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GENERALIZED NUMERICAL RADIUS AND RELATED INEQUALITIES

T. BOTTAZZI ∗ AND C. CONDE

Abstract. In [2], Abu Omar and Kittaneh defined a new generalization of the numerical radius.
That is, given a norm N(·) on B(H) , the space of bounded linear operators over a Hilbert space
H , and A ∈ B(H)

wN (A) = sup
θ∈R

N(Re(eiθ A)).

They proved several properties and introduced some inequalities. We continue with the study
of this generalized numerical radius and we develop diverse inequalities involving wN . We also
study particular cases when N(·) is the p - Schatten norm with p > 1 .
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