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CANONICAL DECOMPOSITION FOR DISSIPATIVE LINEAR RELATIONS

JOSUÉ I. RIOS-CANGAS

(Communicated by B. Jacob)

Abstract. This work presents two ways of decomposing dissipative linear relations based on
the fundamental decompositions for contractions by Sz. Nagy-Foiaş-Langer and von Neumann-
Wold. The invariant subspaces for contractions are treated using a minor variation of the Cayley
transform. The obtained decompositions allow one to separate the selfadjoint and completely
nonselfadjoint parts of a dissipative relation.

1. Introduction

This paper deals with the canonical decomposition of any closed dissipative linear
relation into its selfadjoint and completely nonselfadjoint parts. In particular, this pro-
vides the corresponding decomposition for a symmetric relation even when deficiency
indices are not necessarily equal (cf. [6, Sec. 3.4 and particularly Thm. 3.4.4]).

A linear relation in the Hilbert space H is a linear subset of H ⊕H . The
concept of linear relation generalizes the notion of operator when it is identified with
its graph. Indeed, a linear relation is an operator whenever its multivalued part (see
Section 2) is the trivial subspace in H . For this reason, some authors refer to relations
as multivalued linear operators [13]. The fundamentals of linear relations are found in
[1, 3, 13, 23, 25].

Linear relations are used extensively in extension theory for linear operators, par-
ticularly in the setting of boundary triplets and when extending nondensely defined
operators. Relations are also relevant in singular perturbation theory, the theory of
canonical systems, and some boundary value problems of partial differential equations.
In all these applications, the class to which the linear relation belongs plays an im-
portant role; the multivalued generalization of dissipative, symmetric and selfadjoint
operators are dissipative, symmetric and selfadjoint linear relations, respectively.

In this work we deal with dissipative relations (see Definition 6 and [5, 11, 15,
31, 32] for an account of the matter). Dissipative linear relations appear in problems
of mathematical physics where one has dissipative systems, i.e., systems in which the
energy is in general nonconstant and nonincreasing in time (see for example [14, 17,
19, 28]).
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R. S. Phillips introduced dissipative operators in his seminal work [29] motivated
by the Cauchy problem for dissipative hyperbolic systems of partial differential equa-
tions. He showed that a maximal dissipative operator generates a strongly continuous
semi-group of contraction operators (see also [38]). Other applications of dissipative
operators can be found in [4, 20, 21, 39, 40].

The theory of dissipative operators is tightly connected with the theory of con-
tractions, i.e., linear operators T such that ‖T‖ � 1 (see [36, 37] for an exhaustive
exposition of the theory of contractions). The class of contractions has been amply
studied and is a well-understood class of operators (some generalizations of the con-
cept of contraction can be found in [12, 16]). We would point out that a motivation
for studying contractions stems from the invariant subspace problem [22, 30, 37]. By
means of a Cayley transform [37, Chap. 4, Sec. 4], any dissipative operator is trans-
formed into a contraction. Thus, one class of operators can be studied through the other
class. Although this bridge can be extended even in the case of dissipative relations,
we use in this work a slight variation of the Cayley transform, namely the Z transform
(cf. [18]). The use of this transform leads to some simplifications that will be evident
below.

Contractions admit decompositions which turn out to be crucial for this work. We
focus our attention on two ways of decomposing contractions, namely the Sz. Nagy-
Foiaş-Langer and the von Neumann-Wold decompositions [27, 37] (see [35] for a more
general setting). The main goal is to give a decomposition of any closed dissipative
linear relation, in which one isolates its selfadjoint and completely nonselfadjoint parts
(see Theorem 5). This decomposition is carried out for arbitrary maximal dissipative
operators in [10, Thm. 7.6], where additionally it is shown how the decomposition is
related to the corresponding dilations. Theorem 7 shows in particular that any sym-
metric relation, which does not admit dissipative proper extensions, is separated into its
selfadjoint part and its elementary-maximal part, which is a relation whose Z transform
is a unilateral shift. These decompositions are made by means of transforming invariant
subspaces for contractions. It is worth mentioning that the decompositions given in this
work have applications in several problems where dissipative relations naturally arise,
in particular, in the theory of boundary and quasi-boundary triples (see [7, 8, 24, 33])
and the functional models for dissipative operators [10, 26, 34].

The paper is organized as follows. In Section 2 we briefly recall some standard
definitions in the theory of linear relations. Also, this section tackles the problem of
invariant and reducing subspaces for linear relations. It is shown here that for relations
the adjoint of the decomposition given by a reducing subspace is the decomposition
of the adjoint relations with respect to the same reducing subspace (see Theorem 1).
Another result of this section is that any linear relation of the form K ⊕K , where K
is a linear set, is invariant under the Z transform (see Remark 4). A consequence of this
is that the Z transform preserves reducing subspaces for any linear relation (see The-
orem 2). Section 3 deals with the general theory of contractions, in particular, the Sz.
Nagy-Foiaş-Langer and the von Neumann-Wold decompositions. The Sz. Nagy-Foiaş-
Langer decomposition is extended to any closed contraction (see Theorem 3). These
results, together with the theory of reducing subspaces developed in the preceding sec-
tion, are combined with the theory of the Z transform to obtain the required decomposi-
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tion of any closed dissipative relation. Finally, as an illustration of the general results of
this work, Section 4 presents a simple decomposition of a maximal symmetric relation
with nontrivial multivalued part.

2. Invariant and reducing subspaces for linear relations

Let (H , 〈·, ·〉) be a separable Hilbert space, with inner product antilinear in its
left argument. We denote H ⊕H as the orthogonal sum of two copies of the Hilbert
space H (q.v. [9, Sec. 2.3]). Throughout this work, any linear set T in H ⊕H , is
called a linear relation (or relation, for short). We use “linear set” instead of the usual
“subspace” since this last term is reserved for closed linear sets. The following sets are
associated with the linear relation T :

domT :=
{

f ∈ H :
(

f
g

)
∈ T
}

ranT :=
{

g ∈ H :
(

f
g

)
∈ T
}

kerT :=
{

f ∈ H :
(

f
0

)
∈ T
}

mulT :=
{

g ∈ H :
(

0
g

)
∈ T
}

The concept of linear relation generalizes the notion of linear operator. Namely, a
relation T is an operator (when it is identified by its graph) if and only mulT = {0} .

For two relations T,S and ζ ∈ C , we denote the following linear relations:

T +S :=
{(

f
g+h

)
:
(

f
g

)
∈ T,

(
f
h

)
∈ S
}

ζT :=
{(

f
ζg

)
:
(

f
g

)
∈ T
}

ST :=
{(

f
k

)
:
(

f
g

)
∈ T,

(
g
k

)
∈ S
}

T−1 :=
{(

g
f

)
:
(

f
g

)
∈ T
}

The adjoint of a relation T is given by

T ∗ :=
{(

h
k

)
∈ H ⊕H : 〈k, f 〉 = 〈h,g〉 , ∀

(
f
g

)
∈ T
}

,

which turns out to be a closed relation with the following properties:

T ∗ = (−T−1)⊥, S ⊂ T ⇒ T ∗ ⊂ S∗,

T ∗∗ = T , (αT )∗ = αT ∗, with α �= 0, (1)

(T ∗)−1 = (T−1)∗, kerT ∗ = (ranT )⊥.

The boundedness definition for relations is not unique (cf. [13]). Here, a relation

T is bounded if there exists C > 0 such that ‖g‖ � C ‖ f‖ , for all
(

f
g

)
∈ T . This

condition implies that any bounded relation is an operator. In this fashion, the regular
set of linear relation T is

ρ̂(T ) := {ζ ∈ C : (T − ζ I)−1 is bounded } ,

which is open. Besides, the deficiency space of T is given by

NNNζ (T ) :=
{(

f
ζ f

)
∈ T
}

, (ζ ∈ C)
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which is a bounded relation with domNNNζ (T ) = ker(T − ζ I) . Moreover,

dimNNNζ (T ∗) , ζ ∈ ρ̂(T ) (2)

remains constant, on each connected component of ρ̂(T ) (cf. [9, Thm. 3.7.4]).
The resolvent set of a closed relation T is defined by

ρ(T ) := {ζ ∈ C : (T − ζ I)−1 ∈ B(H )} ,

where B(H ) denotes the class of bounded operators defined in the whole space H .
The resolvent set is open and consists of all connected components of ρ̂(T ) , in which
(2) is equal zero. Also, we consider the following sets:

σ(T ) := C\ρ(T ) (spectrum)

σ̂(T ) := C\ρ̂(T ) (spectral core)

σp(T ) := {ζ ∈ C : dimNNNζ (T ) �= 0} (point spectrum)

σc(T ) := {ζ ∈ C : ran(T − ζ I) �= ran(T − ζ I)} (continuous spectrum)

σr(T ) := σ(T )\σ̂(T ) (residual spectrum)

Analogously to the case of operators, it follows

σp(T )∪σc(T ) = σ̂(T ) . (3)

REMARK 1. For a closed relation T , one has that σ(T ∗) is the complex conjugate
of σ(T ) [31, Prop. 2.5]. The same holds for the continuous spectrum, since ran(T −ζ I)
and ran(T ∗ − ζ I) are simultaneously closed (cf. [15, Lem. 2.3]).

PROPOSITION 1. Let T be a closed relation. If ζ belongs to σr(T ) then ζ be-
longs to σp(T ∗)\σc(T ∗) .

Proof. Since ζ ∈ σr(T ) , one has that (T − ζ I)−1 is closed and bounded, which
is not defined on the whole space. Thus, ran(T −ζ I) is closed as well as ran(T ∗ −ζ I)
and ker(T ∗ − ζ I) = [ran(T − ζ I)]⊥ �= {0} . These facts imply the required. �

Before proceeding to the theory of invariant subspaces, we shall set the following.
For a relation T in H ⊕H and a linear set K in H , we denote

TK := T ∩ (K ⊕K ) ,

where K ⊕K is the orthogonal sum of K with itself. It is clear that TH = T and
T{0} = {0}⊕{0} .

DEFINITION 1. A subspace K ⊂ H is called invariant for a relation T (briefly
T -invariant), when the following conditions are true:
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(i) domT = (domT ∩K )⊕ (domT ∩K ⊥) .

(ii) mulT = (mulT ∩K )⊕ (mulT ∩K ⊥) .

(iii) domTK = domT ∩K .

We see at once that H and {0} are invariant, for any linear relation.

DEFINITION 2. A subspace K ⊂ H is said to reduce a relation T if

T = TK ⊕TK ⊥ .

The subspaces K and K ⊥ reduce T simultaneously and in this case

domT = domTK ⊕domTK ⊥ , kerT = kerTK ⊕kerTK ⊥ ,

ranT = ranTK ⊕ ranTK ⊥ , mulT = mulTK ⊕mulTK ⊥ .
(4)

REMARK 2. The existence of relations T1 ⊂ K ⊕K , T2 ⊂ K ⊥ ⊕K ⊥ , for
which T = T1⊕T2 , implies that K reduces T and T1 = TK , T2 = TK ⊥ .

PROPOSITION 2. A subspace K reduces T if and only if K and K ⊥ are T -
invariant.

Proof. If K reduces T , then by inclusion in both directions, one arrives at

domTK = domT ∩K , ranTK = ranT ∩K ,

kerTK = kerT ∩K , mulTK = mulT ∩K .

Hence, by (4), K is T -invariant. This also holds for K ⊥ , since it reduces T .

The converse follows once we show that T ⊂TK ⊕TK ⊥ . By inclusion, if
(

f
g

)
∈T

then the first condition of T -invariant implies that there exist(
a
s

)
∈ TK ;

(
b
t

)
∈ TK ⊥ , (5)

such that f = a + b . Thus,
(

f
s+ t

)
∈ T , which yields

(
0

g− (s+ t)

)
∈ T . The second

condition of T -invariant indicates the existence of(
0
h

)
∈ TK ;

(
0
k

)
∈ TK ⊥ , (6)

such that g− (s+ t) = h+ k . Therefore, (5) and (6) produce(
f
g

)
=
(

a
s+h

)
+
(

b
t + k

)
∈ TK ⊕TK ⊥ ,

as required. �
If K reduces T , then a simple computation shows that

T = TK ⊕TK ⊥ . (7)

This implies that T is closed if and only if both TK , TK ⊥ are closed.
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THEOREM 1. If K reduces T , then K reduces T ∗ and the following holds

(TK ⊕TK ⊥)∗ = (TK )∗ ⊕ (TK ⊥)∗ . (8)

Proof. By hypothesis T = TK ⊕TK ⊥ . Besides, the first property of (1) yields

−(TK )−1 ⊕ (TK )∗ = K ⊕K ; −(TK ⊥)−1⊕ (TK ⊥)∗ = K ⊥⊕K ⊥ . (9)

Thus, in view of (7) and (9),

−(T )−1 ⊕ [(TK )∗ ⊕ (TK ⊥)∗] = −[TK ⊕TK ⊥ ]−1⊕ [(TK )∗ ⊕ (TK ⊥)∗]

= [−(TK )−1⊕ (TK )∗]⊕ [−(TK ⊥)−1⊕ (TK ⊥)∗]

= (K ⊕K )⊕ (K ⊥⊕K ⊥)

= H ⊕H = −(T )−1 ⊕T∗ ,

whence it yields (8). Also, (9) implies (TK )∗ ⊂ K ⊕K and (TK ⊥)∗ ⊂ K ⊥⊕K ⊥ .
Hence, one infers from Remark (2) that K reduces T ∗ . �

REMARK 3. As a consequence of Theorem 1, if K reduces T then

(TK )∗ = (T ∗)K and (TK ⊥)∗ = (T ∗)K ⊥ . (10)

We shall introduce a version of the Cayley transform for linear relations (q.v. [18]).

DEFINITION 3. For a relation T and ζ ∈ C , we define the Z transform of T by

ZZZζ (T ) :=
{(

g−ζ f
ζg−|ζ |2 f

)
:
(

f
g

)
∈ T
}

.

The Z transform is a linear relation with

domZZZζ (T ) = ran(T − ζ I) , ranZZZζ (T ) = ran(T − ζ I) ,

mulZZZζ (T ) = ker(T − ζ I) , kerZZZζ (T ) = ker(T − ζ I) .
(11)

For ζ ∈ C , the following holds (q.q. [15, Lems. 2.6, 2.7] and [18, Props. 3.6, 3.7]).

(i) ZZZζ (ZZZζ (T )) = T .

(ii) ZZZζ (T ) ⊂ZZZζ (S) ⇔ T ⊂ S .

(iii) ZZZ−ζ (T ) = −ZZZζ (−T ) .

(iv) ZZZζ (T−1) = ZZZζ (T ) = (ZZZζ (T ))−1 , if |ζ | = 1.

Besides, for ζ ∈ C\R ,

(v) ZZZζ (T �S) = ZZZζ (T )�ZZZζ (S) .
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(vi) ZZZ±i(T ⊕S) = ZZZ±i(T )⊕ZZZ±i(S) .

(vii) ZZZζ (T ∗) = (ZZZζ (T ))∗ .

(viii) ZZZζ (T ) = ZZZζ (T ) .

REMARK 4. For any linear set K ⊂ H , one has that ZZZζ (K ⊕K ) = K ⊕K ,
for all ζ ∈ C . Indeed, it is straightforward to see that ZZZζ (K ⊕K )⊂ K ⊕K and the
other inclusion follows applying the property (i) of the Z transform.

THEOREM 2. For ζ ∈ {i,−i} , a subspace K reduces a relation T if and only if
it reduces ZZZζ (T ) .

Proof. If K reduces T , then T = TK ⊕TK ⊥ and ZZZζ (T ) =ZZZζ (TK )⊕ZZZζ (TK ⊥) .
Besides, since TK ⊂ K ⊕K and TK ⊥ ⊂ K ⊥⊕K ⊥ , one has by Remark 4 that

ZZZζ (TK ) ⊂ K ⊕K and ZZZζ (TK ⊥) ⊂ K ⊥⊕K ⊥ ,

i.e., K reduces ZZZζ (T ) . The converse follows replacing T by ZZZζ (T ) , in the above
reasoning. �

3. The canonical decomposition of dissipative relations

We begin this section with a brief exposition of contractions. We recall that a linear
operator V in H ⊕H (seen as a linear relation) is a contraction if it is bounded with
‖V‖ � 1. Particularly, V is an isometry if V−1 ⊂ V ∗ or unitary whenever V−1 = V ∗ .
In both cases, its norm is equal one. Besides, V is a maximal contraction if it does not
admit proper contractive extensions. This property means that V belongs to B(H ) .

DEFINITION 4. A contraction V is said to be completely nonunitary (c.n.u. for
short), whenever there is no nonzero reducing subspace K for V , in which VK is
unitary.

The following result is an extension of the so-called Sz. Nagy-Foiaş-Langer de-
composition (cf. [37, Chap. I, Sec. 3, Thm. 3.2]), which is proven for contractions in
B(H ) .

THEOREM 3. For every closed contraction V , there exists a unique reducing sub-
space K for V , such that VK is unitary and VK ⊥ is completely nonunitary.

Proof. We begin by denoting

V̂ = V ⊕W , where W =
{(

h
0

)
: h ∈ H �domV

}
. (12)

Inasmuch as domV is closed, then V̂ is a maximal contraction. So, the Sz. Nagy-
Foiaş-Langer decomposition asserts that there exists a unique reducing subspace K
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for V̂ , such that V̂K is unitary and V̂K ⊥ is c.n.u. Thus, for every
(

f
g

)
∈ V̂K ⊂ V̂ , in

view of (12), there is
(

f1
g

)
∈V and f2 ∈ (domV )⊥ , such that f = f1 + f2 . Thereby,

‖ f1‖2 � ‖g‖2 = ‖ f‖2 = ‖ f1 + f2‖2 = ‖ f1‖2 +‖ f2‖2 ,

wherefrom f2 = 0. Hence, V̂K ⊂ VK and they are the same, since V ⊂ V̂ . The
previous reasoning implies that K reduces V as well as W ⊂ V̂K ⊥ . Furthermore,
VK⊥ = V̂K ⊥ �W , which is a c.n.u. contraction. The uniqueness follows directly, bear-
ing in mind that a reducing subspace for V , also reduces V̂ . �

Let us turn our attention to a particular class of isometries, known as unilateral
shifts.

DEFINITION 5. Let V be an isometric operator in B(H ) . A subspace L ⊂ H
is called wandering for V , if VmL ⊥ VnL , for all n,m ∈ N∪ {0} , with n �= m .
Moreover, V is a unilateral shift if L satisfies

L ⊕VL ⊕V 2L ⊕ . . . = H . (13)

The wandering space for a unilateral shift V is uniquely determined by means of L =
H � ranV . Besides, it is straightforward to compute that

V ∗ = V−1⊕
{(

l
0

)
: l ∈ L

}
.

Let us introduce the following assertion which is well-known as the von Neumann-
Wold decomposition [37, Chap. I, Sec. 1, Thm. 1.1].

THEOREM 4. For every isometric operator V in B(H ) , there exists a unique
reducing subspace K for V , such that VK is unitary and VK ⊥ is a unilateral shift.
Namely, if

K :=
∞⋂

n=0

ranVn then K ⊥ =
∞⊕

n=0

VnL , where L = H � ranV . (14)

In Theorem 4, the space K may be trivial or the whole space.

COROLLARY 1. An isometric operator in B(H ) is a unilateral shift if and only
if it is completely nonunitary.

Proof. We first assume that V is a unilateral shift and suppose that K is a reduc-
ing subspace for V , in which VK is unitary. Then K =VnK ⊂VnH , for n = 0,1, . . .
Besides, in view of (13), the wandering space L for V satisfies

VnL = VnH �Vn+1H .
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Consequently, K ⊥VnL , for all n∈N∪{0} . Thus (13) implies K = {0} and hence
V is c.n.u. The converse readily follows from Theorem 4. �

Theorems 3 and 4 present two kinds of decompositions that are uniquely deter-
mined by their unitary and completely nonunitary parts. In what follows, we shall give
the respective decompositions for dissipative relations.

DEFINITION 6. A relation L is called dissipative if

Im〈 f ,g〉 � 0 , for all
(

f
g

)
∈ L .

Particularly, L is symmetric if L ⊂ L∗ and selfadjoint when L = L∗ . Moreover, L is
said to be maximal dissipative if it does not have proper dissipative extensions.

For the reader’s convenience, the following assertion is adapted from [31].

PROPOSITION 3. Let ζ be in the upper half-plane C+ , such that |ζ | = 1 . A
linear relation L is (closed, maximal) dissipative (symmetric, selfadjoint) if and only if
ZZZζ (L) is a (closed, maximal) contraction (isometry, unitary).

Proposition 3 clarifies that the Z transform gives a one-to-one correspondence be-
tween contractions and dissipative relations.

DEFINITION 7. We call a dissipative relation L completely nonselfadjoint (briefly
c.n.s.), if there is no nonzero reducing subspace K for L , in which LK is selfadjoint.

REMARK 5. If a closed dissipative relation L is c.n.s., then it is an operator. In-
deed, since domL ⊂ (mulL)⊥ (cf. [5, Sec. 2]), one has that mulL is a reducing sub-
space for L , in which L is selfadjoint. Hence, mulL = {0} , viz. L is an operator.

PROPOSITION 4. A relation L is a completely nonselfadjoint, dissipative relation
if and only if V = ZZZi(L) is a completely nonunitary, contraction.

Proof. We first suppose that L is a c.n.s. dissipative relation. By Proposition 3,
one has that V = ZZZi(L) is a contraction. Besides, if there exists a nonzero reducing
subspace K for V , such that VK is unitary, then Theorem 2 implies that K also
reduces L and Proposition 3 states that ZZZi(VK ) ⊂ L is selfadjoint. This contradicts our
assumption that L is c.n.s. Therefore, V is c.n.u. The proof of the converse is handled
in the same lines as above. �

We show in the next theorem the analogue of the Sz. Nagy-Foiaş-Langer de-
composition for any closed dissipative relations. Recently, in [10, Thm. 7.6], maximal
dissipative operators were decomposed in this way to elucidate the structure of the cor-
responding dilations.

THEOREM 5. If L is a closed dissipative relation, then there exists a unique re-
ducing subspace K for L, such that LK is selfadjoint and LK ⊥ is completely non-
selfadjoint.
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Proof. If L is a closed dissipative relation, then by Proposition 3, one has that
ZZZi(L) is a closed contraction. Thus, by virtue of Theorem 3, there exists a unique
reducing subspace K for ZZZi(L) , in which ZZZi(L)K is unitary and ZZZi(L)K ⊥ is c.n.u.
In this fashion, Theorem 2 implies that K reduces L and besides,

L = ZZZi(ZZZi(L))
= ZZZi(ZZZi(L)K ⊕ZZZi(L)K ⊥) = ZZZi(ZZZi(L)K )⊕ZZZi(ZZZi(L)K ⊥) .

(15)

Hence, one has from Remark 2 and Proposition 3 that LK = ZZZi(ZZZi(L)K ) is selfadjoint
and by virtue of Proposition 4, LK ⊥ = ZZZi(ZZZi(L)K ⊥) is c.n.s. To prove the uniqueness.
If K ′ holds the same properties of K , for L . Then, Theorem 2 asserts that K ′ also
reduces ZZZi(L) and

ZZZi(L) = ZZZi(LK ′ ⊕LK ′⊥) = ZZZi(LK ′)⊕ZZZi(LK ′⊥) .

Moreover, again by Remark 2 and Propositions 3, 4, one obtains that K ′ satisfies the
same properties of K , for ZZZi(L) . Hence K ′ = K , since K is unique for ZZZi(L) . �

REMARK 6. Theorem 5 and Remark 5 claim that the multivalued part of a closed
dissipative relation belongs to its selfadjoint part.

In what follows, we shall work with the class of symmetric relations. We follow
[31] in assuming that the spectral core of a symmetric relation A satisfies σ̂(A) ⊂ R .
Moreover, if A is maximal then σ(A) ⊂ C+ ∪R .

REMARK 7. Taking into account (3), if A is a completely nonselfadjoint, sym-
metric relation, then σc(A) = σ̂(A) . Indeed, the linear envelope of every eigenvector
of A is a reducing subspace for A , in which A is selfadjoint. Hence, σp(A) = /0 , since
A is c.n.s.

DEFINITION 8. A symmetric relation A is elementary-maximal, if ZZZi(A) is a uni-
lateral shift (q.v. [2, Sec. 82]).

REMARK 8. An elementary-maximal, symmetric relation A is actually maximal,
since the unilateral shifts are maximal. This involves that dimNNNζ (A∗) = 0, for all

ζ ∈ C− (q.v. [31]). Thus, the first von Neumann formula for relations (see for instance
[15, Thm. 6.1]) implies

A∗ = A�NNNζ (A∗) , (ζ ∈ C−) (16)

where for ζ = −i , the direct sum turns to be orthogonal.

LEMMA 1. A maximal symmetric relation is elementary-maximal if and only if it
is completely nonselfadjoint.



CANONICAL DECOMPOSITION 1515

Proof. It follows straightforward from Corollary 1 and Propositions 3, 4. �
The following assertion uses the fact that a maximal dissipative relation L satisfies

domL = (mulL)⊥ (cf. [5, Lem. 2.1]).

THEOREM 6. If A is an elementary-maximal, symmetric relation, then A is an
unbounded densely defined operator, with the following spectral properties:

σp(A) = /0 , σc(A) = R , σr(A) = C+ ,

σp(A∗) = C− , σc(A∗) = R , σr(A∗) = /0 .
(17)

Proof. If A is an elementary-maximal, symmetric relation, then it is a closed op-
erator, by virtue of Lemma 1 and Remark 5. Besides, domA is dense but not the whole
space, otherwise A is selfadjoint, which contradicts Lemma 1. These facts also imply
that A is unbounded.

We now proceed to show (17). Since A is c.n.s., it is straightforward to see from
Remark 7 that σp(A) = /0 . Additionally, Proposition 1 implies σr(A∗) ⊂ σp(A) = /0 .
Besides, (16) yields dimNNNζ (A∗) �= 0, for all ζ ∈ C− , which means C− ⊂ σp(A∗) . To

show the other inclusion, if ζ ∈ σp(A∗) , then there exists
(

f
ζ f

)
∈ A∗ , with ‖ f‖ = 1

and by (16), there is
(

h
k

)
∈ A and

(
t
−it

)
∈ A∗ , such that

(
f

ζ f

)
=
(

h
k

)
+
(

t
−it

)
. (18)

Note, t �= 0, since σp(A) = /0 . Moreover, by virtue of A is symmetric, one produces
〈h,k〉 ∈ R and 〈k, t〉 = −i〈h,t〉 . Thus, taking into account (18),

Imζ = Im〈 f ,ζ f 〉
= Im(〈h,k〉+2Re〈t,k〉− i‖t‖2) < 0 .

This proves σp(A∗) ⊂ C− and hence they are equals. Now, the maximality of A
implies σ(A) ⊂ C+ ∪ R . Consequently, by Remark 1 and since σr(A∗) = /0 , one
has that σ̂(A∗) = σ(A∗) ⊂ C− ∪R . Then, σ̂(A∗) = C− ∪R , since σ̂(A∗) is closed
and contains the lower half-plane. Hence, by virtue of (3), one obtains σc(A∗) = R .
To conclude, again Remark 1 yields σc(A) = R and σ(A) = C+ ∪R , which asserts
σr(A) = C+ . �

The method used in the proof of Theorem 6 can be carried over to unilateral shift
operators, holding similar properties to (17). Namely, if V is a unilateral shift, then

σp(V ) = /0 , σc(V ) = ∂D , σr(V ) = D ,

σp(V ∗) = D , σc(V ∗) = ∂D , σr(V ∗) = /0 ,

where D is the open unit disc and ∂D its boundary.
We conclude this section by showing the analogue of the von Neumann-Wold

decomposition for symmetric relations.
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THEOREM 7. If A is a maximal symmetric relation, then

K =
∞⊕

n=0

ZZZi(A)nL , with L = domNNN−i(A∗) , (19)

is the unique reducing subspace for A, such that AK ⊥ is selfadjoint and AK is
elementary-maximal.

Proof. From Proposition 3 and since A is a maximal symmetric relation, one has
that ZZZi(A) is an isometry in B(H ) . Then, by Theorem 4, there exists a unique reduc-
ing subspace K for ZZZi(A) , such that ZZZi(A)K ⊥ is unitary and ZZZi(A)K is a unilateral
shift. Besides, Theorem 2 shows that K reduces A . Thus, following the same reason-
ing of (15), one computes that

A = ZZZi(ZZZi(A)K )⊕ZZZi(ZZZi(A)K ⊥) .

Thereby, Remark 2 and Proposition 3 imply that AK ⊥ = ZZZi(ZZZi(A)K ⊥) is selfadjoint
and AK = ZZZi(ZZZi(A)K ) is symmetric, which certainly is elementary-maximal. There-
fore, from the properties of Z transform, (11) and (14), one has (19). Uniqueness is
proven following the same lines as the proof of Theorem 5. �

4. Example

We consider the Hilbert space of square-summable sequences l2(N) , with canoni-
cal basis {δk}k∈N . Let l2(fin)⊂ l2(N) denote the set of all sequences with only a finite
number of nonzero entries. We define the linear operator Ã , whose domain is

dom Ã :=

{
∑
k∈N

( fk − i fk−1)δk : ∑
k∈N

fkδk ∈ l2(fin)

}
,

such that

Ã

(
∑
k∈N

( fk − i fk−1)δk

)
= ∑

k∈N

(i fk − fk−1)δk .

We denote the closure of Ã by A and one easily checks that S := ZZZi(A) is the
shift operator Sδk = δk+1 , i.e., A is an elementary-maximal, symmetric operator. By
virtue of Theorem 6, A is unbounded, densely defined in l2(N) and satisfies the spectral
properties (17). Since ranS = l2(N)� span{δ1} , one has by (11) and (1) that

span{δ1} = l2(N)� ranZZZi(A)
= l2(N)� ran(A− iI) = ker(A∗ + iI) .

(20)

Consequently, (16) yields

A∗ = A⊕ span
{(

δ1−iδ1

)}
. (21)
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For abbreviation, we set K := l2(N)�span{δ1} and Y := span
{(

0
δ1

)}
. Besides,

we consider B := A�K
, which is a closed symmetric operator such that ZZZi(B) = S�K

.
Moreover, it is straightforward to compute that B = A∩Y ∗ and since Y is unidimen-
sional,

B∗ = (A∩Y ∗)∗

= −
(
(A∩Y ∗)⊥

)−1

= −
(
A⊥ � (Y ∗)⊥

)−1

= (−A−1)⊥ � (−(Y∗)−1)⊥

= A∗ �Y = A∗ �Y .

(22)

Now, we shall give an example of a maximal symmetric relation, which is not an
operator as well as its selfadjoint and elementary-maximal parts. We regard the linear
relation

A∞ := B⊕Y ,

which is a closed symmetric extension of B , with purely multivalued part Y . Since the
maximality of A is equivalent to dimNNNζ (A∗) = 0, with ζ ∈ C− (q.v. [31]), then by
(22), NNNζ (A∗

∞) ⊂NNNζ (B∗) = NNNζ (A∗) , whence it follows that A∞ is maximal. Following
the same reasoning of (20) and (21), for B in K , one produces

B∗ = B⊕ span
{(

δ2−iδ2

)}
. (23)

Thence, it is clear that K reduces A∞ and from Theorem 1, (10) and (23), one yields

that (A∞)∗ = B⊕ span
{(

δ2−iδ2

)}
⊕Y . Thus, domNNN−i((A∞)∗) = span{δ2} and

∞⊕
n=0

ZZZi(A∞)n(span{δ2}) =
∞⊕

n=0

ZZZi(B)n(span{δ2})

=
∞⊕

n=0

Sn(span{δ2}) = K .

Hence, by virtue of Theorem 7, we infer that K is the unique reducing subspace
for A∞ , such that (A∞)K ⊥ = Y and (A∞)K = B are their selfadjoint and elementary-
maximal parts, respectively.
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[33] KONRAD SCHMÜDGEN, Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Math-
ematics, vol. 265, Springer, Dordrecht, 2012. MR 2953553.

[34] B. M. SOLOMYAK, A functional model for dissipative operators. A coordinate-free approach, Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), no. Issled. Lineı̆n. Oper.
Teorii Funktsiı̆. 18, 57–91, 184–185. MR 1037765.

[35] LAURIAN SUCIU, Canonical decompositions induced by A-contractions, Note Mat. 28 (2008), no. 2,
187–202 (2010). MR 2681000.
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