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ON JORDAN BIDERIVATIONS OF TRIANGULAR RINGS

LEI LIU ∗ AND MEIYUE LIU

(Communicated by C.-K. Li)

Abstract. The aim of the paper is to give a description of Jordan biderivations for a certain class
of triangular rings. It is shown that, under some mild conditions, every Jordan biderivation of
the triangular rings is a biderivation. The result is then applied to some upper triangular matrix
rings.

1. Introduction and preliminaries

Let R be an associative ring. An additive map δ from R into itself is said to be a
derivation if δ (ab) = δ (a)b+aδ (b) holds for all a and b in R . We called δ a Jordan
derivation if δ (a2) = δ (a)a+aδ (a) for each a in R . Obviously, every derivation is a
Jordan derivation. But the inverse is in general not true [4]. The standard problem is
to find out whether a Jordan derivation is necessarily a derivation (for example, refer to
[5, 7, 12, 13, 16] and the references therein).

More generally, a biadditive map ϕ : R×R → R is called a biderivation if it is a
derivation with respect to both components, meaning that

ϕ(ab,c) = ϕ(a,c)b+aϕ(b,c) and ϕ(a,bc) = ϕ(a,b)c+bϕ(a,c)

for all a,b,c ∈ R . If R is a noncommutative ring and Z(R) is the centre of R , then the
map

ϕ(x,y) = λ [x,y] for all x, y ∈ R,

where λ ∈ Z(R) , is called an inner biderivation. ϕ is said to be an extremal biderivation
if it is the form

ϕ(x,y) = [x, [y,a]] for all x, y ∈ R,

where a ∈ R and a /∈ Z(R) such that [[R,R],a] = 0 ([3], Remark 4.4). The inner
biderivation and the extremal biderivation are two basic examples of biderivation. Pa-
pers [3, 6, 8, 10, 14, 15, 17] relatively studied biderivations on some rings and some
operator algebras. We called ϕ a Jordan biderivation if

ϕ(a2,b) = ϕ(a,b)a+aϕ(a,b) and ϕ(a,b2) = ϕ(a,b)b+bϕ(a,b)
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for all a,b ∈ R . It is clear that every biderivation is a Jordan biderivation. Then the fol-
lowing question seems natural: whether a Jordan biderivation is necessarily a bideriva-
tion? But, so far, there are few papers on the study of Jordan biderivations. Abdioğlu
and Lee in [1] proved that, for noncommutative prime ring R , every Jordan biderivation
of R can be decomposed as ζ + μ , where ζ is an inner biderivation and μ is an biad-
ditive map from R×R into the extended centroid satisfying μ(x2,y) = 0 = μ(x,y2) for
all x,y ∈ R . The Jordan biderivations of triangular matrix rings have been discussed in
[2]. In the present note, we shall study the structure of Jordan biderivations of certain
triangular rings. We show that, under some mild conditions, every Jordan biderivation
of the triangular rings is a biderivation. As an application, we show that every Jordan
biderivation of upper triangular matrix rings is a biderivation.

Throughout this note, R denotes a unital ring with a nontrivial idempotent e and
with maximal left ring of quotients Qml(R) . The centre C(R) of Qml(R) is a field
which is called the extended centroid of R (see [9] for details). For A, B ⊆ Qml(R) , set
C(A, B) = {a ∈ A : ab = ba for all b ∈ B} . R is called a triangular ring if f Re = 0 and
eR f is a faithful (eRe, f R f )− bimodule , where f = 1− e . We close this section by
listing here some well known properties of triangular ring R , which come from a good
reference [11].

PROPERTIES.
(i) R is a subring of Qml(R) with the same 1.
(ii) For any dense left ideal I of R and a left R-module homomorphism h : I → R ,

there exists q ∈ Qml(R) such that h is a right multiplication by q .
(iii) eR is a dense left ideal of R and for each p ∈ Qml(R) the following hold:

eR f p = 0 implies f p = 0 and peR f = 0 implies pe = 0.
(iv) C(R)= {z∈ eQml(R)e⊕ fQml(R) f : zex f = ex f z for all x∈R}=C(Qml(R), R) .
(v) There exists a unique ring isomorphism τ : C(R)e →C(R) f such that λex f =

ex f τ(λe) for all x ∈ R , λ ∈C(R) .

2. Main results and proofs

In this section, we shall discuss the structure of Jordan biderivations of certain
triangular rings. We ought perhaps to mention that our approach is simple but efficient.
Our main result reads as follows.

THEOREM 2.1. Let R be a triangular ring and e the nontrivial idempotent of it.
Assume that, δ : R×R→ R is a Jordan biderivation and C( fQml(R) f , f R f ) =C(R) f
and either eRC(R)e or fRC(R) f does not contain nonzero central ideals.

(i) If δ (e,e) �= 0 , then it has the form δ = φ +σ , where φ : R×R→ R is an inner
biderivation and σ : R×R→ R is an extremal biderivation.

(ii) If δ (e,e) = 0 , then δ is an inner biderivation.
In other words, every Jordan biderivation of triangular rings is a biderivation.

To prove Theorem 2.1, we need some lemmas. The following lemma will be used
repeatedly, whose proof is similar to ([13], Lemma 3.1-3.2) and will be skipped.
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LEMMA 2.2. Let R be a triangular ring and δ : R×R→ R be a Jordan bideriva-
tion. Then for any x,y,z,w ∈ R, the following hold:

(i) δ (xy+ yx,z) = δ (x,z)y+ xδ (y,z)+ δ (y,z)x+ yδ (x,z);
(ii) δ (z,xy+ yx) = δ (z,x)y+ xδ (z,y)+ δ (z,y)x+ yδ (z,x);
(iii) δ (xyx,z) = δ (x,z)yx+ xδ (y,z)x+ xyδ (x,z);
(iv) δ (z,xyx) = δ (z,x)yx+ xδ (z,y)x+ xyδ (z,x);
(v) δ (xyz+ zyx,w) = δ (x,w)yz+ xδ (y,w)z+ xyδ (z,w)+ δ (z,w)yx+ zδ (y,w)x+

zyδ (x,w);
(vi) δ (w,xyz+ zyx) = δ (w,x)yz+ xδ (w,y)z+ xyδ (w,z)+ δ (w,z)yx+ zδ (w,y)x+

zyδ (w,x) .

LEMMA 2.3. Let R be a triangular ring and δ : R×R→ R be a Jordan bideriva-
tion. Then δ (e,e) = −δ (e, f ) = −δ ( f ,e) = δ ( f , f ) .

Proof. It follows from Lemma 2.2 (iii)-(iv) that δ (x,1) = δ (1,x) = 0 for all x∈R .
Then δ (e,e) = δ (e,1− f ) = −δ (e, f ) . Similarly, we get δ (e, f ) = δ (1− f ,1− e) =
δ ( f ,e) and δ ( f , f ) =−δ ( f ,e) . Hence δ (e,e) =−δ (e, f ) =−δ ( f ,e) = δ ( f , f ) . �

LEMMA 2.4. Let R be a triangular ring and δ : R×R→ R be a Jordan bideriva-
tion. Then

[δ (x,z), [w,y]]+ [δ (x,w), [z,y]] = [δ (y,w), [x,z]]+ [δ (y,z), [x,w]]

for all x,y,z,w ∈ R.

Proof. For any x,y,z,w ∈ R , by Lemma 2.2 (i)-(ii), on the one hand, we have

δ (xy+ yx,zw+wz)
= δ (x,zw+wz)y+ xδ (y,zw+wz)+ δ (y,zw+wz)x+ yδ (x,zw+wz)
= (δ (x,z)w+ zδ (x,w)+ δ (x,w)z+wδ (x,z))y

+x(δ (y,z)w+ zδ (y,w)+ δ (y,w)z+wδ (y,z))
+(δ (y,z)w+ zδ (y,w)+ δ (y,w)z+wδ (y,z))x
+y(δ (x,z)w+ zδ (x,w)+ δ (x,w)z+wδ (x,z)),

on the other hand,

δ (xy+ yx,zw+wz)
= δ (xy+ yx,z)w+ zδ (xy+ yx,w)+ δ (xy+ yx,w)z+wδ (xy+ yx,z)
= (δ (x,z)y+ xδ (y,z)+ δ (y,z)x+ yδ (x,z))w

+z(δ (x,w)y+ xδ (y,w)+ δ (y,w)x+ yδ (x,w))
+(δ (x,w)y+ xδ (y,w)+ δ (y,w)x+ yδ (x,w))z
+w(δ (x,z)y+ xδ (y,z)+ δ (y,z)x+ yδ (x,z)).
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Comparing the above two equations, we see that

[δ (x,z), [w,y]]+ [δ (x,w), [z,y]] = [δ (y,w), [x,z]]+ [δ (y,z), [x,w]]

for all x,y,z,w ∈ R . �

Proof of Theorem 2.1. In the following we will prove the statement (i) of theorem
by checking several claims.

Claim 1. The following statements hold:
(i) δ (e,R) ⊆ eR f ;
(ii) δ ( f ,R) ⊆ eR f ;
(iii) δ (R,e) ⊆ eR f ;
(iv) δ (R, f ) ⊆ eR f .
We only prove statement (i). For other cases, the proofs are similar. Since δ (e,R)=

δ (e,R)e+eδ (e,R) , we have eδ (e,R)e = 0 and fδ (e,R) f = 0. It follows that δ (e,R) =
eδ (e,R) f ⊆ eR f .

Since δ (e,e) �= 0, δ (e,e) = eδ (e,e) f /∈ Z(R) . Taking x = z = e in Lemma 2.4,
by Claim 1, we get [[w,y],δ (e,e)] = 0 for all w,y ∈ R . Thus σ(x,y) = [x, [y,δ (e,e)]] is
a extremal biderivation. Moreover, by Claim 1, we have

σ(e,e) = [e, [e,δ (e,e)]] = δ (e,e).

Let φ = δ −σ . Then φ is a Jordan biderivation satisfying φ(e,e) = 0.

Claim 2. For any x,y ∈ R, the following is true:
(i) φ(ex f ,y) ∈ eR f ;
(ii) φ(x,ey f ) ∈ eR f .
We only need to check statement (i), and the proof of statement (ii) is similar. In

fact, for any x,y ∈ R , by Lemma 2.2 (v) and Claim 1, we have

φ(ex f ,y) = φ(ex f + f xe,y)
= φ(e,y)x f + eφ(x,y) f + exφ( f ,y),

which implies eφ(ex f ,y)e = 0 and fφ(ex f ,y) f = 0. So φ(ex f ,y) ∈ eR f for all x,y ∈
R .

Claim 3. For any x,y ∈ R, the following statements hold:
(i) φ(exe, f y f ) = 0 ;
(ii) φ( f x f ,eye) = 0 .
For any x,y ∈ R , by Lemma 2.2 (iii) and Claim 1, we have

φ(exe, f y f ) = φ(e, f y f )exe+ eφ(exe, f y f )e+ exeφ(e, f y f )
= eφ(exe, f y f )e+ exeϕ(e, f y f )

It follows that
eφ(exe, f y f ) f = exeφ(e, f y f ) f (2.1)
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and
fφ(exe, f y f ) f = 0 (2.2)

for all x,y ∈ R . Similarly, we obtain

φ(exe, f y f ) = ϕ(exe, f ) f y f + fϕ(exe, f y f ) f + f y fϕ(exe, f )
= ϕ(exe, f ) f y f ,

which implies
eφ(exe, f y f ) f = eφ(exe, f ) f y f (2.3)

and
eφ(exe, f y f )e = 0 (2.4)

for all x,y∈R . Comparing Eqs.(2.1) and (2.3) reduces to exeφ(e, f y f ) f = eφ(exe, f ) f y f
for all x,y ∈ R . Taking x = e in the above equation, by Lemma 2.3 and the fact
φ(e,e) = 0, one can easily check that eφ(e, f y f ) f = eφ(e, f ) f y f = 0 for all x,y ∈ R .
Combining this and Eqs.(2.1), (2.2) and (2.4), we get φ(exe, f y f ) = 0 for all x,y ∈ R .

Using the same idea, we can prove statement (ii).

Claim 4. For any x,y ∈ R, there exists λ ∈C(R)e such that
(i) φ(exe,ey f ) = −φ(ey f ,exe) = λexey f ;
(ii)φ(ex f , f y f ) = −φ( f y f ,ex f ) = λex f y f .
We only give the proof of statement (i). The proof of statement (ii) is similar.

Define a map h : eR → R by
h(x) = φ(e,ex f )

for all x ∈ eR . Then, by Lemma 2.2 (ii) and Claim 1, we get

h(rx) = φ(e,erx f )
= φ(e,erx f + ex f ere)
= φ(e,ere)ex f + ereφ(e,ex f )
= ereφ(e,ex f )
= rh(x)

for all x ∈ eR , r ∈ R . This implies that h is a left R-module homomorphism. Property
(ii) and (iii) show that there exists q ∈ Qml(R) such that h(x) = xq for all x ∈ eR . It is
clear that eq = h(e) = 0. So h(x) = x f q f for all x ∈ eR . Moreover, by Lemma 2.2 (ii)
and Claim 1, we have

h(x f r f ) = φ(e,ex f r f )
= φ(e,ex f r f + f r f ex f )
= φ(e,ex f ) f r f + ex fφ(e, f r f )
= φ(e,ex f ) f r f

= h(x) f r f ,
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which leads to x f r f q f = x f q f r f for all x ∈ eR and r ∈ R . So we get eR( f r f q f −
f q f r f ) = 0 for all r ∈ R . Using Property (iii), we see that f r f q f = f q f r f for all r ∈
R . Then f q f ∈C( fQml(R) f , f R f ) , and hence f q f ∈C(R) f . Setting λ = τ−1( f q f ) ,
by Property (v), we have λex f = x f q f for all x ∈ eR . So

φ(e,ex f ) = λex f (2.5)

for all x ∈ R . Therefore, for any x,y ∈ R , by Lemma 2.2 (iii) and Claim 2, we have

φ(exe,ey f ) = φ(e,ey f )exe+ eφ(exe,ey f )e+ exeφ(e,ey f )
= exeϕ(e,ey f )
= λexey f .

With the similar argument, there exists μ ∈C(R)e such that

φ(ex f ,e) = μex f (2.6)

for all x ∈ R . For any x,y,z ∈ R , by Lemma 2.4, we have

[φ(e,ex f ), [eye,eze]]+ [φ(e,eye), [ex f ,eze]]
= [φ(eze,eye), [e,ex f ]]+ [φ(eze,ex f ), [e,eye]],

which yields that
−[eye,eze]φ(e,ex f ) = [φ(eze,eye),ex f ]. (2.7)

On the other hand, we obtain

[φ(ex f ,e), [eye,eze]]+ [φ(ex f ,eye), [e,eze]]
= [φ(eze,eye), [ex f ,e]]+ [φ(eze,e), [ex f ,eye]],

which means that

−[eye,eze]φ(ex f ,e) = [φ(eze,eye),−ex f ], (2.8)

for all x,y,z ∈ R . By Eq.(2.5)-(2.8), we get [eye,eze](φ(e,ex f )+ φ(ex f ,e)) = 0, that
is,

(λ + μ)[eye,eze]ex f = 0

for all x,y,z ∈ R . By Property (iii), we conclude that

(λ + μ)[eRe,eRe] = 0.

This leads to
[(λ + μ)eRC(R)e,eRC(R)e)] = 0.

Then (λ +μ)eRC(R)e is a central ideal of eRC(R)e . Assume without loss of generality
that eRC(R)e does not contain nonzero central ideals. Therefore, we arrive at μ = −λ
and

φ(ey f ,exe) = φ(ey f ,e)exe+ eφ(ey f ,exe)e+ exeφ(ey f ,e)
= exeϕ(ey f ,e)
= −λexey f ,
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completing the proof of statement (i).

Claim 5. For any x,y ∈ R, the following is true:
(i) φ(exe,eye) = λ [exe,eye];
(ii) φ( f x f , f y f ) = τ(λ )[ f x f , f y f ] .
For any x ∈ R , by Lemma 2.2 (iv), we have φ(e,exe) = φ(e,e)xe + eφ(e,x)e +

exφ(e,e) . It follows from Claim 1 and the fact φ(e,e) = 0 that φ(e,exe) = 0 for all
x ∈ R . Hence

φ(exe,eye) = φ(e,eye)exe+ eφ(exe,eye)e+ exeφ(e,eye)
= eφ(exe,eye)e

for all x,y ∈ R . Then, for any x,y,z ∈ R , we have

[φ(exe,eye), [e,ez f ]]+ [φ(exe,e), [eye,ez f ]]
= [φ(ez f ,e), [exe,eye]]+ [φ(ez f ,eye), [exe,e]],

which implies that

φ(exe,eye)ez f = −[exe,eye]φ(ez f ,e) = λ [exe,eye]ez f ,

since Claim 4 (i). It follows that (φ(exe,eye)−λ [exe,eye])eR f = 0 for all x,y ∈ R . By
Property (iii), we obtain that φ(exe,eye) = λ [exe,eye] for all x,y ∈ R .

In an analogous manner, we have φ( f x f , f y f ) = fφ( f x f , f y f ) f for all x,y ∈ R .
So we get

[φ( f x f , f y f ), [e,ez f ]]+ [φ( f x f ,e), [ f y f ,ez f ]]
= [φ(ez f ,e), [ f x f , f y f ]]+ [φ(ez f , f y f ), [ f x f ,e]],

that is,
ez fφ( f x f , f y f ) = φ(e,ez f )[ f x f , f y f ]

for all x,y,z ∈ R . Therefore, by Claim 4 (i), we obtain

φ(e,ez f )[ f x f , f y f ] = λez f [ f x f , f y f ]
= ez f τ(λ )[ f x f , f y f ]

for all x,y,z ∈ R . Then eR f (φ( f x f , f y f ) − τ(λ )[ f x f , f y f ]) = 0 for all x,y ∈ R . It
follows from Property (iii) that φ( f x f , f y f ) = τ(λ )[ f x f , f y f ] for all x,y ∈ R .

Claim 6. φ(ex f ,ey f ) = 0 for all x,y ∈ R.
For fixed y ∈ R , we define a map h : eR → R by

hy(x) = φ(ex f ,ey f )

for all x ∈ eR . Then, by Lemma 2.2 (i) and Claim 2, we get

hy(rx) = φ(erx f ,ey f )
= φ(erex f + ex f ere,ey f )
= φ(ere,ey f )ex f + ereφ(ex f ,ey f )
= rφ(ex f ,ey f )
= rhy(x)
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for all x ∈ eR , r ∈ R , and hence hy is a left R-module homomorphism. Using Property
(ii)-(iii), we see that there exists qy ∈ Qml(R) such that hy(x) = xqy for all x ∈ eR . It
is clear that eqy = hy(e) = 0. So qy = f qy f , which implies that hy(x) = x f qy f for all
x ∈ eR . Moreover, by Lemma 2.2 (i) and Claim 2, we have

hy(x f r f ) = φ(ex f r f ,ey f )
= φ(ex f r f + f r f ex f ,ey f )
= φ(ex f ,ey f ) f r f + ex fφ( f r f ,ey f )
= φ(ex f ,ey f ) f r f

= hy(x) f r f

and hence x f r f qy f = x f qy f r f for all x∈ eR and r ∈R . Then eR( f r f qy f − f qy f r f ) =
0 for all r ∈ R . In view of Property (iii), we get f r f qy f = f qy f r f for all r ∈ R .
Consequently, by the assumption of Theorem 2.1, we have f qy f ∈C(R) f .

Now, for any x,y,x′,y′ ∈ R , by Lemma 2.4, we have

[φ(exe,eye), [ey′ f ,ex′ f ]]+ [φ(exe,ey′ f ), [eye,ex′ f ]]
= [φ(ex′ f ,ey′ f ), [exe,eye]]+ [φ(ex′ f ,eye), [exe,ey′ f ]],

which implies that

0 = [exe,eye]φ(ex′ f ,ey′ f )
= [exe,eye]ex′ f qy′ f

= τ−1( f qy′ f )[exe,eye]ex
′ f

for all x,y,x′,y′ ∈ R . By Property (iii), we have

τ−1( f qy′ f )[eRe,eRe] = 0.

This leads to

[τ−1( f qy′ f )eRC(R)e,eRC(R)e] = 0.

It follows that τ−1( f qy′ f )eRC(R)e is a central ideal of eRC(R)e . Assume without loss
of generality that eRC(R)e does not contain nonzero central ideals. Then τ−1( f qy′ f ) =
0, which leads to f qy′ f = 0 for all y′ ∈R . So we conclude that φ(ex f ,ey f ) = ex f qy f =
0 for all x,y ∈ R , completing the proof of Claim 6.

Let ν = λ +τ(λ )∈C(R) . By Claim 3-6, one can easily check that φ(x,y) = ν[x,y]
for all x,y ∈ R . Hence δ = φ +σ , where φ is a inner biderivation and σ is a extremal
biderivation. The proof of the statement (i) of theorem is completed.

For the statement (ii), by assumption δ (e,e) = 0, the proof is similar to that of
Claim 2-6 of the statement (i). We omit it here. Complete the proof of the theorem. �
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3. Application

In this section, we shall apply Theorem 2.1 to the upper triangular matrix rings.
Let S be a unital ring and Tn(S) be the ring of all n×n upper triangular matrices

over S . Then Tn(S) is called the upper triangular matrix ring. It is clear that the
upper triangular matrix ring Tn(S) can be represented as a triangular ring. Indeed, let
e = e11 and f = 1− e11 , where e11 is a standard matrix unit in Tn(S) (that is, e11

is 1 in the (1,1) th entry and 0 elsewhere). Thus, e is a nontrivial idempotent such
that f Tn(S)e = 0 and eTn(S) f is a faithful (eTn(S)e, f Tn(S) f )-bimodule. Hence, as an
application of Theorem 2.1, we get the following theorem.

THEOREM 3.1. Let Tn(S) be a upper triangular matrix ring with n > 2 and δ be
a Jordan biderivation of Tn(S) .

(i) If δ (e11,e11) �= 0 , then δ = φ + σ , where φ is an inner biderivation of Tn(S)
and σ is an extremal biderivation of Tn(S) .

(ii) If δ (e11,e11) = 0 , then δ is an inner biderivation of Tn(S) .
In other words, every Jordan biderivation of Tn(S) is a biderivation.

Proof. Note that Qml(Tn(S))= Mn(Qml(S)) [3]. Then we have C(Tn(S))=C(S)In .
It follows that

C( fQml(Tn(S)) f , f Tn(S) f ) = C( fMn(Qml(S)) f , f Tn(S) f )
= C(Qml(Tn−1(S)),Tn−1(S))
= C(Tn−1(S))
= C(S) f .

Moreover, it is easy to check that

f Tn(S)C(Tn(S)) f = f Tn(S)C(S) f = f Tn(SC(S)) f .

which means f Tn(S)C(Tn(S)) f does not contain nonzero central ideals, since n > 2.
So the conditions of Theorem 2.1 are satisfied, and hence, by Theorem 2.1, we obtain
the results of Theorem 3.1. �
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