemma 2.22, we prove the following inequality.

COROLLARY 2.23. Let X,Y € B4 (), then

0X 1
v (5 <\ X1+ I+ 15 + 1715

fa fa
Proof. Clearly, <8§> (?8)4—(?8) (8)0() = (88).Theref0re,

from Theorem 2.20, we get,
0oX
dWA <Y 0)
0oX 00
<dwy (0 0) +dwy (Y 0)

4
00X 00X
2
< (35) (5]

M@)ol
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OG-
asA<g)0‘> :A(?Z) (00>, see [14, Cor. 2.2]

1 1 .
= \/ZX||§+XIIi+\/ZY%+YIIi, by using [7, Remark 3. []

Our next result reads as:

THEOREM 2.24. Let X,Y € B,1/2(). Then
X0
dwy (0 Y) :max{de(X)7de(Y)}.

X0
Proof. Let T = oY

A DA . Clearly ||%]|a=1. So

. Let x be an A-unit vector in JZ and let ¥ = (g) S

[(Xx,x)a? + || Xx|[§ = [(T%,2)a* + || T3] % < aw (T).

Taking supremum over all A-unit vectors in 7, we get dwA (X) < dw? (T). Similarly,
we can prove that, dw3 (Y) < dw? (T). Combining above two inequalities, we get

max{dwa (X),dwa(Y)} <dwa(T).
To complete the proof, we only need to show dwy (T) < max{dw4(X),dws(Y)}. Let
= <§) € @ A besuchthat ||z]|a =1, 1ie., [|x]|;+]y]|3=1. Then

(T2,2) |3 +IITzl%
= [{Xx,x)a + (Yy,0) |3 + (IXx] 3+ [[Yy]3)?
< (Xl + 1Yy, v)a ) + (IXxlIZ + 1Y y1[7)°

2
< <\/|<Xx7x> 13+ 1 Xx]|% + \/\ (Yy,y)al?+ ||Yy||i> , by Minkowski inequality

2
dwa (X)||x[|3 +dwa(¥)¥II7)
max{dw? (X),dw;(Y)}.
Taking supremum over all A -unit vectors in J7 & ¢, we get

dwA (T) < max{dw}(X),dwi(Y)}, ie., dwp(T) < max{dwa(X),dwa(Y)}. O

REMARK 2.25. Let S = <}0( 8) or (8;) , where X € %,,/,(). Then by

Theorem 2.24 we have, dwy (S) = dwa(X).
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Now we prove an important result dws(T) = dwa(T*) for T € Ba(H). For
this purpose we need the following arguments. The semi-inner product (-,-)4 induces
an inner product on the quotient space .7¢/.4 (A) defined as

[x.5] = (Ax,y),

forall x=x+ A (A),y=y+ A (A) € /N (A). Note that (/.4 (A),[-,-]) is not
complete unless Z(A) is closed in 7. L. de Branges and J. Rovnyak [1 1] showed that
the completion of /.4 (A) is isometrically isomorphic to the Hilbert space Z(A'/?)
with the inner product

(A'2x,A12y) = (Pax, Pay), Vx,y € H.

The Hilbert space (%(A'/?),(-,-)) is denoted by R(A!'/?), and we use | - IR(a1/2) t©
represent the norm induced by the inner product (-,-). For more information related
to the Hilbert space R(Al/ 2), we refer the interested readers to [1]. Note that the fact
R(A) C F(A'/?) implies that (Ax,Ay) = (x,y)4. This implies the useful relation

lAxlgqarre) = xlla, Ve € .

To proceed further we need the following lemma which gives a nice connection between
T € Bp2(H) and T € B(R(A?)).

LEMMA 2.26. ([1, Prop. 3.6]) Let T € B(A) and let Zy : # — R(A'/?) be
defined by Zyx = Ax, ¥ x € . Then T € %B,1/,(J) if and only if there exists unique
T € B(R(A'/?)) such that ZyT = TZ.

There are many important well-known relations between 7' and T, we mention a
few of them in the form of the following lemma.

LEMMA 2.27. ([21,Prop.2.9]) Let T € Bx(F). Then
ﬁ\ = (T)* and (T )i = T.
We now prove the following proposition.

PROPOSITION 2.28. Let T € Ba(F). Then

dwa(T) = dwy (T™).

Proof. It follows from [17, Lemma 2] that dw(T) = dw(T). Since T € %’(RLAI/z))
and R(Al/z) is a complex Hilbert space, so from [19, Th. 3.3 (c)] we have, dw(T) =

dw((T)*). Hence, we have from Lemma 2.27 that dw(T) = dw(T%1). Thus, dw(T) =
dwa(T*). This completes the proof. [

By using Proposition 2.28 we prove the following lemma.
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LEMMA 2.29. Let T € Ba(). Then, dwa(UATU) = dwa(T), for every A-
unitary operator U € B ().

Proof. Let U € %,() be an A-unitary operator. Let (A,u) € DWy(UATU).
Then there exists x € 57 with ||x||4 = 1 such that A = (UATUx,x), and p = |[UATUx||3.
It is easy to verify that A = (TUx,Ux)s and p = ||[TUx|3. Since ||Ux||s =1, so
(A, 1) € DW4(T). Hence, DWy(UATU) C DW4(T). This implies that dwa (U TU) <
dwa(T). Next we prove that DW, (T ) C DW, ((U*ATU)* ). Let (B,7) € DW4(T*).
Then there exists x € 7 with |[x||a = 1 such that B = (T%x,x), and y = ||T*x|3.
Now x can be written as x = Pyx+y, where y € .4 (A). We have,

B = (T*x,x)a = (T* (Pax+), (Pax+y))a
= (T Pyx, Pax)a, T (N (A)) C A (A)
_ <TjA (UﬂA)ﬂAUij7 (UﬁA)jAUﬂAx>A

_ <U$1A Tha (UﬁA)ﬁA Uij,UﬁAx>A

_ <(U$IATU)ﬁAUﬁAx7 Uj"x>A

and

T:IAX7 TﬁAx>A — <U31A TﬁAx7 Uia TﬁAx>A

UPAT* (Pyx+y), U T (Pax+y))a

UPAT* Pyx, UAT M Pyx) 4, T (A (A)) C A (A)
UiaTia (UﬁA )ﬁA Uj"x, UiaTia (UﬁA )ﬁA Uj"x>A
[(UMTU U™ x]3.

=
(
(
(

Since ||[Ux|la = 1,50 (B,7) € DW, (UATU)™).

Hence, DW,(T#) C DW, ((UATU) ), and so dw, (T*) < dwy (UMTU)™).
Thus, it follows from Proposition 2.28 that dw (T) < dwa (U*ATU) . Hence, dwa (U TU) =
dWA(T). O

Now by using Lemma 2.29, we prove the following lemma.

LEMMA 2.30. Let X,Y € DB4(S7). Then

(.4 0oX
(a) dwy (eigy 0) =dwy (Y 0),forevery 0 cR.

o o (33) - (23)

Proof.

I O
(a) Let U = (0 i31) and let x = (x1,xy) € A & . It is easy to see that
e

|Ux||s = ||U*x||s = ||x||o. This implies that U is an A -unitary operator. Now,
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Py O .
Uts = -0 . Using Lemma 2.29 we get,
A

0 X
dWA (eiGY 0) = dWA (UM ( 16Y 0) U)
Py O 0 é¥x
O Py e‘gY (0]
9

o1
10
above, using Lemma 2.29, we get (b). U

(b) Considering U = . Clearly, U is an A-unitary operator. Similar as

By using Lemma 2.30, we obtain an upper bound for the A -Davis-Wielandt radius
of sum of product operators in %y (7).

THEOREM 2.31. Let P,Q,X,Y € Bu(IH). Then for any t € R\ {0}, we have

2 1 2
aPxg £0vPh) < (PIPIR + 411013 ) {(IzllPXllfﬁrt—zQfo) +a2},

(Vo)
where o0 = wpy vyol

(PO _(oX
Proof. Let C,Z € By (H & ) be such that C = (00) and Z = (Y 0).

PX Q' 4+ QYP™ O

fa —
Then we have, CZC ( 0 0) . Therefore,

; ;
AWl (PXQM + QY PH) = dw? (PXQA Torps 0)

0 %)

= dwA (CZC™)

= sup {|(CZCHxx)u + | CZCH} }
Ifla=1

— sup {|(zCHx,Cix) A\2—|—||CZCij||A}
Ifla=1

< sup

Ixlla=1

{Wh@lcald + ezl et }
)

= (Wi (@) +llcz|z) lICll.
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Itis easy to see that ||C||3 = ||[PP* +QQ% |4 and ||CZ|)3 = [|(QY)(QY)* + (PX)(PX )| 4.
Therefore, from the above inequality, we get

awd (PXQ" + Qv P) < (IIPI3 +1€I2)° {(lQY 3 + IPX[3)2 + w2 (2)} .

Replacing Y by —Y in the above inequality and using Lemma 2.30 (a), we get

2
dwj (PXQ — QYP*) < (IPIZ+11Q13)" {(IQY I3 + IPX[1)* +wi (Z)} -
Clearly, the above two inequalities hold for all P,Q € B4 (H). So, replacing P by P
and Q by %Q, we get the required inequality of the theorem. [

COROLLARY 2.32. Let P,Q,X,Y € B(5) with ||P||,||Qlla # 0. Then

1Qlla

1Pl 2N\ 2
Px|3) +a},
e

~ller I3+

(i) awi(Px 0™ = 0rP) <4IPIRICIR] (15

0X
where o0 = wy vyo)l:

(if) dwi(X £Y) < 4{(||Xi+ Y1)+ (? §> }

Proof. Considering t = “ PH" in Theorem 2.3 1, we get the inequality (i). Choos-

ing P =0 =1 in (i), we get the inequality (ii). [J

COROLLARY 2.33. Let P,Q,X,Y € B4(S) be such that |PX]||4,|QY|a # 0.
Then

1Y |la
1PX |4

[1PX |4

I1PII%+
1Y |4

2
(i) dwx (PX Q™ + QY PH) < ( Qi) {4lIPX|ZlOY |13 + o},

(Vo)
where o0 = wy vyol

2
st < (B B {omanr o (25))

loria .
11PXla

ing P =0 =1 in (i), we get the inequality (ii). [J

Proof. Considering t = in Theorem 2.3 1, we get the inequality (i). Choos-

REMARK 2.34. Feki in [17, Prop. 3] proved that if X,Y € %,,,,(7) then the
following inequality holds:

A (X +¥) < 2(dwa(X) +dwa(V)) + 4 (dwa(X) +de(Y)>2.
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. 10 01 10 .
If we consider A = (02), X = (OO) and Y = (00) then [17, Prop. 3] gives

dwa(X +7) < 4.2994, whereas Theorem 2.20 gives dwu (X +7Y) < 2.621320, Corol-
lary 2.32 (ii) gives dwa (X +7) < 3.240466 and Corollary 2.33 (ii) gives dwa (X +Y) <
3.26928. Thus the bounds obtained in Theorem 2.20, Corollary 2.32 (ii) and Corollary
2.33 (ii) are better than that obtained in [17, Prop. 3].

Proceeding similarly as in Theorem 2.31 we can prove the following results.

THEOREM 2.35. Let P,Q,X,Y € Bu(I). Then for any t € R\ {0}, we have

2 2
1 1
aiexgh =0 < (PP + 1017 ) {(lZYPjAllfﬁrt—zIIXQ’“fx) +a2}7

1 2 1 2
avi(Poxox o) < (PIPIR + 1013 {(t2||YPi+t—QXQ||i) +a2}

and

1 : 1 :
@i (PoxQ0mrP) < (PIPIR + 21013 {(lszAX||§+t—2||QjAY§) +a2}7

(Vo)
where o0 = wy vyol

Now we determine the exact value of the A -Davis-Wielandt radius of special type
of 2 x 2 operator matrices in %12 (" H).

THEOREM 2.36. Let X € B,12(H) and T = <ég> . Then

awn(m) = | V% ;Xm0
(cos By + || X ||asin Bp) (cos® By + (cos By + || X|[asin 69)?)2, || X][a #O,

where b= [X||a, p= 255, g= 22 p= 35— I (868 +2060 450 +
6102 +28), a = (2p* —9pq+27r), B= (=% +5)1, y=(~$—V5)5 and 6 =

tan~ (B +y— L.

Proof. Let z = i) € ' © A be such that ||z]|x = 1, ie, |[x]|Z+|y[5 = 1.
Then (Tz,z)p = (x+Xy,x)4 and (Tz,Tz)s = (x+ Xy,x+ Xy)4. Now, we have
(T2, 20> + (T2, Tz)a

< I+ XA N5 + e+ Xyl
= [lx+ XI5 (IxlI7 + llx+ Xyl13)
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< sup o (alla+ X Nallylla) (el + Clella + 1X allylla)®)
el +lyl13=1

= sup (cosO + |X]|[4sin6)>(cos® O + (cos 6 + || X ||4sin 6)?).
0€(0,5]

First we consider the case || X||4 = 0. Then

sup (cos8 + || X||asin0)?(cos® 6 + (cos O + || X||45in0)%) = 2.
6<(0,3]

X
0
Then (Tz,z)a = ||x||3 and (Tz,Tz)a = ||x||3. Hence, (|(Tz,2)a|*+|(Tz,T2)a|?)
V2. Therefore, dwy (T) = v/2.

Next we consider the case || X|[4 # 0. Then

Therefore, dw (T) < v/2. Now let z = ( ) be such that ||z]|a =1, i.e., ||x]la = 1.

Nl—

sup (cos 6+ ||X||4sin0)>(cos® 6 + (cos O + || X||4sin 0)?)
0€(0,5]

= (cos B + || X || 4 5in B9)* (cos? By + (cos By + || X |4 sin 6p)?),

where b= [|X |, p= 2553, g= 222 r=— 3 5= oo (865 42060+ 4564 +

6167 +28), = (2p> ~9pg+27r), B=(~%+5)3, y=(~%—/5)5 and 6 =
tan—' (B +y—£). Therefore,

wl—

dwa (T) < (cos 6 + || X || sin 8 (cos? B + (cos By -+ || X || sin 6)?)? .

We now show that there exists a sequence {z,} in .2 @ ¢ with ||z,||a = | such that

limy o (| (T2, 20) a? + [ (T2 Tzn)a?)2 = (cos 6 + || X || sin 6p) (cos? 8 + (cos By +

HX”ASinG())z)%. Since X € %,.,(H), there exists a sequence {y,} in JZ with
. Xy

alla = 1 such that lim,_e ||[Xyalla = ||X|[4. Let 7 = —L "), where

Iyl ol = Xl Lot & = o (00

k k2 komoky 12 (R Xall} 2
k 2 O Then ‘<TZn,Zn>A‘ + |<Tzn7TZn>A| - (HX)’nHi'f‘kz)z (1 =+ (1 +k) )

— HX,VHHA kHX)’nHA HXynH,%. HX)’nHA kHX,VnHA

= A .
<¢Xyni+k2 \/Xyni+k2) (Xwﬁkz <\/Xyni+k2 \/Xyni+k2> )
Xla ko
We can choose kg > 0 such that _Xla cosfy and ——2—
VX4 VXN

. Xyn . 2 244
if we choose z, = —1 , then lim, oo (|{T2z, 21 + [(Tz,, Tz, 2
e () ({20, 20) a2+ T, T )

1
= (cos 00+ || X || 4 sin 90> (cos2 00+ (cos B+ || X || 4 sin 00)2> ® . This completes the proof.
O

=sin 6. Therefore,

Our final result reads as:
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THEOREM 2.37. Let X € B,12(H) and S = <0X) Then

00

0, 1X[la=0
[1X1la L
dwa(S) = 2/ 1= X B ”XHA < >
IX113 IX]la > 75

Proof. Let 7 = i € S & A be such that ||z]|4 =1, ie, |[x]|3+][y5=1.
Then (Sz,z)a = (Xy,x)4 and (Sz,Sz)a = (Xy,Xy)a. Now we have

|(Sz,2)al? +1(Sz,Sz)a > < IXIIZIIxIIZ + X2
< sup o (IXURIVIR IR+ IXUANYIA)

IIxlIZ+IIyI5=1
= sup |X|3sin® @ (cos® @+ |X|[3sin6).
0€0,5]

First we consider the case ||X||4 = 0. Then it is easy to see that dw (S) = 0.
Next we consider the case 0 < || X ][4 < % Then

: . X113
sup ||X|3sin® @ (cos? 6 +||X|3sin’0) = ——4__.
0c(0,%] ( 41— 1x13)
Therefore, dwy (S) < % We now show that there exists a sequence {z,} in
- A

S ® A with ||zy]|a =1 such that

. 1 X
;}g}o{‘<SZn7Zn>A‘2+ ‘<SZVHSZ71>A‘2}2 = Hi”AQ
2/ (1= 1IX112)
Since X € B,12(H), there exists a sequence {y,} in 5 with |[y,|la =1 such
i Xyn x|
that lim,—. || X = [|X||4. Let z, = ——— , where k = ——=4__ |
Then

X1l

2¢/1- X3

lim {| (S0, 20} + | (2, Sz} [} =

Therefore, dwp (S) = [1X1la

2/(1=IX]3)”

Now we consider the case || X||4 > % . Then

sup || X|[3sin” 6 (cos? 6 + ||X||3sin® 0) = || X4
6¢[0,3]
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Therefore, dwy (S) < [|X||3. We now show that there exists a sequence {z,} in S &
S with ||z,]|4 = 1 such that

. 1
Tim (|(Szu, zn)a | + [(Szn, Sea)al?) T = [1X]13.
Since X € %B,12(A), there exists a sequence {y,} in JZ with |y,[[a4 =1 such

), then (Sz,,z,)a = 0 and

(Szn,Szu)a = || Xyul|3. Therefore, limy, o (|(Szu, za)a >+ |(Szu, Szn)a|?) 2 = | X ||3. This
completes the proof. [

. . 0
that lim,—e || Xyn|la = || X]|a. If we consider z, = (y

n

Proceeding similarly as in Theorem 2.37 we also get the following result.

REMARK 2.38. Let X € #,,,() and S = (0 0) . Then

X0
0, 1X[la=0

dwi(8) = { s IXla < 75

wa(S) = 2/ X A4SV
IXIG Xl S

REMARK 2.39. We note that Theorem 2.36 and Theorem 2.37 generalize the re-
sults in [6, Th. 3.1] and [6, Th. 3.2], respectively.
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