
Operators
and

Matrices

Volume 15, Number 4 (2021), 1351–1378 doi:10.7153/oam-2021-15-85

THE ARVESON BOUNDARY OF A FREE QUADRILATERAL

IS GIVEN BY A NONCOMMUTATIVE VARIETY

ERIC EVERT

Abstract. Let SMn(R)g denote the set of g -tuples of n× n real symmetric matrices and set
SM(R)g = ∪nSMn(R)g . A free quadrilateral is the collection of tuples X ∈ SM(R)2 which have
positive semidefinite evaluation on the linear equations defining a classical quadrilateral. Such a
set is closed under a generalized type of convex combination called a matrix convex combination.
That is, given elements X = (X1, . . . ,Xg)∈ SMn1 (R)g and Y = (Y1, . . . ,Yg)∈ SMn2 (R)g of a free
quadrilateral Q , one has

VT
1 XV1 +VT

2 YV2 ∈ Q

for any contractions V1 : R
n → R

n1 and V2 : R
n → R

n2 satisfying VT
1 V1 +VT

2 V2 = In . These
matrix convex combinations are a natural analogue of convex combinations in the dimension free
setting.

Elements of a free quadrilateral which cannot be expressed as a nontrivial matrix convex
combination of other elements of the free quadrilateral are called free extreme points. Free
extreme points serve as the minimal set which recovers a free quadrilateral through matrix convex
combinations. In this way, free extreme points are the natural type of extreme point for a free
quadrilateral.

In this article we show that the set of free extreme points of a free quadrilateral is deter-
mined by the zero set of a collection of noncommutative polynomials. More precisely, given a
free quadrilateral Q , we construct noncommutative polynomials p1, p2, p3, p4 such that a tuple
X ∈ SM(R)2 is a free extreme point of Q if and only if X ∈ Q and pi(X) = 0 for i = 1,2,3,4
and X is irreducible.

In addition, we establish several basic results for projective maps of free spectrahedra and
for homogeneous free spectrahedra. In particular, we show that that the image of a free extreme
point under an invertible projective map is again a free extreme point. We also extend a kernel
condition for a tuple to be a free extreme point to the setting of homogeneous free spectrahedra.
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