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EVERY REAL SYMPLECTIC MATRIX IS A PRODUCT OF

COMMUTATORS OF REAL SYMPLECTIC INVOLUTIONS

XIN HOU

(Communicated by P. Šemrl)

Abstract. Denote by I ( In ) the (n×n ) identity matrix. A matrix A is symplectic if ATJA = J ,

where J =
[

0 In
−In 0

]
. A symplectic matrix A is a commutator of symplectic involutions if A =

XYX−1Y−1 , where X and Y are symplectic and X2 = Y 2 = I . Let R be the real number field.
Denote by trA the trace of A , by A⊕B the direct sum of A and B . In this article, it is proved that
every 4×4 real symplectic matrix except the matrices similar to −I2⊕B for −I2 �= B∈ Sp(2,R)
and trB �−2 , can be decomposed into a product of at most two commutators of real symplectic
involutions, and the exceptional real symplectic matrices are products of three commutators of
real symplectic involutions. Using this result, it is shown that every real symplectic matrix of size
greater than two is a product of a finite number of commutators of real symplectic involutions.

1. Introduction

An involution in a matrix group is an element A satisfying A2 = I . Representations
of matrices as products of involutions and commutators of involutions are interesting
topics and have been studied by many scholars (see e.g. [1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15]). Denote by Sp(2n,F) the group consisting of all the 2n×2n symplectic matrices
over a field F . A commutator of symplectic involutions is a product of two involutions
(an involution and its conjugate). In [1], Awa and de la Cruz proved that every 4× 4
real symplectic matrix is a product of four real symplectic involutions. In this article,
we consider the problem of decomposing real symplectic matrices into products of
commutators of real symplectic involutions. We wish to determine whether a 4×4 real
symplectic matrix is a product of two commutators of symplectic involutions.

Denote by ⊕ the matrix direct sum. Assume that

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
,

where Ai j ∈ R
m×m and Bi j ∈ R

n×n for i, j ∈ {1,2} . The expanding sum of A and B is
defined as

A�B =
[

A11⊕B11 A12⊕B12

A21⊕B21 A22⊕B22

]
.

One checks that A�B is permutation similar to A⊕B and (A�B)(C �D) = (AC)�
(BD) . The main results of this paper are the following theorems.
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THEOREM 1.1. Every 4×4 real symplectic matrix except the matrices similar to
−I2 �B for −I2 �= B ∈ Sp(2,R) and trB � −2 , is a product of at most two commuta-
tors of real symplectic involutions. The exceptional 4×4 real symplectic matrices are
products of three commutators of real symplectic involutions.

THEOREM 1.2. Every 2n×2n real symplectic matrix is a product of a finite num-
ber of commutators of real symplectic involutions.

The proofs of these two theorems will be given at the end of section 3. We will
give some preliminaries in section 2 first.

2. Preliminaries

To prove our main theorems we need the following remarks and lemmas.

REMARK 2.1. Assume that A =
[
A1 A2

A3 A4

]
, where Ai ∈ R

n×n for i ∈ {1,2,3,4} .

Then A is symplectic if and only if

A1A
T
2 ,A3A

T
4 are symmetric, and A1A

T
4 −A2A

T
3 = In.

Then the inverse matrix of A is

A−1 =
[

AT
4 −AT

2
−AT

3 AT
1

]
.

REMARK 2.2. A�B is symplectic if and only if A and B are symplectic.

REMARK 2.3. Denote by C S I (m) the set of all products of m commutators of
real symplectic involutions.

(a) CS I (1) ⊂ CS I (2) ⊂ CS I (3) ⊂ ·· · .
(b) Each element of the sets CS I (m) is closed under expanding summation,

i.e., if A ∈ C S I (m) , B ∈ CS I (m) , then A�B ∈ CS I (m) .
(c) Each element of the sets CS I (m) is invariant under real symplectic simi-

larity, i.e., if A ∈ CS I (m) and P is a real symplectic matrix of the same size as A ,
then P−1AP ∈ CS I (m) .

(d) A∈CS I (m) if and only if A−1 ∈C S I (m) , if and only if AT ∈CS I (m) .

The following lemma is a direct consequence of the canonical form of [6] Theorem
1, see also [1, 11].

LEMMA 2.4. Each 4× 4 real symplectic matrix is symplectically similar to one
of the following matrices:

(1) P1 =

⎡
⎢⎢⎣

λ−1 −λ−2 0 0
0 λ−1 0 0
0 0 λ 0
0 0 1 λ

⎤
⎥⎥⎦ , where λ ∈ R\ {0} .
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(2) P2(α,μ) =

⎡
⎢⎢⎣

μ −1 0 0
0 μ αμ α
0 0 μ 0
0 0 1 μ

⎤
⎥⎥⎦ , where α ∈ {−1,0,1} , μ ∈ {−1,1} .

(3) P3 =

⎡
⎢⎢⎣

a b 0 0
−b a 0 0
0 0 a/(a2 +b2) b/(a2 +b2)
0 0 −b/(a2 +b2) a/(a2 +b2)

⎤
⎥⎥⎦ , where a,b ∈ R such that a2 +b2 �= 1 .

(4) P4 =

⎡
⎢⎢⎣

cosθ sinθ 0 0
−sinθ cosθ α −α cotθ

0 0 cosθ sinθ
0 0 −sinθ cosθ

⎤
⎥⎥⎦ , where θ ∈ (0,2π)\{π} and α ∈{−1,0,1} .

(5) P5 = A�B for some 2×2 real symplectic matrices A and B.

The following lemma is a direct consequence of [1] Theorem 2.

LEMMA 2.5. Let A be a real symplectic matrix. The following are equivalent.

(1) A is a commutator of real symplectic involutions.

(2) there exists a real symplectic matrix B such that B2 = A and B is a product of two
real symplectic involution.

(3) there exists a real symplectic matrix B such that B2 = A and B is similar to B−1

via a real symplectic involution.

LEMMA 2.6. ([2], Theorem 8) A symplectic matrix A is a product of two sym-
plectic involutions if and only if each number ηk(A,λ ) of k× k Jordan blocks of A
corresponding to an eigenvalue λ is even.

LEMMA 2.7. ([8], Lemma 2.5) A symplectic matrix A is a commutator of com-
plex symplectic involutions if and only if each number ηk(A,λ ) (λ �= −1) of k×k Jor-
dan blocks of A corresponding to an eigenvalue λ is even, and each number ηk(A,−1)
is divisible by 4 .

For a matrix A ∈ R
n×n , by σ(A) we denote the spectrum of A .

LEMMA 2.8. ([1], Lemma 6) Let A,B ∈R
n×n and suppose that M =

[
A B
0 A−T

]
is

symplectic. If σ(A)∩σ(A−1) = /0 , then M is symplectically similar to A⊕A−T .

LEMMA 2.9. ([1], Lemma 5) Let A be a 2×2 nonscalar real symplectic matrix.

(1) If A is not a diagonal matrix, then A is real symplectically similar to LA,μ =[
trA μ
−μ 0

]
, for some μ ∈ {1,−1} .
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(2) If |trA| > 2 , then A is real symplectically similar to both LA,1 and LA,−1 . In
particular, A is real symplectically similar to diag(λ ,λ−1) .

LEMMA 2.10. Let A be a 2× 2 nonscalar real symplectic matrix. If trA = −2 ,

then A is real symplectically similar to

[−1 μ
0 −1

]
, for some μ ∈ {1,−1} .

Proof. Since A is nonscalar and trA = −2, the matrix A must be not a diagonal

matrix. By Lemma 2.9(1), A is real symplectically similar to LA,μ =
[−2 μ
−μ 0

]
, for some

μ ∈ {1,−1} . Let P =
[

μ −1
1 0

]
, which is symplectic. One checks that P−1LA,μP =[−1 μ

0 −1

]
, as desired. �

LEMMA 2.11. Let A = [ai j]2×2 ∈ Sp(2,R) . If |trA|< 2 , then one of the following
statements holds.

(1) A is real symplectically similar to

[
trA 1
−1 0

]
for a12 > 0 .

(2) A is real symplectically similar to

[
trA −1
1 0

]
for a12 < 0 .

Proof. Since |trA| < 2 and the determinant of A is 1 , a12 must be a nonzero real
number. Let

P =

[
a11
√|a12|/a−1

12

√|a12|
−√|a12|−1

0

]
,

which is symplectic. If a12 > 0, then PAP−1 =
[
trA 1
−1 0

]
. While if a12 < 0, then

PAP−1 =
[
trA −1
1 0

]
.

Now we prove that

[
trA 1
−1 0

]
is not real symplectically similar to

[
trA −1
1 0

]
for

|trA| < 2. If the two matrices are real symplectically similar, then there exists a real
symplectic matrix

B =
[
b11 b12

b21 b22

]
satisfying

[
trA 1
−1 0

]
B = B

[
trA −1
1 0

]
.

Then we get b12 = b21 and −b11 − b22 = b12trA . Thus (b12trA)2 = (−b11 − b22)2 �
4b11b22 . Since the determinant of B is 1 and b12 = b21 , we obtain b11b22 = 1 +
b2

12 . So (b12trA)2 � 4b11b22 = 4 + 4b2
12 . Recall that |trA| < 2 we get 4 + 4b2

12 �

(b12trA)2 � 4b2
12 , a contradiction. Thus

[
trA 1
−1 0

]
is not real symplectically similar to[

trA −1
1 0

]
. �
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3. Proof of the main result

LEMMA 3.1. Let A =
[

cosθ sinθ
−sinθ cosθ

]
∈ Sp(2,R) for θ ∈ (0,2π) \ {π} . Then

A�A is not a commutator of real symplectic involutions.

Proof. Since a commutator of real symplectic involutions is a product of two real
symplectic involutions, it suffices to prove that A�A is not a product of two real sym-
plectic involutions. By [1] Theorem 2, there must exist a real symplectic matrix P such
that P−1(A�A)P = (A�A)−1 . Write

P =
[
P1 P2

P3 P4

]

where each Pi is a 2×2 real matrix for i ∈ {1,2,3,4} . Then from (A�A)P = P(A�
A)−1 we get P2 = P3 and P1 = −P4 . From Remark 2.1 we know that P1PT

4 −P2PT
3 =

In = −P4PT
4 −P3PT

3 . Since P3 and P4 are real, we get a contradiction. Thus A�A is
neither a product of two real symplectic involutions nor a commutator of real symplectic
involutions. �

LEMMA 3.2. Let 0 < λ ∈ R , θ ∈ [0,2π) , a ∈ R \ {0} , b,c ∈ R . The following
symplectic matrices are commutators of real symplectic involutions.

(1) H1 =

⎡
⎢⎢⎣

λ−1 0 0 0
0 λ−1 0 0
0 0 λ 0
0 0 0 λ

⎤
⎥⎥⎦ .

(2) H2 =

⎡
⎢⎢⎣

cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 cosθ sinθ
0 0 −sinθ cosθ

⎤
⎥⎥⎦ .

(3) H3 =

⎡
⎢⎢⎣

cosθ 0 sinθ 0
0 cosθ 0 −sinθ

−sinθ 0 cosθ 0
0 sinθ 0 cosθ

⎤
⎥⎥⎦ .

(4) H4 =

⎡
⎢⎢⎣

1 0 a 0
0 1 0 −a
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ and HT

4 .

(5) H5 =

⎡
⎢⎢⎣

1 a c b
0 1 b 0
0 0 1 0
0 0 −a 1

⎤
⎥⎥⎦ and HT

5 .



1494 X. HOU

Proof. Choose

K1 =

⎡
⎢⎢⎣
√

λ−1 0 0 0
0

√
λ−1 0 0

0 0
√

λ 0
0 0 0

√
λ

⎤
⎥⎥⎦ .

One checks that K1 is real symplectically similar to its inverse by the real symplectic
involution ⎡

⎢⎢⎣
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎤
⎥⎥⎦ .

Since H1 = K2
1 , by Lemma 2.5, H1 is a commutator of real symplectic involutions.

Choose

K2 =

⎡
⎢⎢⎣

cos(θ/2) sin(θ/2) 0 0
−sin(θ/2) cos(θ/2) 0 0

0 0 cos(θ/2) sin(θ/2)
0 0 −sin(θ/2) cos(θ/2)

⎤
⎥⎥⎦ ,

K3 =

⎡
⎢⎢⎣

cos(θ/2) 0 sin(θ/2) 0
0 cos(θ/2) 0 −sin(θ/2)

−sin(θ/2) 0 cos(θ/2) 0
0 sin(θ/2) 0 cos(θ/2)

⎤
⎥⎥⎦ .

One checks that both K2 and K3 are real symplectically similar to their inverse by the
same real symplectic involution

P =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

Since H2 = K2
2 and H3 = K2

3 , by Lemma 2.5, H2 and H3 are commutators of real
symplectic involutions.

Next let

K4 =

⎡
⎢⎢⎣

1 0 a/2 0
0 1 0 −a/2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

One checks that K4 is symplectic and K2
4 = H4 , and that K4 is real symplectically

similar to its inverse by the real symplectic involution P . Thus by Lemma 2.5, H4 is a
commutator of real symplectic involutions and so is HT

4 .
Let

K5 =

⎡
⎢⎢⎣

1 a/2 c/2 b/2
0 1 b/2 0
0 0 1 0
0 0 −a/2 1

⎤
⎥⎥⎦ and Q =

⎡
⎢⎢⎣

1 0 0 a−1c
0 −1 −a−1c 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ .
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One checks that both K5 and Q are symplectic and K2
5 = H3 , Q2 = I , Q−1K5Q =

K−1
5 . Thus by Lemma 2.5, H5 is a commutator of real symplectic involutions and so is

HT
5 . �

LEMMA 3.3. −I4 is a commutator of real symplectic involutions.

Proof. Since −I4 =
([

0 1
−1 0

]
⊕
[

0 1
−1 0

])2

and

[
0 1
−1 0

]
⊕
[

0 1
−1 0

]
is similar to

its inverse by the real symplectic involution

[
0 1
1 0

]
⊕
[
0 1
1 0

]
, we get the conclusion by

Lemma 2.5. �

LEMMA 3.4. P1 is a product of at most two commutators of real symplectic
involutions.

Proof. If λ = 1, by Lemma 3.2(5) we know that P1 is a commutator of real sym-
plectic involutions. If λ = −1, by Lemma 3.2(5) we know that −P1 is a commutator
of real symplectic involutions. By Lemma 3.3, −I4 is a commutator of real symplectic
involutions. Thus P1 = (−P1)(−I4) is a product of at most two commutators of real
symplectic involutions.

Next we assume that λ �= ±1. We claim that P1 is real symplectically similar to

K =

⎡
⎢⎢⎣

1 1 −1 1
t 1+ t 1− t t
0 0 1+ t −t
0 0 −1 1

⎤
⎥⎥⎦ ,

where t = λ + λ−1−2. Note that

K =

⎡
⎢⎢⎣

1 0 0 0
t 1 0 0
0 0 1 −t
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 1 −1 1
0 1 1 0
0 0 1 0
0 0 −1 1

⎤
⎥⎥⎦ ,

then P1 is a product of two commutators of real symplectic involutions by Lemma
3.2(5).

Now we prove that P1 is real symplectically similar to K . Let

P1 =
[

1 1
λ −1 λ−1−1

]
⊕
[

1 1
λ −1 λ−1−1

]−T

,

P2 =
[
1 −2λ 2(1−λ )−2(1+ λ )−3

0 1

]
�
[
1 −2λ 3(1−λ )−2(1+ λ )−3

0 1

]
.
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Then we can calculate that

(P1P2)−1K(P1P2) =

⎡
⎢⎢⎣

λ 0 0 −λ 2(λ +1)−2

0 λ−1 −(λ +1)−2 0
0 0 λ−1 0
0 0 0 λ

⎤
⎥⎥⎦ .

Let

P3 =

⎡
⎢⎢⎣

λ (1+ λ )−1 0 0 0
0 λ (1+ λ )−1 0 0
0 0 λ−1(1+ λ ) 0
0 0 0 λ−1(1+ λ )

⎤
⎥⎥⎦ , P4 =

⎡
⎢⎢⎣

0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ .

One checks that (P1P2P3P4)−1K(P1P2P3P4) = P1 . Since P1,P2,P3,P4 are all real sym-
plectic matrices, we finish the proof of the claim. �

LEMMA 3.5. P2(α,μ) is a product of two commutators of real symplectic invo-
lutions.

Proof. Since

P2(α,1) =

⎡
⎢⎢⎣

1 −1 α α
0 1 α 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 −α 0
0 1 0 α
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

by Lemma 3.2(4)(5) it is a product of two commutators of real symplectic involutions.
Let

K =

⎡
⎢⎢⎣

1 −2 −α α
2 −3 −α 2α
0 0 −3 −2
0 0 2 1

⎤
⎥⎥⎦ and P =

⎡
⎢⎢⎣
−2 0 0 α/4
−2 −1 α/8 −3α/4
0 0 −1/2 1
0 0 0 −1

⎤
⎥⎥⎦ .

One checks that both K and P are symplectic and P2(α,−1) = P−1KP . Since
P2(α,−1) is real symplectically similar to

K =

⎡
⎢⎢⎣

1 0 0 0
2 1 0 0
0 0 1 −2
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 −2 −α α
0 1 α 0
0 0 1 0
0 0 2 1

⎤
⎥⎥⎦ ,

by Lemma 3.2(5) it is a product of two commutators of real symplectic involutions. �

LEMMA 3.6. P3 is a product of two commutators of real symplectic involutions.
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Proof. Let λ =
√

a2 +b2−1
. Then there exist an angle θ such that cosθ = aλ

and sinθ = bλ . Hence,

P3 =

⎡
⎢⎢⎣

λ−1 0 0 0
0 λ−1 0 0
0 0 λ 0
0 0 0 λ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 cosθ sinθ
0 0 −sinθ cosθ

⎤
⎥⎥⎦

is a product of two commutators of real symplectic involutions by Lemma 3.2(1)(2). �

LEMMA 3.7. P4 is a product of two commutators of real symplectic involutions.

Proof. Let

K1 =

⎡
⎢⎢⎣

1 0 −2α cscθ 0
0 1 0 α cscθ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , K2 =

⎡
⎢⎢⎣

cosθ sinθ 2α cotθ 2α
−sinθ cosθ 2α −2α cotθ

0 0 cosθ sinθ
0 0 −sinθ cosθ

⎤
⎥⎥⎦ .

Then P4 = K1K2 . Let

P1 =

⎡
⎢⎢⎣
√

2 0 0 0
0 1 0 0

0 0
√

2
−1

0
0 0 0 1

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣

1 0 2α cscθ −α cotθ cscθ
0 1 −α cotθ cscθ 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

One checks that P1 and P2 are symplectic and

P−1
1 K1P1 =

⎡
⎢⎢⎣

1 0 −α cscθ 0
0 1 0 α cscθ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , P−1

2 K2P2 =

⎡
⎢⎢⎣

cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 cosθ sinθ
0 0 −sinθ cosθ

⎤
⎥⎥⎦ ,

which are commutators of real symplectic involutions by Lemma 3.2(2)(4). Thus we
get the conclusion. �

LEMMA 3.8. For each nonscalar matrices A,B ∈ Sp(2,R) , A�B is a product of
at most two commutators of real symplectic involutions.

Proof. By Lemma 2.9(1), A is real symplectically similar to

[
trA μ1

−μ1 0

]
and B

is real symplectically similar to

[
trB μ2

−μ2 0

]
for μ1,μ2 ∈ {1,−1} . Thus A � B is real

symplectically similar to

[
trA μ1

−μ1 0

]
�
[

trB μ2

−μ2 0

]
. Let 1 < λ ∈ R .

[
trA μ1

−μ1 0

]
�
[

trB μ2

−μ2 0

]
=
([

λ μ1(λ + λ−1−λ−1trA)
0 λ−1

]
�
[

λ μ2(λ + λ−1−λ−1trB)
0 λ−1

])

·
([

λ + λ−1 μ1λ−1

−μ1λ 0

]
�
[

λ + λ−1 μ2λ−1

−μ2λ 0

])
.
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By Lemma 2.9(2), the two symplectic matrices on the right side of the above equation

are all real symplectically similar to

[
λ 0
0 λ−1

]
�
[

λ 0
0 λ−1

]
. Then by Lemma 3.2(1), we

get the conclusion of this lemma. �

LEMMA 3.9. If −I2 �= B ∈ Sp(2,R) , then I2 � B is a product of at most two
commutators of real symplectic involutions.

Proof. By Lemma 2.9(1), B is real symplectically similar to

[
trB μ
−μ 0

]
for some

μ ∈ {1,−1} . Let 1 < λ ∈ R . Since

I2 �
[
trB μ
−μ 0

]
=
([

λ 0
0 λ−1

]
�
[

λ μ(λ + λ−1−λ−1trB)
0 λ−1

])

·
([

λ−1 0
0 λ

]
�
[

λ + λ−1 μλ−1

−μλ 0

])
,

and the two symplectic matrices on the right side of the above equation are all real

symplectically similar to

[
λ 0
0 λ−1

]
�
[

λ 0
0 λ−1

]
by Lemma 2.9(2). Then by Lemma

3.2(1), we get the conclusion of this lemma. �

LEMMA 3.10. Let A = (−I2)�B, where −I2 �= B ∈ Sp(2,R) . If trB � −2 , then
A is a product of three commutators of real symplectic involutions and no fewer.

Proof. By Lemma 2.7, A can not be a commutator of real symplectic involutions.
Suppose that A = A1A2 where A1 and A2 are commutators of real symplectic involu-
tions. Since each number of Jordan blocks of Ak (k ∈ {1,2} ) is even, the degree of the
minimal polynomial of Ak is at most 2 by Lemma 2.7. So there exist a monic poly-
nomial pk(x) of degree two such that pk(Ak) = O and the characteristic polynomial of
Ak equals p2

k(x) . Since the determinant of symplectic matrix is 1 and each number of
Jordan blocks of Ak (k ∈ {1,2} ) is even, one can set pk(x) = x2 − akx + 1 for some
ak ∈ R . One obtains Ak +A−1

k = akI since pk(Ak) = O . Write

B =
[
b11 b12

b21 b22

]
∈ Sp(2,R), A1 =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦ ∈ Sp(4,R).

Then from Remark 2.1 one get

A−1 = (−I2)�
[

b22 −b12

−b21 b11

]
, A−1

1 =

⎡
⎢⎢⎣

a33 a43 −a13 −a23

a34 a44 −a14 −a24

−a31 −a41 a11 a21

−a32 −a42 a12 a22

⎤
⎥⎥⎦
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Compare each entry on both sides of the two matrix equation A1 + A−1
1 = a1I4 one

obtains ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a11 +a33 = a22 +a44 = a1,

a12 = −a43,

a14 = a23,

a21 = −a34,

a32 = a41.

(3.1)

Since A2 = A−1
1 A , compare each entry on both sides of the two matrix equation A2 +

A−1
2 = a2I4 one obtains

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a11 +a33 = −a22b22 +a24b21 +a42b12−a44b11 = −a2,

a12 = −a23b21 +a43b11,

a14 = −a23b22 +a43b12,

a32 = a21b21−a41b11,

a34 = a21b22−a41b12.

(3.2)

Combining the last four lines of equation systems (3.1) and (3.2), one gets

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a23b21 = a43(1+b11),
a23(1+b22) = a43b12,

a21b21 = a41(1+b11),
a21(1+b22) = a41b12

which is equivalent to[
1+b22 −b12

−b21 1+b11

][
a23

a43

]
=
[
0
0

]
,

[
1+b22 −b12

−b21 1+b11

][
a21

a41

]
=
[
0
0

]
.

If trB > −2, one checks ∣∣∣∣1+b22 −b12

−b21 1+b11

∣∣∣∣ �= 0

since B ∈ Sp(2,R) . Thus

a12 = a14 = a21 = a23 = a32 = a34 = a41 = a43 = 0. (3.3)

If trB = −2, then by Lemma 2.10, B is real symplectically similar to JB,μ :=[−1 μ
0 −1

]
for some μ ∈ {1,−1} since −I2 �= B ∈ Sp(2,R) . By Remark 2.3(c), it

suffices to prove that (−I2)� JB,μ is a product of three commutators of real symplectic
involutions and no fewer. Replacing B by JB,μ , we obtain the following equation
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system from (3.2). ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a11 +a33 = a22 + μa42 +a44 = −a2,

a12 = −a43,

a14 = a23 + μa43,

a32 = a41,

a34 = −a21− μa41.

(3.4)

Combining equation systems (3.1) and (3.4), we get a12 = a32 = a41 = a42 = a43 = 0
and a11 +a33 = a22 +a44 = a1 = −a2 = trB/2 =−1. Since A1 ∈ Sp(4,R) , by Remark
2.1, [

a11 a12

a21 a22

][
a33 a34

a43 a44

]T

−
[
a13 a14

a23 a24

][
a31 a32

a41 a42

]T

=
[
1 0
0 1

]
. (3.5)

Comparing the (4,4)-entry of both sides of equation (3.5) we obtain a22a44 = 1 (recall
that a12 = a32 = a41 = a42 = a43 = 0). Combining a22 + a44 = −1 and a22a44 = 1,
we obtain a22 and a44 are not real numbers. Thus in this case, there does not exist
real symplectic matrix A1 such that A = A1A2 and A1 and A2 are commutators of real
symplectic involutions.

Next we prove this lemma for trB > −2. In this case, we can write A1 as

A1 =
[
a11 a13

a31 a33

]
�
[
a22 a24

a42 a44

]

since equation (3.3) holds. Now we write A1 = A0 �B1 , where

A0 =
[
a11 a13

a31 a33

]
, B1 =

[
a22 a24

a42 a44

]
.

Then A2 =−A−1
0 �B2 for B2 = B−1

1 B . Since A1 and A2 are symplectic, one easily get
that A0,B1,−A−1

0 ,B2 are symplectic by Remark 2.2.
If one of A1 and A2 has real eigenvalues, then by Lemma 2.7, either A1 or A2

has eigenvalues λ ,λ ,λ−1,λ−1 for some real number λ < 0. Denote it by A3 . Recall
that A1 and A2 are commutators of real symplectic involutions. By Lemma 2.5, there
must exist a real symplectic matrix C such that C2 = A3 and C is a product of two
real symplectic involutions. Since A3 has negative eigenvalues λ ,λ ,λ−1,λ−1 , C must
have eigenvalues

√−λ i,−√−λ i,
√−λ−1i,−√−λ−1i . By Lemma 2.6, we get that

λ = −1. In this case, one of A1 and A2 is −I4 and the other is I � (−B) by Lemma
2.7. Since B �= −I2 , I � (−B) can not be a commutator of real symplectic involu-
tions by Lemma 2.7, a contradiction. Thus both A1 and A2 have no real eigenvalues.
So p1(A1) = p1(A0) = p1(B1) , p2(A2) = p2(−A−1

0 ) = p2(B2) , trA0 = trB1 = a1 =
−tr(−A−1

0 ) = −trB2 = −a2 and |a1| < 2, |a2| < 2. Then by Lemma 2.11, A0 is real

symplectically similar to either

[
a1 1
−1 0

]
or

[
a1 −1
1 0

]
, and so is B1 . We suppose that A0

is real symplectically similar to

[
a1 1
−1 0

]
. The other case can be proven similarly. Then
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−A−1
0 is real symplectically similar to

[−a1 1
−1 0

]
by Lemma 2.11. In this case, B1 must

be real symplectically similar to

[
a1 −1
1 0

]
. Otherwise A1 is real symplectically simi-

lar to some symplectic matrix described in Lemma 3.1 with θ = arccos(a1/2) , which
is not a commutator of real symplectic involutions. For the same reason, B2 must be

real symplectically similar to

[−a1 −1
1 0

]
. So we can find a real symplectic matrix

P = P1 �P2 such that P−1A1P =
[

a1 1
−1 0

]
�
[
a1 −1
1 0

]
. Since A = (−I2)�B = A1A2 ,

P−1A2P =
[

0 1
−1 −a1

]
� B̂2 where B̂2 = P−1

2 B2P2 . Then B̂ := P−1
2 BP2 =

[
a1 −1
1 0

]
B̂2

and B̂2 is real symplectically similar to

[−a1 −1
1 0

]
. Suppose the first row of B̂2 is

[x,y] for x,y ∈ R . By Lemma 2.11, y < 0. We can calculate the second row of B̂2

since trB̂2 = −a1 and detB̂2 = 1. So

B̂2 =
[

x y
−y−1(1+a1x+ x2) −a1− x

]
.

Thus

trB = trB̂ = tr

([
a1 −1
1 0

]
B̂2

)

= tr

([
a1 −1
1 0

][
x y

−y−1(1+a1x+ x2) −a1− x

])
= a1x+ y−1(1+a1x+ x2)+ y

= −2+ y−1

((
x+

a1(y+1)
2

)2

+(y+1)2− a2
1(y+1)2

4

)
.

Note that y−1 < 0 and a2
1 < 4 we get that trB � −2, a contradiction. Thus A can not

be expressed as a product of two commutators of real symplectic involutions.
Now we prove that A is a product of three commutators of real symplectic invo-

lutions. If B �= I2 , −A is a product of at most two commutators of real symplectic
involutions by Lemma 3.9. Then A = (−A)(−I4) is a product of three commutators of
real symplectic involutions since −I4 is a commutator of real symplectic involutions
by Lemma 3.3. If B = I2 , then

A = diag(−1,1,−1,1) =
([

1 −1
0 1

]
�
[
1 1
0 1

])([−1 −1
0 −1

]
�
[
1 −1
0 1

])

and

[
1 −1
0 1

]
�
[
1 1
0 1

]
is a commutator of real symplectic involutions from Lemma

3.2(4), it suffices to prove that

[−1 −1
0 −1

]
�
[
1 −1
0 1

]
is a product of two commutators of
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real symplectic involutions. Let 1 < λ ∈ R . Then[
1 0
2 1

]−1 [−1 −1
0 −1

][
1 0
2 1

]
=
[

λ −λ−1

0 λ−1

][
λ−1 0
4λ λ

]
,

[
1 −1
0 1

]
=
[

λ −λ−1

0 λ−1

][
λ−1 0
0 λ

]
.

One can easily check that

[−1 −1
0 −1

]
�
[
1 −1
0 1

]
is real symplectically similar to the prod-

uct of

[
λ −λ−1

0 λ−1

]
�
[

λ −λ−1

0 λ−1

]
and

[
λ−1 0
4λ λ

]
�
[

λ−1 0
0 λ

]
. By Lemma 2.8, these two

matrices are all real symplectically similar to diag(λ ,λ ,λ−1,λ−1) , which are commu-

tators of real symplectic involutions by Lemma 3.2(1). Thus

[−1 −1
0 −1

]
�
[
1 −1
0 1

]
is a

product of two commutators of real symplectic involutions, as desired. �

LEMMA 3.11. Let A = (−I2)�B. If trB < −2 , then A is a product of two com-
mutators of real symplectic involutions.

Proof. Let x =
√−2− trB . By Lemma 2.9, all the real symplectic 2×2 matrices

whose traces are equal to trB , are real symplectically similar since the similar relation
is transitive. So B is real symplectically similar to[−1− x2 x

x −1

]
=
[
0 −1
1 0

][
x −1

1+ x2 −x

]
,

whose trace is equal to trB . Thus A = (−I2)�B is real symplectically similar to([
0 1
−1 0

]
�
[
0 −1
1 0

])([
0 1
−1 0

]
�
[

x −1
1+ x2 −x

])
.

By Lemma 2.11,

[
x −1

1+ x2 −x

]
is real symplectically similar to

[
0 −1
1 0

]
. Thus

[
0 1
−1 0

]
�[

x −1
1+ x2 −x

]
is real symplectically similar to

[
0 1
−1 0

]
�
[
0 −1
1 0

]
, which is a commuta-

tor of real symplectic involutions by Lemma 3.2(3) with θ = π/2. Thus A = (−I2)�B
is a product of two commutators of real symplectic involutions. �

Proof of Theorem 1.1. By Lemma 3.10, we know that each matrix which is similar
to −I2 �B for −I2 �= B ∈ Sp(2,R) and trB � −2, is a product of three commutators of
real symplectic involutions. For other 4×4 real symplectic matrices, by Lemmas 2.4,
3.4, 3.5, 3.6, 3.7, 3.3, 3.8, 3.9 and 3.11, we get the conclusion. �

LEMMA 3.12. Let n > 1 and v ∈ R
2n �= 0 . Every positive transvection T =

I2n +αvvTJ2n for some positive real number α is a product of two commutators of real
symplectic involutions.
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Proof. By Theorem 9 of [1], there exists P ∈ Sp(2n,R) such that P(
√

αv) =
e1 , where e1 is the first column of I2n . Since PTP−1 = J2 � I2n−2 and J2 � I2 is a
product of two commutators of real symplectic involutions by Lemma 3.9, we get the
conclusion. �

Proof of Theorem 1.2. By Theorem 20 of [3], every 2n×2n real symplectic matrix
can be expressed as a product of at most 2n + 3 positive transvections. Then we get
the conclusion since each positive transvection is a product of two commutators of real
symplectic involutions by Lemma 3.12. �

In [8], it is proved that every complex symplectic matrix of size greater than 2 can
be decomposed into a product of at most three commutators of symplectic involutions.
In this paper, we get the conclusion that every 4×4 real symplectic matrix is a product
of at most three commutators of real symplectic involutions. It is an open problem for
the real case and n > 2 to determine if the number of factors is also three. It is also an
open problem to give a necessary and sufficient condition in terms of the Jordan Form
like Lemma 2.4 and 2.5 in [8], for a real symplectic matrix to be a commutator of real
symplectic involutions.

Acknowledgement. This work was funded by Scientific Research Project of Bei-
jing Educational Committee (No. KM202110028004). The author is grateful to the
referee for the helpful comments which improved the paper.

RE F ER EN C ES

[1] D. AWA, R. J. DE LA CRUZ, Every real symplectic matrix is a product of real symplectic involutions,
Linear Algebra Appl. 589 (2020) 85–95.

[2] R. J. DE LA CRUZ, Each symplectic matrix is a product of four symplectic involutions, Linear Algebra
Appl. 466 (2015) 382–400.

[3] E. ELLERS, J. MALZAN, Products of positive transvections in the real symplectic group, Comm.
Algebra 19 (4) (1991) 1033–1058.

[4] E. W. ELLERS, O. VILLA, Generation of the symplectic group by involutions, Linear Algebra Appl.
591 (2020) 154–159.

[5] W. H. GUSTAFSON, P. R. HALMOS, H. RADJAVI, Products of involutions, Linear Algebra Appl. 13
(1976) 157–162.

[6] J. GUTT, Normal forms for symplectic matrices, http://arxiv.org/abs/1307.2403v2.
[7] X. HOU, Decomposition of infinite matrices into products of commutators of involutions, Linear Al-

gebra Appl. 563 (2019) 231–239.
[8] X. HOU, Decomposition of symplectic matrices into products of commutators of symplectic involu-

tions, Comm Algebra. 48 (8) (2020) 3459–3470.
[9] X. HOU, Products of commutators of symplectic involutions, Linear Multilinear Algebra,

https://doi.org/10.1080/03081087.2020.1820432.
[10] X. HOU, S. LI, Q. ZHENG, Expressing infinite matrices over ring as products of involutions, Linear

Algebra Appl. 532 (2017) 257–265.
[11] B. HUPPERT, Isometrien von Vektorraumen I, Arch. Math. 35 (1980) 164–176.
[12] T. J. LAFFEY, Expressing unipotent matrices over rings as products of involutions, Irish Math. Soc.

Bull. 40 (1998) 24–30.



1504 X. HOU

[13] K. M. LIU, Decomposition of matrices into three involutions, Linear Algebra Appl. 111 (1988) 1–24.
[14] R. SŁOWIK, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013)

399–404.
[15] B. ZHENG, Decomposition of matrices into commutators of involutions, Linear Algebra Appl. 347

(2002) 1–7.

(Received November 25, 2020) Xin Hou
Capital Normal University

Beijing, 100048, P. R. China
e-mail: houge19870512@126.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


