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DAVIS-WIELANDT-BEREZIN RADIUS
INEQUALITIES VIA DRAGOMIR INEQUALITIES

RAMIZ TAPDIGOGLU, MEHMET GURDAL*, NAJLA ALTWAIJRY AND NUR SARI

(Communicated by F. Kittaneh)

Abstract. We consider operator A on the reproducing Kernel Hilbert space J# = . (Q) over
some set Q with the reproducing kernel %) (z) = J¢ (z,A) and define Davis-Wielandt-Berezin
radius 7 (A) by the formula

n(A):= sup{ )X(A))z LA A e Q} 7

where A is the Berezin symbol of A defined by A (1) := <Ajfz ,JE/; > , A € Q, where Z/; =

FArs Jfﬁ is the normalized reproducing kernel of 7% . We prove several inequalities for this new

quantity 1 (A) involving known Dragomir inequalities. Some other Berezin number inequalities
are also proved.

1. Introduction

Let 7 = 2 (Q) be a reproducing kernel Hilbert space on some set Q with the
reproducing kernel 7 € 57, i.e., f (L) = (f, ;) forall L € Q. Let B () denote
the algebra of all bounded linear operators on % with an inner product {-,-) and the
corresponding norm ||-||. For an operator A € # (7€), its Berezin symbol (Berezin

[3, 4]) A is defined by A (1) := <AJ{;,JZ>, A €Q, whete J = H— is the
normalized reproducing kernel of .77”. The Berezin number of operator A is defined by
(see Karaev [19, 20])

ber (A) := sup X(?L)‘
reQ

The Berezin set and the Berezin norm of operator are defined, respectively, by

Ber (A) := Range (K) and [|Al|ge, := sup HAJ/{;H
AeQ

It is clear that Ber(A) C W (A) (numerical range),

ber(A) < w(A) (numerical radius) and ber (A) < ||A]|ge; -
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Motivated by theoretical study and applications, there have been many generalizations
of the numerical radius; see [5, 17, 23, 25, 33, 34] One of these generalizations is the
Davis-Wielandt radius of A € % (%) defined by

dw(A) := sup{ [(Ax, x)|* + ||Ax|[* : x € # and ||x|| = 1};
see [6, 26, 34].

DEFINITION 1. For any A € #(.5¢), we define its Davis-Wielandt-Berezin ra-
dius by the formula

4
= sup \/’A +HA%H .
AeQ
It is obvious that 11 (A) < dw(A). For A,B € () one has
(i) n(A) >0 and n(A) =0 if and only if A = 0;

> Jaln (4) if |af > 1
(i) n(xA)< =la|n(A) if |a| =1forall ¢ € C

< lofn (A) if [af <1.

i 1(4+8) < \[2(n(4) +0(B)+4(n(4)+ 1 (8)7):
and therefore 71 (-) cannot be a norm on % (). The following property of 7 (+) is
immediate:

max {ber (4), Al | <1 (4) < y/ber® (4) + Al (4 € 2 ().

The purpose of this paper is to establish some upper bounds for the Davis-Wielandt-
Berezin radius of reproducing kernel Hilbert space operators. For this aim, we use
some known Dragomir inequalities for vectors in inner product spaces (see Dragomir
[7, 9, 10]). We also prove some new Berezin number inequalities for the quadratic
weighted operator mean of (A1,A,) where A; and A, have similar positive parts.

2. Prerequisites

In the present section, we collect some auxiliary lemmas including Kittaneh and
Manasrah [21] inequality and Dragomir [9, 10] inequalities.

LEMMA 1. ([18]) Let a,b >0, 0 <m,n< 1 and p,q > 1 such that m+n=1,
%-Fl:l. Then

(i) d"b" < ma+nb < (ma’—l—nb’)%forr)l;

1
(ii) ab < fé(%r—i—%ﬂ)rforr}l
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Let 71 () be the class of all bounded linear invertible operators on 7. In
2016, Dragomir [9] first introduced the concept of quadratic weighted operator geo-
metric mean of operators. The same notion is recalled next. For A} € ! () and
Ay € B (H), the quadratic weighted operator geometric mean of (Aj,A;) is defined
by (see [24])

2
AKN@:“&%fVAJiMV}O (1)

Using this mean, Dragomir obtained some fundamental inequalities for some class
of operators. In 2018, he [10] again continued the same study and presented some
Holder type inequalities for the quadratic weighted operator geometric mean for the
operators on the Hilbert space 77 .

By using the definition of modulus, equation (1) can also be written as following:

* —12 ) — -1\Y
1m®¢b:AJMAQMM1=M<mglA%yhv Al 2)

For Ay € 1 (AH), Ay € B(H) and v = %, equation (2) reduces to the following
form (see [24]):

2

Nl—

1 IR -~
mszzhhAfPAl :Aﬂ@m*mlzﬁ<mﬁlAﬁyhv A 3

LEMMA 3. ([10]) Let A; € B~ () and Ay € B (). Then for p,q > 1 with
1,1 _
Liloy

<\A1\2x7x>

<=
Q=

(A1®1p0x,x) < (4o %)

forany x € J€. In particular,

(A1®A2x,%) < (AP wx) (JAr )
forany x € .

Dragomir proved the following inequalities.
LEMMA 4. ([34]) Forany a,b,c € S with ||c| =1

[{a,¢) (e,b)] < 5 (I{@,b)] + llal [|b]]) -

M| —



1448 R. TAPDIGOGLU, M. GURDAL, N. ALTWAIIRY AND N. SARI

LEMMA 5. ([34]) Let A€ B (). Then

w2 w
D <28 D) foa ) T an P

Sforany x € H with ||x|]| < 1.

Recall that (see [28, 27]) the Crawford-Berezin number of A € 2 () is defined
by
c(a):= inf [A(2)|.
c(A):= inf |A(4)

The following lemma, due to Dragomir [8], is an extension of the Cauchy-Schwarz
inequality for vectors in inner product spaces.

LEMMA 6. ([34]) Forany a,b,c € 7

1

[@,b) P+ (@, ) < llalP (10,5)F +21(b,e) P+ lie,e) )

Another extensions of the Cauchy-Schwarz inequality for vectors in inner product
space are the following results of Dragomir [&].

LEMMA 7. ([8]) Forany a,b,c € 7, we have

[ab) +1(a,) P < llall® (max { 5], llel* } + V21(b,c)1)

3. The results

3.1. Dawis-Wielandt-Berezin radius inequalities

In this section, we apply lemmas in previous section, including Dragomir’s in-
equalities, to prove new inequalities for Davis-Wielandt-Berezin radius of operators on
A = A (Q). The similar results for Davis-Wielandt radius of operators are contained
in [34].

Let ran(A) and ker(A) denote the range space and the null space of an opera-
tor A € B (), respectively. An operator A € A () is called a partial isometry
if A |(ker( ) is an isometry. If A € £ (), then there is a unique polar decom-

position of A given by A = V4|A|, where V4 is a partial isometry, |A| := (A*A)%,
ker(V4) =ker(|A|) =ker(A) and ker(V;) =ker(A*), where A* represents the adjoint
of the operator A. Ko [22] first discussed about the operators having similar positive
parts. The operators A and B in % () is said to have similar positive parts if there
exists an unitary operator U € % (.7) such that

U|B|=|A|U.
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THEOREM 1. Let A € B (). Then

n* (4) <ver® (A = A) +2||A|[5 ber ().

Proof. Forany A € Q, we have
(o7 e
(0T - (7 )47 ) 057,70
() 7 (a5
<ber? (A = 4) +2 A3, ber (4),

hence, taking supremum over A € Q gives

n* () <ber? (JAP = A) +2|JA |5 ber (4),

as desired. [

The next result is the following.

THEOREM 2. Let A € B (). Then

1 1 —~ 1\ 2
< gper (7 42+ W) - 3 ot (0] - |- A])
n?(4) < gber (AP +214]* +14) = 5 in (|47 )

Proof. Let A € Q be arbitrary. By applying Cauchy-Schwarz inequality, we have
~ 2 4
Aw[ + a7

_ ‘X(A)‘2+ (ﬂ (JL))2

—

1

—~

e 2 2?2 2%
<P @)W +waP aeal
1 ({70 T ) T 1\ 2 T
-1 <|A|2<A>+ P - (WPw - WP w?) ) AP @)
Lrn 42 1 7 12
=5 (P 2mr+acf) W“(HA%H—\ )

1
< Eber(|A|2+2\A|“+|A*|2) inf (HA%H - HA %H)

% —

2 reQ
Thus

~ 2 41 5 FERPN — « N2

‘A(A)) +HA%@H < sber (JAP + 204 +A4") - 3 inf (HA,%/;LH—HA %H) .
2 2 2.eQ

Now the result follows by taking the supremum over all A in Q. [

To give our next result, we need Lemma 4 and the following lemma
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LEMMA 8. Let A € B (). Then:
(i) ’A“(A)jk%j?ﬁ( )|+ 4 (AP +14°PY(2) forall 2 € Q;
(ii) ber? (A) < Lber (42) + 1 (ber<|A| ) +ber(|A*\2)).

Proof. Let A € Q. Applying Lemma 4 for a :Ae%//;, c= z%//; and b :A*j{},
we have that

AT (7 )

<3 ([ e)|+ [a ] |

1 2
<z [(adar )|+ (HA%H )
(by the arithmetic-geometric mean in equality)

L) ¢ () )

This proves (i). The proof of (ii) is immediate from (i) by taking the supremum over all
A € Q. The lemma is proved. [

We now prove the following result.
THEOREM 3. Let A € B (). Then
2 1 2 2 2 2 2 4 an2
n*(4) < 7 |ber (\A\ +A> + ber (|A| —A) +ber(|A| +2]A[* 4147 ) .
Proof. Let A € Q be arbitrary. By the parallelogram identity for complex numbers
we have :
~ 2 |4
A + e
= [(a 7 AN + s

(w2 )

(e a) 7o)+ | (7 =) 225 )

1
2
171 .

E[EK A]>+A Jf//lw%/z>‘



DAVIS-WIELANDT-BEREZIN RADIUS INEQUALITIES 1451
+ 7 ( (AP +a] +]laP+a’ ) 22
1 2 1 2
+§‘<(|A|2—A> %,%>‘+Z<<’A2—A‘ +[1aP - a*

(by Lemma 8)
1 5 2
+3|((aP-a) 77

1| ((wPea) 7.7)

((1AP+21A* +14*P) 75, 4 )

ﬁ ( AR+ A )+ber<(|A|2—A>2>+ber(A2+2|A4+A*2>].

)55

Thus
‘K(M‘ZHA%{H“
< % {ber<<A2 +A>2) +ber<(|A|2_A>2> +ber(|A|2+2A|4+|A*2>} '

for all A € Q, which implies by taking the supremum over A € Q the desired inequal-
ity, O

Our next result gives another upper bound for the Davis-Wielandt-Berezin radius
of reproducing kernel Hilbert space operators.

THEOREM 4. Let A € B (). Then:
(i) ber® (4) < bber (42) + Pber (AP +|4°[);
(ii)

2 1 1 2, p%2
n*(A) < 2be:r(A )+4ber<\A| + A% )

+4ber® (A) <2ber2 (A) — & (A) 4 2ber(A) \/ber? (A) — &2 (A)) @

Proof. Let A € Q be an arbitrary point.
() It follows from Lemma 8 (i) that

A =[(asi. 7))

<3 [(27 )+ 3 (WP +14P) 75,75 )

A
Z A2 _ 2 %2
— 5 w]+ g (PP ). ®
Hence
~ 2 1 ~ 2 1 7,
sup [A(2)[ < 5 sup |42 (A)[ + 5 sup (1A + 142 (2) )
reQ ZJLEQ 47LEQ
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that is
1 1
ber? (A) < Sber (A%) + Zber <\A\2 + \A*|2> ,

which proves (i).
(i) By Lemma 5 we get

o <100, 0 LT )
<4 (ber2 (A)+ber(A) y/ber? (A) — &2 (A))
< 4ber? (A) <2ber2 (A) — & (A) +2ber(A) \/ber? (A) — 2 (A)) ,
and hence
|a7z H4 < dber® (A) <2ber2 (A)— & (A) + 2ber(A) 1 /ber? (4) — & (A)) .
By (5) and (6) we obtain that
(05272 + o]
< %ber (42) + %ber (|A|2 + \A*|2>

+4ber? (A) <2ber2 (A) — % (A) +2ber(A) y/ber? (A) — &2 (A)) ,

hence, on taking the supremum in this inequality over A € Q, we obtain the desired
inequality (4) for the Davis-Wielandt-Berezin radius. The theorem is proved. [

In the sequel, we need the following two lemmas.

LEMMA 9. Forany a,3 € C

sup  [So+EBP = o>+ |BI
ICP+IEP<T

Proof. The proof is trivial. [J

LEMMA 10. Let A,B € B () and §,& € C. Then:
(i) 16A+EBllge, < (ISP + 16 ) ber (4] + |BP)
(ii) [ GA+ B> < (1¢°+IE1) la*A+ BB .
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Proof. (i) Due to the Cauchy-Bunyakovsky-Schwarz inequality, for any A € Q,
we have

Jicas 5177 < (¢ +1ef) (o] + o))
= (16P+1€P) ((A"A+B'B) 25, 75 )
< (161 + €] ) ber(a°a+BB),

and so

(ca+em) 7] < (122 +1gP) ber (14P +18F)

sup
LEQ

which means that
lcavem | < (1 +1e) ber(1aP + 18F)

as desired.
(ii) See the proof of Lemma 2.10 in [34]. O

We are now in a position to prove our main result.

THEOREM 5. If A € B(H), then
)< ([P, ], +2ver (ar2))

<[ () e (04)]

Proof. Let A € Q be any point.
(i) Putting in Lemma 6 a = %, ,b =A%, and c = |A|* 4, we get

(Bl + oz )

- ([ +(Ame ) )

<&l (a7 agR) 42[(aoiaP Z) + (4P 7 ar 7))
= (4P 7. )| +| (a1 7 ) +2{ 4P ads, )|

< sup (\<|A|%,JZ>\2+ )<A|%I,JZ>)2) +2ber? (J4A)

oo, EQ° ) 6 (TN ) ()

(by Lemma 9)
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~son(om[((ent s 7)) vt ()

e (j‘;g ((c1ar+&ar) %//;‘7@)2) +2ber” (A]A)
< H|A|2 BeﬁH\AI4 Ber+2ber2<|A|2A>_

Hence,

=g (]} < o ], v ()]

LEQ

+H|A|4

Ber Ber

as desired to prove.

(ii) Recall that for any normal operator A on a Hilbert space H its norm coincides
with the numerical radius. Using this fact the inequality ber (A) < w(A) and the above
established inequality

(‘X(l)’2+HAz%//;H4>2< sup (sup
ISP HEP <1 Me

+2ber? <|A|2A>

((cmp+enr) Zam) )

we get
(ool +Jamz])

<(C A|* + & \A|4) ,%’/;j/;>’2> + 2ber? (|A|2A>

< osup (sup
ICP+EP<L MeQ

< sup w? (g AP+ & \A|4) + 2ber? (\A\zA)
IEP+EP<t

< sup HC|A|2+§|A|4H2+2ber2<|A|2A>
IP+IEP<t

< s (IEP+1ER) [ (14P) 1A+ (141) 1ar | +2ber (1a4)

[¢P+elP<1
(by Lemma 10 (ii))

- H\A\“Jr \A|8H + 2ber? <|A|2A> —w (\A|“+ |A\8) + 2ber? <\A\2A>
(since |A|* +]A[® is a normal operator).

Hence

(‘Z(A)‘2+ HA;?AH“) " [w (1A% + 1) + 2ber® (1P A) v
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forall A € Q, and consequently
4 8 2 \1V4
n(4) < [w (1Al +4]*) +2ber (JaPa) |

which proves (ii). The theorem is proved. [

Next upper bound for the Davis-Wielandt-Berezin radius of operators can be stated
as follows.

PROPOSITION 1. Let A € B (). Then

5 12
1)< |max ([T AP} vver(1afa)|

Proof. Let A € Q be any point. Choosing in Lemma 7 a = z%//; b= Az/“i//; and
¢ = |A|* A, . we have

(052 B0)| + [ (A )+ [ oa e[
= [(Fag) + |(Fiar )
<[22 + e

e A} vE| (a7 ar )

)

gmax{HAe%//;‘

< max{Anéer,

¢y 2 l(arads. 7))

< max{An%er,

2

|A|2H } +Vaber (AP 4),
Ber

and hence

sup (‘X(z)‘ﬁ HA;?AH“)W < [max{AHzBer, |A|2H;r} +\/§ber(|A|2A)} 1/2,

LEQ

as desired. [

3.2. Berezin number inequalities for quadratic weighted operator means

In this subsection, we prove some Berezin number inequalities for the quadratic
weighted operator geometric mean of (A1,A,), where A; and A, have similar positive
parts.
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THEOREM 6. Let Ay € B~ () and Ay € B(H) be two positive operators
such that Ay and A, have similar positive parts i.e., there exists an unitary operator
U: A — H suchthat |A|| =U"|A|U. Let p,q > 1 with %—l—é = 1. Then

1 2 1 2
ber (Al@l/PA2) < ; ||A2HBer + 5 HAzUHBer'
Proof. Let Ay =V |A1| and Ay =V, |A| be the polar decomposition of A; and
Aj, respectively. Since A; and A, have similar positive parts, we have

[A] =U" |A2|U
and
A1* =U" AU
According to Lemma 3, we obtain
PR —~ .\ 1/p —~ >\l
(M@t 7 ) < (1P 73, 7)) (1P A )
which is less than equal to
l = 1 —~
= (102P 0, )+ (1P Hr, 77 )
p q
by the classical inequality
a’ bl

ab< —+ —
P q

for a,b >0 and p,q > 1 with I%—l— é =1 (see, for instance, Hardy, Littlewood, Polya
[18]). This is equal to

(WP T )+ o (U P U )

as A and A, have similar positive parts. Then we have for any A € Q that

M@ A2 (1) = (Mi®) A2, 77 )

1 1 PO
<—<|A2\%m>+;<|A2\2U%,U%>

— — 1 — —
|A2m,|Azm>+5<|A2\U%,|A2|Um>

* o o 1 * 7 o
= (Ve ) A ol )+ (ViVa Al U Al U7
— PR 1 — PR
<V2 42| 2, V2 \A2|%> + p <V2 |A2|U A5,V |A2‘U‘%/QL>

“GIH"BIH"BI'—‘“GIH

1 _ _
= = (A2 lr, M 5 ) + p (AU 75,400 7, )

2 1 2
il
p q
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Taking supremum over all A € Q. we thus have

1 2 1 2
ber (Al®l/pA2) < ; ||A2HBer+ 5 HAZUHBer’
as desired. [

COROLLARY 1. Let Aj € 71 () and Ay € B (H) be two positive operators,
and let p,q > 1 with %—F%I = 1. Then

ber (A1®1/pA2) < %ber <|A2|2> + éber <|A1|2>

“min{ £ (i) (mm)ﬂ

Proof. Indeed, by Lemma 3, we have that

2

<A1©1/pA21//;»%//;>
< (ol 75,.75) " I )
< (Wl T ) + o (W 5 )
—min{%,é} <<|A2|2%,£>1/2— <|A1|2z%//;,<)2/;>1/2)2(by Lemma 2).
Then
<A1®1/pA21//;»%//;>
< (el el )+ = (10| i )
_min{%,é} <<|A2|JKZ,|A2|£>1/2—<|A1|jf;,|A1|JZ>1/2)

1, - N\ 1, - -
= (vl Al A )+ (ViVi A A A )

2

(11 X _ .\ 1)2 X - 12\ 2
—mln{—,—}<<V2V2|A2|=%/A,|A2|e%ﬁ> — (ViVilAd A Ar] ) )
P q

1 _ 1 _ -
:;<V2|A2|%7V2|A2|%>+5<Vl|A1|‘%/7t,aV1|A1|‘%/)L>

(11 — .\ 1/2 — .\ 1/2\?

—mlﬂ{?;}<<V2|A2|%,V2|A2|f%ﬁ> + (Vi A Vi A1 A7) )
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1 —~ o~ 1 —~
= <A2%,A2%> + p <A1%,A1%>
(11 12 12\ 2
—mln{l—),g}<<A2%,A2%> — (M A ) )
1 —~ —~\ 1 —~
11 12 12\ 2
cmin{ 8 (e 7). 7))
Taking supremum over all A € Q. we thus have

ber (A1®)/,A2)
ber (A3A;) + éber (A7AY)

NIy s = N2 I
cmin{ 2 e (1 77 72) - (P 7))

1 1
= —ber(\A2|2> + —ber(\A1\2>
p q

11 . 1/2 — 1/212
—min{—,—} inf <A2|2(7L)) - <A1|2(M)
P q) reQ

which completes the proof. [

2

For other results on Berezin number inequalities, see [1, 2, 11, 12, 13, 14, 16, 29,
30, 31].
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