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Abstract. If A and B are unital C*-algebras and π : A → B is a unital ∗ -homomorphism,
then UB (π)− is the set of all ∗ -homomorphisms from A to B that are approximately (unitar-
ily) equivalent to π. We address the question of when UB (π)− is path-connected with respect
to the topology of pointwise norm convergence. When A is singly generated and B = B

(
�2

)
,

an affirmative answer was given in [4]; we extend this to the case when A is separable. We also
give an affirmative answer when B is a von Neumann algebra and A is AF or homogeneous;
if B is finite A need only be ASH.

1. Introduction

In [4] D. Hadwin proved that the norm closure of the unitary orbit of an operator in
B

(
�2

)
is path-connected. In this paper we address the problem of extending this result

to representations of separable C*-algebras.
Throughout this paper A will be a unital separable C*-algebra. If B is a unital

C*-algebra, we define Rep(A ,B) as the set of all unital ∗ -homomorphisms from A
to B with the topology of pointwise norm convergence. Suppose {a1,a2, . . .} is a
norm dense subset of the closed unit ball of A . We define a metric d = dA ,B by

d (π ,ρ) =
∞

∑
n=1

1
2n ‖π (an)−ρ (an)‖ .

Clearly, d makes Rep(A ,B) into a complete metric space. When B is finite-dimen-
sional, Rep(A ,B) is compact.

Let UB denote the group of unitary elements of B . If π ∈ Rep(A ,B) , we
define the unitary orbit UB (π) of π by

UB (π) = {U∗π (·)U : U ∈ UB} .

If T ∈ B we define the unitary orbit UB (T ) of T by

UB (T ) = {U∗TU : U ∈ UB} .

Mathematics subject classification (2020): Primary 46L05; Secondary 47C15.
Keywords and phrases: C*-algebra, representation, unitary orbit.

c© � � , Zagreb
Paper OaM-15-84

1337

http://dx.doi.org/10.7153/oam-2021-15-84


1338 D. HADWIN AND W. LIU

It is clear that UB (T ) corresponds to UB (π) when π is the identity representation of
the identity representation of C∗ (T ) .

In this paper we address the problem of when UB (π)− is path-connected in
Rep(A ,B) . In Section 2 we discuss special paths in UB (π)− . In Section 3 we
provide an affirmative answer (Theorem 3) for the case when A is separable and
B = B

(
�2

)
. We reduce the separable case to the singly generated case by tensoring

with the algebra K
(
�2

)
of compact operators on �2 . In Section 4 we give an af-

firmative answer (Theorem 5) when A is AF and B has the property that UpBp is
connected for every projection p ∈ B . We also give an affirmative answer (Theorem
6) when there is an LF C*-algebra D such that A ⊂ D ⊂ A ## , and B is an arbitrary
finite von Neumann algebra. In section 5 we give an affirmative answer (Theorem 7)
when A is abelian (or homogeneous) and B is an arbitrary von Neumann algebra.

2. Connectedness of UB and special paths

An internal path in UB (π)− joining π to ρ is a continuous map γ : [0,1] →
UB (π)− such that γ (0) = π , γ (1) = ρ and γ (t) ∈ UB (π) whenever 0 � t < 1. A
strong internal path from π to ρ ∈UB (π)− is a continuous map γ : [0,1)→UB such
that

lim
t→1−

γ (t)∗ π ()γ (t) = ρ .

In [4, Theorem 3.9] the first author proved that UB (T )− is always path connected
when B = B

(
�2

)
. Actually a slightly stronger result was proved.

THEOREM 1. [4, Theorem 3.9] Suppose X ∈ B
(
�2

)
and Y ∈ UB(�2) (X)− . Then

there is a W such that

1. W is unitarily equivalent to W ⊕W ⊕·· · ,
2. X ⊕W is unitarily equivalent to Y ⊕W ,

3. If C ∈ B
(
�2

)
is unitarily equivalent to X ⊕W , then

(a) C ∈ UB(�2) (X)− = UB(�2) (Y )− ,

(b) there is a strong internal path in UB(�2) (X)− from X to C, and

(c) there is a strong internal path in UB(�2) (Y )− from Y to C.

There is no reason, a priori, that UB (π) is even connected. It is well-known that
if P and Q are projections in a unital C*-algebra B and ‖P−Q‖ < 1, then P and
Q are unitarily equivalent [8]. It was proved in [3] that two unital representations π ,ρ
of a finite-dimensional C*-algebra A are unitarily equivalent if and only if π (p) is
unitarily equivalent to ρ (p) for every minimal projection p ∈ A .

If UB is connected, then every UB (π) must be connected. If x ∈ UB and
‖1− x‖ < 1, then (−∞,0]∩ σ (x) = ∅, so A(x) = −i log(x) ∈ B , A(x) = A(x)∗ ,
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and x = eiA(x). (Here log represents the principal branch of the logarithm.) Since
t 	→ ei(1−t)A(x) is a path in UB from x to 1, we see that {x ∈ UB : ‖1− x‖< 1} is
contained in the path component W of 1 in UB . Since W = ∪uW such that u ∈W ,
we see that W is open in UB . Thus UB is connected if and only if it is path-connected.
This means that if UB is connected, then UB (π) is path-connected.

LEMMA 1. If A is finite-dimensional, then for every B and every π ∈ Rep(A ,B) ,
UB (π) is closed.

Proof. It follows from [3, Theorem 2 (4)] that if ρ ∈ UB (π)− , then ρ ∈UB (π) .
�

EXAMPLE 1. B. Blackadar [1, 4.4] showed that in B = M2
(
C

(
S3

))
there are

two projections P,Q that are unitarily equivalent, but are not homotopy equivalent.
Thus UB (P) = UB (P)− is not path-connected. This implies that UB is not con-
nected.

We say that a unital C*-algebra B has property UC if UB is connected. The
algebra B has property HUC if, for every projection P ∈ B , PBP has property UC.
We say that B is matricially stable if and only if, for every n ∈ N , B is isomorphic to
Mn (B) .

LEMMA 2. The following are true:

1. Every von Neumann algebra has property HUC.

2. A direct limit of unital C*-algebras with property HUC has property HUC.

3. Every unital AF algebra has property HUC.

4. If A is a unital C*-algebra and, for every n ∈ N , Mn (A ) has property UC,
then K1 (A ) = 0 .

5. If B is matricially stable, then B has property UC if and only if K1 (B) = 0 .

Proof. (1) . In a von Neumann algebra A every unitary U can be written U = eiA

with A = A∗ , and the path g(t) = e(1−t)iA connects U to 1 in UA . Thus A has
property UC. But PA P is a von Neumann algebra for every projection P ∈ A . Thus
A has property HUC.

(2) . Suppose {Aλ : λ ∈ Λ} is an increasingly directed family of unital C*-subal-
gebras of a unital C*-subalgebra A with property UC, and A = [∪λ∈ΛAλ ]− . Let E
be the connected component of UA that contains 1. Suppose U ∈ UA and ε > 0.
Then there is a λ ∈ Λ and a unitary V ∈ Aλ such that ‖U −V‖ < ε . Since Aλ has
property UC, there is a path in UAλ joining V to 1, implying V ∈ E . Since E is
closed, we see that U ∈ E .
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Next suppose each Aλ has property HUC and P ∈ A is a projection. Then there
is a λ0 ∈ Λ and a projection Q ∈ Aλ0

such that ‖P−Q‖ < 1, which implies there is a
unitary W ∈ A such that P = W ∗QW . Hence

PA P = W ∗QWA W ∗QW = W ∗ (QA Q)W.

Thus PA P is isomorphic to

QA Q =
[∪λ�λ0

QAλ Q
]−

.

We see, by the previous paragraph, that PA P has property UC. Thus A has property
HUC.

(3) . This follows from (1) and (2) .
(4) . This follows from the definition of K1 (A ) .
(5) . This follows from (4) . �

3. B
(
�2

)
In this section we extend Theorem 1 to the case where the single operator is re-

placed with a representation of a separable C*-algebra. The key idea is a result of C.
Olsen and W. Zame [7] that if A is a separable C*-algebra, then A ⊗K

(
�2

)
is singly

generated. This gives us a general technique for relating the separable case to the singly
generated case.

Suppose A is a unital C*-algebra. Let A † denote the unitization of A ⊗K
(
�2

)
.

If π ∈ Rep(A ,B) we define π† : A † → B† by

π† (λ1+(ai j)) = λ1+(π (ai j)) .

Let B� be the C*-algebra generated by B† and {diag(a,a, . . .) : a ∈ A } .

THEOREM 2. Suppose A and B are unital C*-algebras and π ,ρ ∈ Rep(A ,B) .
Then

1. The map ρ 	→ ρ† from Rep(A ,B) to Rep
(
A †,B†

)
is continuous.

2. If π ,ρ ∈ Rep(A ,B) , then

ρ ∈ UB (π)− if and only if ρ† ∈ UB†

(
π†)− .

3. If ρ ∈ UB (π)− and there is an internal path in U (π)− joining π to ρ , then
there is an internal path in UB�

(
π†

)−
joining π† to ρ† .

4. If

(a) B† ⊂ E and E is a C*-algebra with e11E e11 = e11B
†e11 ,

(b) ρ1 ∈ UE

(
π†

)−
,
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(c) For every a ∈ A ,

ρ1 (diag(a,0,0, . . .)) = diag(ρ (a) ,0,0, . . .)

(d) UB is connected, and

(e) there is a strong internal path in UE

(
π†

)−
from π† to ρ1 ,

then there is a strong internal path in UB (π)− from π to ρ .

Proof. (1) . This is obvious.
(2) . Suppose ρ ∈ UB (π)− . Then there is a sequence {Un} in UB such that, for

every a ∈ A ,
lim
n→∞

‖Unπ (a)U∗
n −ρ (a)‖ = 0.

For each positive integer n, let Wn = diag(Un, . . . ,Un,1,1,1, . . .) in B† (with Un re-
peated n times). Since{

T ∈ A † : lim
n→∞

‖Wnπ (T )W ∗
n −ρ (T )‖ = 0

}

is a unital subalgebra containing the operators (Ai j) ∈ A † such that,

{(i, j) ∈ N×N : (i, j) �= (0,0)}

is finite, we see that ρ† ∈ UB†

(
π†

)−
.

Conversely, suppose ρ† ∈UB†

(
π†

)−
. Then there is a sequence {Vn} in B† such

that, for every T ∈ A † ,

lim
n→∞

∥∥Vnπ† (T )V ∗
n −ρ† (T )

∥∥ = 0.

Since π† (e11) = ρ† (e11) = e11 , we see that

lim
n→∞

‖Vne11− e11Vn‖ = lim
n→∞

∥∥Vnπ† (e11)V ∗
n −ρ† (e11)

∥∥ = 0.

Hence ∥∥∥Vn−
[
(e11Vne11)+ e⊥11Vne

⊥
11

]∥∥∥ → 0.

Since Vn is unitary,
lim
n→∞

∥∥(e11Vne11)
∗ (e11Vne11)− e11

∥∥
= lim

n→∞

∥∥(e11Vne11)(e11Vne11)
∗ − e11

∥∥ = 0.

This implies that, eventually e11Vne11 is invertible in e11B
†e11 . Thus there is a se-

quence {Wn} in UB , namely (for sufficiently large n ),

Wn = (e11Vne11)
[
(e11Vne11) (e11Vne11)

∗]−1/2
,
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such that
lim
n→∞

∥∥Wn− e11Vne11|ran(e11)
∥∥ = 0.

Thus, for every a ∈ A ,

lim
n→∞

‖Wnπ (a)W ∗
n −ρ (a)‖ = 0.

Thus ρ ∈ UB (π)− .
(3) . Suppose there is an internal path γ : [0,1] → U (π)− joining π to ρ .

For 0 � t < 1 write γ (t) = Utπ ()U∗
t with Ut ∈ UB . For each 0 � t < 1 let Vt =

diag(Ut ,Ut , . . .) ∈ UB� and let Γ(t) = Vtπ† ()V ∗
t . Then, for every T ∈ A † ,

lim
t→1−

∥∥Vtπ† (T )V ∗
t −ρ† (T )

∥∥ = 0.

(4) . Suppose Γ : [0,1) → UE is continuous, and, for every T ∈ A † ,

lim
t→1−

∥∥Γ(t)π† (T )Γ(t)∗ −ρ1 (T )
∥∥ = 0.

Since ρ1 (e11) = ρ† (e11) = e11 , we conclude that

lim
t→1−

‖Γ(t)e11− e11Γ(t)‖ = lim
t→1−

∥∥Γ(t)π† (e11)Γ(t)∗ −ρ1 (e11)
∥∥ = 0.

Since Γ(t) is unitary, there is a t0 ∈ [0,1) such that, whenever t0 � t < 1, we have
Ct = e11Γ(t)e11 is invertible in B and if

Ut = Ct [C∗
t Ct ]

−1/2 ,

then Ut ∈ UB and
lim

t→1−
‖Ct −Ut‖ = 0.

Since UA is connected, there is a continuous map t 	→Ut ∈ UA for 0 � t � t0 so that
U0 = 1. If, for every a ∈ A , we consider Ta = diag(a,0,0, . . .) , it is easily seen that

lim
t→1−

‖Utπ (a)U∗
t −ρ (a)‖ = 0. �

THEOREM 3. Suppose A is a separable unital C*-algebra and π ∈ Rep
(
A ,B

(
�2

))
.

Then UB(�2) (π)− is path-connected.

Proof. Suppose ρ ∈ UB(�2) (π)− . Then, by Theorem 2, ρ† ∈ U
B(�2)†

(
π†

)−
.

But B
(
�2

)† ⊂ B
(
�2⊕ �2⊕·· ·) = E . Also, by [7] there is an operator T ∈ A † such

that A † = C∗ (T ) . Thus ρ (T ) ∈ UE (π (T ))− . Apply Theorem 1 to X = π† (T ) and
Y = ρ† (T ) to find W in E and a strong internal paths from π† (T )⊕W in UE (π (T ))−

and in UE (ρ (T ))− from ρ† (T ) to π† (T )⊕W . There is a representation δ0 of C∗ (T )
such that δ0 (T ) = W , and if δ (A) = A⊕ δ0 (A) , we have δ (T ) = T ⊕W . Since e11
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and δ (e11) = e11⊕δ0 (e11) are projections with infinite rank and infinite corank, there
is a unitary operator V such that V ∗δ (e11)V = e11 and V ∗TV ∈ E . Let C =V ∗δ (T )V
and ρ1 () =V ∗δ ()V . It follows that there is a σ ∈ Rep

(
A ,B

(
�2

))
such that, for every

a ∈ A ,
ρ1 (diag(a,0,0, · · ·)) = diag(σ (a) ,0,0, · · ·) .

Since there is an internal path in UE

(
π† (T )

)−
from π† (T ) to ρ1 (T ) , there is a strong

internal path in UE

(
π†

)−
from π† to ρ1 . It follows from part (4) of Theorem 2 that

there is a strong internal path in UB(�2) (π)− from π to σ . Similarly, there is a strong

internal path in UB(�2) (ρ)− from ρ to σ . Thus there is a path in UB(�2) (π)− =

UB(�2) (ρ)− from π to ρ . �

4. AF algebras

LEMMA 3. Suppose 1∈ A ⊂ D are separable unital C*-algebras, B is a unital
C*-algebra and π ,ρ ∈ Rep(D ,B) , and suppose V,W ∈ UB such that

1. for every x ∈ D ,
W ∗ρ (x)W = π (x) ,

2. for every x ∈ A ,
V ∗ρ (x)V = π (x) ,

3. UB∩ρ(A )′ is connected.

Then there is a path t 	→Ut of unitary operators in B such that U0 =V , U1 =W ,
and for every t ∈ [0,1] and every x ∈ A ,

U∗
t ρ (x)Ut = π (x) .

Proof. We know that, for every x ∈ A ,

W ∗ρ (x)W = V ∗ρ (x)V.

Thus VW ∗ = X ∈ ρ (A )′ ∩B . Thus W = X∗V . Since Uρ(A )′∩B is path connected,

there is a path t 	→ Xt of unitary elements in ρ (A )′ ∩B such that X0 = 1 and X1 = X .
For t ∈ [0,1] let Ut = X∗

t V . Then Ut is a path in UB , U0 = V and U1 = X∗V = W .
Moreover, for each t ∈ [0,1] and each x ∈ A ,

U∗
t ρ (x)Ut = V ∗Xtρ (x)X∗

t V = V ∗ρ (x)V = π (x) . �

THEOREM 4. Suppose A1 ⊂ A2 ⊂ ·· · ⊂ A and A = [∪n∈NAn]
− is separable.

Suppose π ,ρ ∈ Rep(A ,B) such that, for every n ∈ N ,

1. ρ |An ∈ UB (π |An) ,
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2. Uρ(An)′∩B is connected.

Then there is a strong internal path from π to ρ .

Proof. For each n ∈ N , choose Un ∈ UB such that, for every a ∈ An ,

U∗
n ρ (a)Un = π (a) .

It follows from Lemma 3 that we can define a path t 	→Ut from [n,n+1] so that for
n � t � n+1 and a ∈ An , we have

U∗
t ρ (a)Ut = π (a) .

Thus the map t 	→Ut is continuous, and, for every a ∈ ∪n∈NAn we have

lim
t→+∞

‖U∗
t ρ (a)Ut −π (a)‖ = 0.

Hence, if we define πt (·) = U∗
t ρ (·)Ut for t ∈ [0,∞) and π∞ = ρ , we have a strong

internal path in UB (π)− from π to ρ . �

THEOREM 5. Suppose A is a separable unital AF C*-algebra, B is a C*-
algebra with property HUC, and π ∈ Rep(A ,B) . Then UB (π)− is path-connected.

Proof. We can assume that kerπ = 0, since A /kerρ is a separable unital AF al-
gebra. Since A is unital and AF, there is a sequence {An} of unital finite-dimensional
C*-subalgebras

1 ∈ A1 ⊂ A2 ⊂ ·· ·
such that [

∞⋃
n=1

An

]−
= A .

Suppose ρ ∈ UM (π)− . Since each An is finite-dimensional, where approximate
equivalence is the same as unitary equivalence, we have ρ |An ∈ UB (π |An) for each
n ∈ N .

Fix n ∈ N and write An as Ms1 (C)⊕ ·· · ⊕Mst (C) and, for 1 � k � t , let{
ei j,k : 1 � i, j � sk

}
be the system of matrix units for Msk (C) . It is easily seen that

ρ (An)
′ ∩B is the set of all

t

∑
k=1

sk

∑
j=1

ρ
(
e j1,k

)
ρ

(
e11,k

)
xρ

(
e11,k

)
ρ

(
ei j,k

)

for x ∈ B . It follows that ρ (An)
′ ∩B is isomorphic to

⊕
∑

1�k�t

ρ
(
e11,k

)
Bρ

(
e11,k

)
.

Since B has property HUC, we see that ρ (An)
′ ∩B has property UC. The desired

conclusion now follows from Theorem 4. �
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COROLLARY 1. If A is a separable unital AF C*-algebra and B is either an
AF C*-algebra or a von Neumann algebra, then, for every ρ ∈ Rep(A ,B) , UB (ρ)−

is path-connected.

A separable C*-algebra is homogeneous if it is a finite direct sum of algebras of the
form Mn (C (X)) , where X is a compact metric space. A unital C*-algebra is subhomo-
geneous if it is a unital subalgebra of a homogeneous C*-algebra. Every subhomoge-
neous von Neumann algebra is homogeneous; in particular, if A is subhomogeneous,
then the second dual A ## of A is homogeneous. A C*-algebra is approximately sub-
homogeneous (ASH) if it is a direct limit of subhomogeneous C*-algebras.

A (possibly nonseparable) C*-algebra B is LF if, for every finite subset F ⊂ B
and every ε > 0 there is a finite-dimensional C*-algebra D of B such that, for every
b ∈ F , dist(b,D) < ε . Every separable unital C*-subalgebra of a LF C*-algebra is
contained in a separable AF subalgebra. See [2] for details.

We are interested in a more general property. We say that a unital C*-algebra A
is strongly LF-embeddable if there is an LF C*-algebra D such that A ⊂ D ⊂ A ## .
It is easily shown that an ASH algebra is strongly LF-embeddable, i.e., if {Aλ} is an
increasingly directed family of subhomogeneous C*-algebras and A = (∪λ Aλ )−‖‖ ,

then A ⊂ (∪λ A ##
λ

)−‖‖ ⊂ A ## . The proof of the next theorem relies on results in [5].

THEOREM 6. Suppose A is a separable strongly LF embeddable C*-algebra and
M is a finite von Neumann algebra. Then, for every π ∈ Rep(A ,M ) , UM (π)− is
path connected.

Proof. Suppose ρ ∈ UM (π)− . It follows that there are weak*-weak* continuous
unital ∗ -homomorphisms π̂, ρ̂ : A ## → M such that π̂ |A = π and ρ̂ |A = ρ . Since
A is strongly LF embeddable, there is a separable unital AF C*-algebra D such that

A ⊂ D ⊂ A ##.

It follows from [5, Theorem 2] that ρ̂|D ∈UM (π̂|D )− . We know from Theorem 5 that
UM (π̂|D )− is path connected. Thus there is a path in UM (π̂|D)− from π̂|D to ρ̂ |D .
Restricting to A , we obtain a path in UM (π)− from π to ρ . �

5. Abelian algebras

Suppose M is a von Neumann algebra and T ∈ M . In [3] H. Ding and D.
Hadwin defined M -rank(T ) to be the Murray von Neumann equivalence class of the
orthogonal projection R(T ) onto the closure of the range of T . We say M -rank(S) �
M -rank(T ) if and only if there is a projection P ∈ M such that P � R(T ) and P is
Murray von Neumann equivalent to R(S) . They proved that if a separable unital C*-
algebra is a direct limit of homogeneous algebras, and M acts on a separable Hilbert
space, then for all π ,ρ ∈ Rep(A ,M ) , ρ ∈ UM (π)− if and only if, for every x ∈ A ,

M -rank(π (x)) = M -rank(ρ (x)) .
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A key ingredient of the proof of this result was a sequential semicontinuity of M -rank
with respect to the *-SOT that was proved when M is a von Neumann algebra acting
on a separable Hilbert space [3, Theorem 1]. We extend this to the general case.

LEMMA 4. Suppose M is a von Neumann algebra, A,B ∈ M and, for each
n ∈ N , Bn ∈ M and M -rank(Bn) � M -rank(A) . If Bn → B is the ∗ -SOT, then
M -rank(B) � M -rank(A) .

Proof. Let Pn = R(Bn) , Q = R(A) , and, for each n ∈ N , choose a partial isom-
etry Vn ∈ M such that V ∗

n Vn = Pn and VnV ∗
n � Q . Let

N = W ∗ ({A,B,B1,V1,B2,V2, . . .}) .

Clearly, we have, for every n ∈ N , that

N -rank(Bn) � N -rank(A) .

Because N is countably generated, by [10, Corollary 2.4] we may write

N =
⊕
∑
i∈I

Ni

with each Ni acting on a separable Hilbert space.
Write

A =
⊕
∑
i∈I

Ai, B =
⊕
∑
i∈I

Bi, Bn =
⊕
∑
i∈I

Bn,i, Vn =
⊕
∑
i∈I

Vn,i.

Since R(A) = ∑⊕
i∈I R(Ai) and R(B) = ∑⊕

i∈I R(Bn,i) , for each i ∈ I , Ni -rank(Bn,i) �
Ni -rank(Ai) and the limit in the ∗ -SOT of Bn,i is Bi . Thus, by [3, Theorem 1], for
each i ∈ I ,

Ni-rank(Bi) � Ni-rank(Ai) .

Thus, for each i ∈ I , there is a partial isometry Wi ∈ Ni such that

W ∗
i Wi = R(Bi) and WiW

∗
i � R(Ai) .

Then W = ∑⊕
i∈I Wi is a partial isometry in N such that

W ∗W = R(B) and WW ∗ � R(A) .

Since we also have W ∈ M , we conclude M -rank(B) � M -rank(A) . �

COROLLARY 2. If A is a unital C*-algebra, M is a von Neumann algebra and
π ∈ Rep(A ,M ) and ρ ∈ UM (π)− , then, for every a ∈ A ,

M -rank(π (a)) = M -rank(ρ (a)) .
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Proof. Suppose a ∈ A . There is a sequence {Un} in UM such that

lim
n→∞

‖U∗
n π (A)Un−ρ (A)‖ = lim

n→∞
‖π (a)−Unρ (a)U∗

n ‖ = 0.

Also M -rank(U∗
n π (a)Un) = M -rank(π (a)) and M -rank(Unρ (a)U∗

n ) = M -
rank(ρ (a)) for each n ∈ N . Thus, by Lemma 4,

M -rank(ρ (a)) � M -rank(π (a)) and M -rank(π (a)) � M -rank(ρ (a)) . �

REMARK 1. Corollary 2 can also be proved without Lemma 4, but instead us-
ing Theorem 1.3(2) from [9], which states that two normal operators S,T in a von
Neumann algebra are approximately equivalent if and only if, for every open subset
U ⊂ C , we have χU (S) and χU (T ) are Murray von Neumann equivalent. Since M -
rank(π (a)) (resp., M -rank(ρ (a))) is the Murray von Neumann equivalence class
of χ(0,∞)

(
π (a)∗ π (a)

)
(resp., χ(0,∞)

(
ρ (a)∗ ρ (a)

)
), Corollary is an immediate conse-

quence.

Suppose A is a unital C*-algebra and M is a von Neumann algebra and π : A →
M is a unital ∗ -homomorphism. Then there is a unique ∗ -homomorphism π̂ : A ## →
M that is weak*-weak* continuous (see [6]).

LEMMA 5. Suppose (X ,d) is a compact metric space, M is a σ -finite von Neu-
mann algebra, and π ,ρ : C (X) → M , ρ ∈ UM (π)− . Then there is a sequence
F1,F2, . . . of finite disjoint collections of nonempty Borel sets such that

1. ∑E∈Fn π̂ (χE) = ∑E∈Fn ρ̂ (χE) = 1,

2. {π̂ (χE) : E ∈ Fn} ⊂ sp({π̂ (χF) : F ∈ Fn+1}) and
{ρ̂ (χE) : E ∈ Fn} ⊂ sp({ρ̂ (χF) : F ∈ Fn+1}) ,

3. For every E ∈ Fn , and
diam(E) < 1/n .

4. For every E ∈∪n∈NFn π̂ (χE) and ρ̂ (χE) are Murray von Neumann equivalent.

Proof. Let Bor(X) be the C*-algebra with the supremum norm. We then have

C (X) ⊂ Bor(X) ⊂C (X)##

and π̂|Bor(X) , ρ̂ |Bor(X) are unital ∗ -homomorphisms.

Let Σ =
{
U ⊂ X : U is open and π̂

(
χU\U

)
= ρ̂

(
χU\U

)
= 0

}
. It is easily shown

that if U,V ∈ Σ , then U \V , U ∪V , U ∩V ∈ Σ . Moreover, if a ∈ X and S (a,r) =
{x ∈ X : d (a,x) = r} for all r > 0, it follows from the fact that M is σ -finite that if
Ea =

{
r ∈ (0,∞) : π̂

(
χS(a,r)

)
= ρ̂

(
χS(a,r)

)
= 0

}
, then (0,∞)\Ea is countable.

We can assume that diam(X) < 1 and we can let F1 = {X} .
Suppose n ∈ N and Fn has been defined.



1348 D. HADWIN AND W. LIU

For each a ∈ X , there is an ra ∈ Ea ∩
(
0, 1

2(n+1)

)
. Since X is compact and

{ball(a,ra) : a ∈ X} is an open coverwith sets in Σ , there is a finite subcover {U1, . . . ,Us} .
We let V1 = U1, and Vk = Uk \∪1� j<kU j for 1 < k � s . Then {V1, . . .Vs} is a disjoint
family of open sets in Σ with union V such that

π̂ (χV ) = ρ̂ (χV ) = 1.

We now let
Fn+1 =

{
Vj ∩W : 1 � j � s,W ∈ Fn,Vj ∩W �= ∅

}
.

If U ⊂ X is open and nonempty, then there is a continuous f : X → [0,1] such that
f (x) = 0 if and only if x ∈ X \U . Thus the sequence f 1/n ↑ χU , which means

f 1/n → χU

weak* in C (X)## . Thus π ( f )1/n ↑ π̂ (χU) and ρ ( f )1/n ↑ ρ̂ (χU) in the weak* topology.
Thus π̂ (χU) is the projection onto the closure of the range of π ( f ) and ρ̂ (χU) is the
projection onto the closure of the range of ρ ( f ) . It follows from Corollary 2 that
π̂ (χU) and ρ̂ (χU) are Murray von Neumann equivalent. �

THEOREM 7. Suppose A is a separable unital commutative C*-algebra and M
is a von Neumann algebra. If π ∈ Rep(A ,M ) then UB (π)− is path-connected. In
fact, for every ρ ∈ UM (π)− there is a strong internal path from π to ρ .

Proof. Suppose ρ ∈UM (π)− . Since A is separable, there is a sequence {Un} ∈
UM such that, for every a ∈ A ,

lim
n→∞

‖U∗
n π (a)Un−ρ (a)‖ = 0.

Let N = W ∗ (π (A )∪ρ (A )∪{U1,U2, . . .}) . Then N is a countably generated von
Neumann algebra, and π ,ρ : A → N . Hence we can write

N =
⊕
∑
i∈I

Ni,

where each Ni acts on a separable Hilbert space, and we can write

π =
⊕
∑
i∈I

πi and ρ =
⊕
∑
i∈I

ρi.

We also have

π̂ =
⊕
∑
i∈I

π̂i and ρ̂ =
⊕
∑
i∈I

ρ̂i.

For each i ∈ I , we can choose a sequence Fn,i of families of nonempty open
subsets as in Lemma 5. Since, for each i ∈ I and each n ∈ N and each E ∈ Fn,i we
know π̂i (χE) and ρ̂i (χE) are Murray von Neumann equivalent in Ni and since

∑
E∈Fn

π̂i (χE) = ∑
E∈Fn

ρ̂i (χE) = 1,
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there is a unitary Un,i ∈ Ni such that

U∗
n,iπ̂i (χE)Un,i = ρ̂i (χE)

for every E ∈ Fn,i . For each n ∈ N , let Un = ∑⊕
i∈I Un,i for each i ∈ I , and let Dn =

∑⊕
i∈I sp({π̂i (χE) : E ∈ Fn,i}) . Since UnU∗

n+1 ∈D ′
n , we know from the proof of Lemma

3 that the map n 	→Un on N extends to a continuous map t 	→Ut = ∑⊕
i∈I Ut,i such that

U0 = 1, and such that, for every n ∈ N , for every i ∈ I , every n � t < ∞ , and every
E ∈ Fn,i

U∗
t,iπ̂i (χE)Ut,i = U∗

n,iπ̂i (χE)Un,i = ρ̂ (χE) .

Suppose f ∈ C (X) and ε > 0. Since f is uniformly continuous, there is a positive
integer n0 such that, if x,y ∈ X and d (x,y) < 1/n0 , then | f (x)− f (y)| < ε/2.

For each i ∈ I and all E ∈ Fn0,i we choose xi,n0,E ∈ E . Since diam(E) < 1/n0 ,
we then have ∥∥[

f − f
(
xn0,i,E

)]
χE

∥∥ < ε/2,

so ∥∥∥∥∥∥πi ( f )− ∑
E∈Fn0,i

f
(
xn0,i,E

)
π̂i (χE)

∥∥∥∥∥∥ � ε/2,

and ∥∥∥∥∥∥ρi ( f )− ∑
E∈Fn0,i

f
(
xn0,i,E

)
ρ̂i (χE)

∥∥∥∥∥∥ � ε/2.

Thus, for t � n0 , we have

‖U∗
t π ( f )Ut −ρ ( f )‖ = sup

i∈I

∥∥U∗
t,iπi ( f )Ut,i −ρi ( f )

∥∥
� sup

i∈I

∥∥∥∥∥∥U∗
t,i

⎡
⎣πi ( f )− ∑

E∈Fn0,i

f
(
xn0,i,E

)
π̂i (χE)

⎤
⎦Ut,i

∥∥∥∥∥∥
+sup

i∈I

∥∥∥∥∥∥ ∑
E∈Fn0,i

f
(
xn0,i,E

)[
U∗

t,iπ̂i (χE)Ut,i − ρ̂i (χE)
]∥∥∥∥∥∥

+sup
i∈I

∥∥∥∥∥∥ ∑
E∈Fn0,i

f
(
xn0,i,E

)
ρ̂i (χE)−ρi ( f )

∥∥∥∥∥∥
� ε/2+0+ ε/2 = ε .

Thus, the map t 	→Ut is continuous on [1,∞) , and, for every f ∈C (X) ,

lim
t→∞

‖Utπ ( f )U∗
t −ρ ( f )‖ = 0. �

COROLLARY 3. Suppose A is a separable unital homogeneous C*-algebra and
M is a von Neumann algebra. If π ∈ Rep(A ,M ) then UM (π)− is path-connected.
In fact, for every ρ ∈ UM (π)− there is a strong internal path from π to ρ .
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Proof. We give the proof when A = Mn (C (X)) for some compact metric space
X . If ρ ∈ UM (π)− . In the obvious way we have Mn (C) ⊂ Mn (C (X)) . Since

ρ |Mn(C) ∈ UM

(
π |Mn(C)

)−
,

it follows from [3] that π |Mn(C) and ρ |Mn(C) are unitarily equivalent in M . Since
UM is path-connected, there is a path in UM (π) joining π to a representation whose
restriction Mn (C) coincides with ρ |Mn(C) . Hence we can assume that π |Mn(C) =
ρ |Mn(C) . Since π (Mn (C)) is an isomorphic copy of Mn (C) , so there is a von Neu-
mann algebra D such that M = Mn (D) and the map π from Mn (C)⊂Mn (C (X)) to
Mn (C) ⊂ Mn (D) is the identity map. In this case there are unital ∗ -homomorphisms
σπ ,σρ : C (X) → D such that, for every A = ( fi j) ∈ Mn (C (X)) ,

π (A) = (σπ ( fi j)) and π (A) =
(
σρ ( fi j)

)
.

It is clear that σρ ∈ UD (σπ) . The rest follows from Theorem 7. �
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