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WEIGHTED OPERATOR–VALUED FUNCTION SPACES

APPLIED TO THE STABILITY OF DELAY SYSTEMS

ASMAHAN E. ALAJYAN AND JONATHAN R. PARTINGTON ∗

Abstract. This paper extends the theory of Zen spaces (weighted Hardy/Bergman spaces on the
right-hand half-plane) to the Hilbert-space valued case, and describes the multipliers on them; it
is shown that the methods of H∞ control can therefore be extended to a family of weighted L2

input and output spaces. Next, the particular case of retarded delay systems with operator-valued
transfer functions is analysed, and the dependence of H∞ structure on the delay is determined by
developing an extension of the Walton–Marshall technique used in the scalar case. The method
is illustrated with examples.
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