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Abstract. In this paper, we give a description of the maximal numerical range of a hyponormal
element and a characterization of a normaloid element in a C* -algebra. We also give an explicit
formula for the maximal numerical range of a quadratic operator acting on a complex Hilbert
space. As a consequence, we determine the maximal numerical range of a rank-one operator.

1. Introduction

Let &7 be a complex C*-algebra with unit e and let <7’ be its dual space. Define
the state space of </ by

() ={fed : fle)=|f]=1}

For a € </ , the algebraic numerical range of «a is given by

V(a) ={f(a): f € 7 ()}

It is well-known that V(a) (a € /) is a convex compact set and contains the convex
hull of the spectrum & (a) of a; thatis co(c(a)) C V(a), here co stands for the convex
hull. This result follows at once from the corresponding properties of the set . (7).
See, for more details, [16]. Let w(a) denote the numerical radius of a € «; i.e.,
w(a) =sup{|A|: A € V(a)}. It is well-known that w(-) defines a norm on .27, which
is equivalent to the C*-norm ||-||. In fact, the following inequalities are well-known:

1
5 lall <wla) < lall,

forall a € o7. An element a € 7 is said to be normaloid if w(a) = ||a||. Recall that
an element a € o7 is said to be positive and we write a > 0 if it is self-adjoint and if its
spectrum contains only non-negative real numbers. Recall also that an element a € 7
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is called normal (resp. hyponormal) if a*a = aa™ (resp. a*a —aa* > 0 or equivalently,
a*a—aa* = b*b for some b € 7). Here a* is the adjoint of a. It is well-known that
hyponormal, thus also normal, elements in ./ are normaloid.

Let % be a Hilbert space over the complex field C with inner product (x,y)
and norm |[|x|| = (x,x)"/2. Denote by () the C*-algebra of all bounded linear
operators acting on ¢ . For A € 2(.¢), the numerical range of A is defined as the set

W(A) = {{Ax,x) :x€ 2, ||x]| = 1}.

It is a celebrated result due to Toeplitz-Hausdorff that W(A) is a convex set in the
complex plane and it is well-known that W(A) = V(A), where L is the closure of a
subset L of C. The numerical range of an operator in #(7¢) is closed if dim(7¢) <
oo, but it is not always closed when dim(.#") = eo. For more details about the theory of
numerical ranges, the reader is referred to [4, 5, 8, 9] and references therein.

The notion of the numerical range has been generalized in different directions.
One such direction is the maximal numerical range. It is a relatively new concept in
operator theory, having been introduced only in 1970 by Stampfli [17] and defined as
follows.

DEFINITION 1.1. For A € #(7¢), the maximal numerical range Wy(A) of A is
given by

Wo(A) = {lim(Ax,,x,) : X, € I, |Jx]| = 1, lim||Ax, || = ||A] }.

It was shown in [17] that Wy(A) is nonempty, closed, convex and contained in
the closure of the numerical range; Wo(A) C W(A). In the case of finite-dimensional
spaces, the maximal numerical range is produced by maximal vectors for A (vectors x €
2 suchthat ||x]| =1 and ||Ax|| = [|A|]). Note that the notion of the maximal numerical
range was introduced by Stampfli [17] (especially) for the purpose of calculating the
norm of the inner derivation on Z(.7). Recall that the inner derivation 84 associated
with A € B(H) is defined by

Op: B(H) — B(H), X — AX — XA.
Indeed, the author of [17] established the following. For any A € Z(.5¢)
18all = 2|4 —call
where c4 is the unique scalar ¢4 satisfying
|4 —call = inf [|A—A].
reC

The scalar cy4 is called the center of mass of A. In the same paper [17], Stampfli proved
that we always have c4 € W(A). Furthermore, if A is a hyponormal operator, the center
of mass ¢, is exactly the center of the smallest disk containing the spectrum o (A).

Recently, considerable interests have been given to the maximal numerical range,

see, for instance, [3, 6, 10, 12, 15]. For example, in [3], the authors gave the following
description of the maximal numerical range Wy(A) whenever A is hyponormal.




MAXIMAL NUMERICAL RANGE AND QUADRATIC ELEMENTS IN A C* -ALGEBRA 1479

THEOREM 1.2. ([3]) Let A € () be hyponormal. Then
Wo(A) = co(0a(A)),
where 0,(A) :={A € o(A):|A]=|A|l}.
In [6] the authors gave the following characterization of normaloid operator.

THEOREM 1.3. ([6]) Let A € B(). Then A is normaloid if and only if w(A) =
wo(A), where wy(a) :=sup{|A|: A € Wy(A)}, the maximal numerical radius of A.

In [7], the author introduced the concept of the algebraic maximal numerical range
of an element a € 7 as follows.

DEFINITION 1.4. Let a € o7. The algebraic maximal numerical range of « is the
set

Vo(a) ={f(a): f € Smax(a)},
where .%}y4¢(a)is the set of all maximal states for a defined by
Fnax(@) = {f € S(): f(a*a) = ||al*}.

In the same paper [7], the author established the following.

THEOREM 1.5. ([7]) Let a € o/ . Then Vy(a) is a non-empty convex compact
subset of V(a). Moreover, if of = () then Vo(a) = Wy(a).

Recall that a bounded linear operator A € B(J) is called quadratic if it satisfies
some non-trivial quadratic equation (A — al)(A — BI) = 0, where I is the operator
identity on ¢ and a, 8 € C. We have the following.

THEOREM 1.6. ([, 14, 18]) Let A € B(H) be a quadratic operator satisfying
(A—od)(A—BI)=0 for some scalars o« and 3. Then

(a) A is unitarily equivalent to an operator of the form

olz

ah@BIz@[O [37}3]0’1‘%@‘%@(%@%)’

where 4,56 and 4 are complex Hilbert spaces with T being positive semi-
2

deﬁnite on %
ol3 1 o ”] ” 1 u u v
|: : ‘[ 3:| | |:: L \/§ ,

(b)
Al =
where u=|a* + B+ |T|* and v=4|a|?|B|>.
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PROPOSITION 1.7. ([1]) Let A € B() be a quadratic operator satisfying (A —
ol)(A— BI) =0 for some scalars o and . Then, the center of mass of A is

_o+B

CA )

THEOREM 1.8. ([10]) Let A = [g g] where o, 3,y € C. Then

i { BTN,

Wo(A) = [o, B], otherwise.

In Section 2, we establish some results regarding hyponormal elements and nor-
maloid elements in a complex C*-algebra that generalize Theorem 1.2 and Theorem
1.3. We point out a gap in the proof of [7, Proposition 5.2] and give a correct proof
of it. In Section 3, we provide an explicit formula for the maximal numerical range
of a quadratic operator using the fact that a quadratic operator is unitarily equivalent
to a direct sum of operators relatively well-known. As a corollary, we determine the
maximal numerical range and the center of mass of a rank-one operator.

2. The algebraic maximal numerical range of a hyponormal element in a
C* -algebra

We give a description of the algebraic maximal numerical range Vo(a) when
a € &/ is hyponormal which will be a generalization of Theorem 1.2. We also give
a generalization of Theorem 1.3. For this purpose, we need the following results. The
first one is known as the Gelfand-Naimark theorem.

THEOREM 2.1. ([2]) Let o/ be a C*-algebra with unit e. Then, there exist a
complex Hilbert space 7 and an isometric *-morphism T from < onto a closed
self-adjoint subalgebra B of B(H).

In the sequel, we shall denote T (a) by T, for all a € &/. Therefore, we have
T2l = llall, Tup = TuTp, T, =1 (where I is the operator identity on .7#’) and T+ =
(T,)* for all a,b € o/ . Moreover, a € «/ is invertible if and only if 7, is invertible.
In that case, (T,)"' =T . In particular, 6(a) = 6(T,). As a consequence of these
properties, we have the %ollowing. Let a € o7, then there is a unique scalar ¢, (also
called the center of mass of a) such that

lla—cql| = inf ||la—A||.
reC
Moreover, ¢, = cT, .

LEMMA 2.2. Let a € o/ . Then the following hold
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1. V(a)=V(T,);
2. Vo(a) = Vo(To).

Proof. We give a proof of the second assertion, the proof of the first one is similar.
Let A € Vo(a). Then, there is f € .#u4r(a) such that f(a) = A. Define g on B by
g(Ty) = f(x) forall x € &7 . Itis clear that g € .7(B). By the Hahn-Banach theorem,
we may extend g to § € .7 (A(H)). Moreover,

T, T,) =8(T,T,) = g(Twra) = fa*a) = HaHz = ||TaH2~

Thus, § € Spax(Ty) and since g(T,) = g(T,) = f(a) = A, then A € Vy(T,). Conse-
quently, Vo(a) C Vo(T,). A similar argument gives the other inclusion. We then obtain
the desired result. [

PROPOSITION 2.3. Let a € & be hyponormal. Then

Vola) = CO(G,, (a)) ,

where o,(a) :={A € o(a):|A| =|al|}.

Proof. Let a € & be hyponormal. It is easy to show that the operator T, is hy-
ponormal and ©,(7,) = 6,(a). Using Lemma 2.2 and Theorem 1.2, we get

Vo(a) = Vo(T,) = co(0x(T,)) = co(ou(a))

as required. [J

REMARK 2.4. Let a € &/ and define the maximal numerical radius of a as fol-
lows

wo(a) :=sup{|A]|: A € Vo(a)}.

From Lemma 2.2, we derive that w(a) = w(T,) and wg(a) = wo(T,). So, since ||a|| =
|IT||, it follows that a is normaloid if and only if 7, is normaloid. According to
Theorem 1.3, we have the following.

PROPOSITION 2.5. Let a € & . Then a is normaloid if and only if w(a) = wo(a).

In the proof of [7, Proposition 5.2], Fong used the following statement. If a €
o, then Fpar(a) = Fmax(@®). But, this statement is not true in general. Indeed,
let 7 = ¢, be the complex Hilbert space of square summable sequences and let S
be the right shift operator on % defined by S(x1,x2,...) = (0,x1,x2,...). We show
that L (S) # Fmax(S*). It is known that ||S|| =1 and $*S =1I. Then, for any f €
S(B(A)) wehave f(S*S)=f(I)=1=|S|]*. Itresults that .F e (S) = .7 (B(H)).
But, (§5*(1,0,0,...),(1,0,0,...)) =0, so 0 € V(55*) and hence 0 = g(SS*) for some
g€ A (BH)). Since S = 1. g ¢ FpunlS").
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PROPOSITION 2.6. [7, Proposition 5.2] Let a € 7. Then
Vo(a") = Vo(a)",
where for a subset A of C, A* :={A: A € A}.

We now give a correct proof of this proposition.

Proof. Let a € &/ . According to [11, Proposition 2], Vo(T,") = Vo(T,)* and by
Lemma 2.2, V()(a*) = V()(Tu*) = V()(Ta)* = V()(a)*. O

3. Maximal numerical range of a quadratic operator

In this section, we calculate the maximal numerical range of a quadratic operator
on a complex Hilbert space. Let A € () be a quadratic operator satisfying the fol-
lowing quadratic equation (A — oI )(A — BI) =0, where o, 8 € C. From Theorem 1.6,
there exist complex Hilbert spaces 71,.7% and .73 such that A is unitarily equivalent
to an operator of the form

ols

T
ol ®BL® [ 0 ﬁ13] on JA ¢ I B (D ),

with T being positive semi-definite on 73. According to [11, Lemma 2], Wy(A) =

aly T |l T
Wo ( [ 0 B 13] ) . Therefore, we can assume that A = [ 0 BI

with T is positive. The following theorem is a generalization of Theorem 1.8.

] EB(H ©H),

ol T

THEOREM 3.1. Let A = [0 BI

} € B(H © ). Then

Wo(A) = { |A|*(e+ B) — eB(@+B)
2041~ e - B2~ T

Wo(A) = [a, B], otherwise.

}, if T #0or|a| #|Bl;

Proof. We show that Wy(A) = Wy [g ”2”} and we then conclude by The-

orem 1.8. If T = 0, the result is clear since A is normal and so we apply Theorem

1.2. If T # 0 and o = 0 then by Theorem 1.8, W()( [g ”[731} ) ={B}. We also

have Wy(A) = {B}. Indeed, let L € Wy(A), then there is x, = y, Bz, € H & H with
[ ynl|* + ||| = 1 such that lim{Ax,,x,) = A and lim||Ax,||* = ||A|]> = ||T|]* + |B|*.

Since [|Ax,||> = ||Tza||> + |B/?||zx|?, then lim||z,|| = 1 and lim|[y,| = 0. We derive
n n
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that lim(Ax,,x,) = lim ((Tzs,yn) + B|2x|*) = B. Therefore, we may assume that T # 0
n n

and o #£0.
We show that Wy(A) C Wy {(())‘ g] . Let A € Wy(A), then there exists a

unit vector sequence {x,} in ¢ @ 5 such that lim||Ax,| = ||A|| and lim(Ax,,x,) =
n n
A. We decompose x, as 04,y ® Bazn Where |04 |* 4 [Ba|> = 1 and |[yu|| = [|za] = 1.
Note that we can assume that ooy, 3, > 0. Therefore, we have
1Axa* = |0t |ou|® + 20006 BuRe ((Tzn, yu)) + |Bul* | Tzal* + | BI | Bal®
<o on]? + 2006 B, I T+ BT + 1B|Bal?

s G

. 2
|
=|lA|*  (by Theorem 1.6.(b)).
Since 1i}£11||Axn|| =||A||, we derive that

lim
n

A

A simple computation shows that

e
o B ||
<Axn7xn> = O(|O(n‘2 +ﬁna_n<TZn7yn> +B‘ﬁn‘2

<[‘5‘ ”Z%”} [ﬂ ’ {gb = ofoul” + B Tl + BIB[*.

Note that the sequence {f,0,} is bounded, so that we may assume, by passing to
a subsequence if necessary, it is convergent. If limf,0, = 0, then lim(Ax,,x,) =
n n

1i£n<[g‘ ”g”} [gﬂ , [g:b s0 A€ W0< [g‘ ”g”] ) If 1im B, # 0, since

lim(x,,E<Re(<Tzn,yn>) - HTH) =0, then limRe((Tzy,y,)) = ||T||. This implies
n n

and

lim(T'z,,y,) = ||T|| and, as above, we again have A € Wo< [g ”g”} ) . Conse-

quently, Wy(A) C W()( [8‘ ||[7;} ) )
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We now show that W0< [g ”g”} ) C Wo(A). Let A € Wo( [‘g ||Z;||] ) 7

then there exist a,b € C such that |a|> + |p|> =1,

o T} al | _ | {e Tl
o B ||p 0o B
" i1 [a] |
o T|| |a| |a
o B -
Let z, be unit vectors in 2 such that lim||Tz,|| = ||T||. Set y, := Tz,/||Tz| and

Xp 1= ay, b bz,. We have

1Axa||* =|ex|?|al® +2Re (0tab) [ Tzul| + bI%| Tz > + |BI?[6]?

and
i o] |
o a _
[0 B } M | =|a|*|af* +2Re (cwab) | T+ [b||T|* + BI*[b[*.
Hence
i Al e T [al || _ | T NTIT ||
On the other hand,
(Axp, Xn) = Ot‘a|2+bﬁ||TZn|| +ﬁ‘b|2
and

<[3‘ y ” M ’ [b] > — ola +ba| T + BIbf2

s =5 L)

It follows that A € Wy(A). Thus, W0< [‘(’)‘ IIZ;II} ) C Wo(A). In summary, Wo(A) —

‘We derive that

W()( [g ”[731} ) . This completes the proof. [

REMARK 3.2. An element a € <7 is called quadratic if there exist two scalars
o, 3 such that (a — ce)(a— Pe) = 0. It is clear that a € <7 is quadratic if and only if
T, is quadratic. Then, from Lemma 2.2, Proposition 1.7 and Theorem 3.1, we have the
following.
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COROLLARY 3.3. Let a € o/ be a quadratic operator satisfying (a — oe)(a —
Be) =0 for some scalars o and B. The algebraic maximal numerical range of a is
either a point or the line segment o, ] connecting o and . Moreover, the center of

. o+p

mass of a is ¢, = —

As a consequence, we give a result concerning rank-one operators. Every rank-
one operator is quadratic. Indeed, there exist f € %" and u € Z(T) (the range of T)
such that T(x) = f(x)u for all x € . Then T?(x) — f(u)T(x) =0 for all x € 7.
That is 7% — f(u)T = 0. Hence, T is quadratic (¢ =0 and B = f(u)). Moreover,
by the Riesz representation theorem, there exists v € . such that f(-) = (-,v). Then
T =u®v. According to Theorem 3.1 and Proposition 1.7, we have the following result
concerning the maximal numerical range and the center of mass of a rank-one operator
on a complex Hilbert space.

PROPOSITION 3.4. Let T € HB(H) be a rank-one operator. Then Wo(T) =

{{u,v)} and cr = <u,2v> , where u,v € A are suchthat T =u®v.

Note that we can obtain the previous result by observing that 7" is unitarily equiv-

2
alent to [(ugz) H‘E)” } @0 and using [1 1, Lemma 2] and Theorem 1.8.

REMARK 3.5. Note that for stating Theorem 3.1 we used [11, Lemma 2] which
asserts the following result. Let Ay € Z(54]) and A, € B(H#) where ] and 54
are complex Hilbert spaces. For A unitarily equivalent to A| ®A,,

Wo(A)=co( |J Wo(A))).
[[4;]|=lal

This result can be generalized by induction to the finite direct sum case. But, it is not
true in the infinite direct sum case in general. Indeed, let {B;} for k =1,2,..., be the
operators on the complex Hilbert space . = C? represented by

1 0

B, = 1
0 —1+-
ay

k=1,2,....

It is known that UG (By) C G(@kBk) That is, U{ 1+ 1} C G(@kBk) It results

that {—1,1} C G(EBkBk) and since ||@;By|| —1 then { 1,1} C Gn(EBkBk) From
[15, Lemma 1], o, ( @k Bi) € Wo(iBy). We derlve that {—1,1} C Wo(xBx). But,

Wo(Br) ={1},for k=1,2,..., then UWO(Bk) = {1}. Consequently, co(UWo(Bk)> G
k

k
Wo(®xBy) . However, we have the following.
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PROPOSITION 3.6. Let {.7,} be a collection of complex Hilbert spaces, let {T,}
be a collection of hyponormal operators with T, € B(.7;,). Assume that sup ||T,|| < oo
n

and consider the direct sum T = &,T, € @( P ,%”,,) . Then
Wo(T) = co(UG(Tk)OCT>,
k
where Cr:={A :|A|=||T||}.

Proof. Since {T,} is a collection of hyponormal operators, then T is hyponormal.
By virtue of Theorem 1.2, Wo(T) = co(0,(T)). According to [13, Proposition 2.F],

we have o(T) = UO'(Tk) and the result follows. [
k
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