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Abstract. In this work, we consider “finite bandwidth” reproducing kernel Hilbert spaces which
have orthonormal bases consisting of certain polynomials. We provide general conditions based
on a matrix recursion that guarantee such spaces contain a functional multiple of the Hardy
space. In a particular case, we obtain an explicit functional decomposition of these spaces that
greatly generalizes a previous result in the tridiagonal case due to Adams and McGuire. We also
prove that multiplication by z is a bounded operator on these spaces and that they contain the
polynomials.

1. The problem

If K(z,w) is a function defined on an open disc about the origin which is ana-
lytic in z and coanalytic in w , then K has a power series representation K(z,w) =
∑∞

j=0 ∑∞
k=0 a j,kz jwk. In the case that A = (a j,k) is a bounded matrix, it is an easy ex-

ercise to check that A is positive semi-definite on �2 if and only if the function K is,
and in this case by the Moore-Aronszajn Theorem the function K is the kernel for a
reproducing kernel Hilbert space H(K) (see [4]). In this case, the space H(k) consists
of analytic functions on a domain containing a disk about the origin in C . Recall the
well-known fact that if { fn} is an orthonormal basis for the reproducing kernel Hilbert
space (RKHS) of functions H(K) associated with K , then K(z,w) = ∑∞

n=0 fn(z) fn(w)
[7]. Conversely, if A can be factored as A = LL∗ where L has no kernel, then the
columns of L give the Taylor coefficients of an orthonormal basis for H(K) [1]. In
fact, H(K) can be identified with the range space of L in a very natural way [1]. This
range space identification will lie at the heart of most of our computations.

The Cholesky algorithm always allows for a factorization of a positive semi-definite
matrix A = LL∗ with L lower triangular. If A has finite bandwidth 2J + 1, then L is
lower triangular with J+1 non-trivial diagonals and we speak of a “bandwidth-2J+1”
kernel K . In particular, we say an analytic kernel K is of finite bandwidth-2J + 1 if
there exists an orthonormal basis of polynomials for H(K) of the form

{ fn(z) = (b0,n +b1,nz+ ..+bJ,nz
J)zn}.
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The simplest case where the space H(K) has bandwidth 1 was extensively studied by
Shields in [8] in the context of multiplication operators. Such spaces are referred to as
diagonal spaces and have orthonormal bases consisting of monomials.

In the context of bandwidth-2J+1 analytic kernels, the natural domain of H(K)
is given by Dom(K) = {z ∈ C : ∑∞

n=0 | fn(z)|2 < ∞}. Adams and McGuire established
that the natural domain for H(K) is a disk about the origin with up to J additional
points [2]. They explored the J = 1 case and gave an interesting family of kernels K
where H(K) is a nontrivial extension of a diagonal space [3]. In this paper, we show
how to generalize their results to higher bandwidths.

Now we can state the problem of interest. Throughout this work, z1,z2, . . . ,zJ

will be distinct points on the unit circle T and w1,w2, . . . ,wJ will be the corresponding
conjugates. The sequence of complex numbers a0,a1, . . . will be a sequence converging
to 1 so that 1−a j is nonvanishing. Define

φ(z) =
J

∏
j=1

(1−wjz) =
J

∑
k=0

βkz
k,

and fn(z) = znφ(anz) . We will follow the notational convention that β j = 0 if j < 0 or
j > J . Then

K(z,w) =
∞

∑
n=0

fn(z) fn(w)

is a bandwidth-2J+1 kernel for a RKHS H(K) with orthonormal basis { f0, f1, . . .}.
Theorems 3.4 and 3.9 show that in the case where limn→∞ n(1− an) = p and

p > 1/2, H(K) has natural domain D = D∪{z1,z2, . . . zJ} and decomposes as

H(K) = φ(z)H2(D)+CK(z,z1)+CK(z,z2)+ · · ·+CK(z,zJ).

Moreover, in this case, multiplication by z is a bounded operator and the polynomials
are contained in H(K) .

These results generalize those in [3] and [9] to higher bandwidth and more general
weight sequences. This leads to a very nice functional characterization of certain finite
bandwidth spaces. The primary innovation in this work is the use of matrix recursion
to bound the norm of infinite dimensional matrices, a program which was started in [9].
Key also is the role played by the combinatorial Theorems 4.2 and 4.3.

2. Preliminaries

The first result shows that the restrictions of the functions in H(K) to the disc D

are in the Hardy space.

PROPOSITION 2.1. H(K) ⊂ H2(D) .
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Proof. If f ∈H(K) , then there exists an �2 sequence {αn} such that f = ∑∞
n=0 αn fn .

Thus, treating any variables with negative subscripts as 0:

f (z) =
∞

∑
n=0

αn fn(z)

=
∞

∑
n=0

αn

(
J

∑
k=0

βka
k
nz

n+k

)

=
∞

∑
n=0

(
J

∑
k=0

αn−kβka
k
n−k

)
zn

=
∞

∑
n=0

α̂nz
n.

By the Cauchy-Schwarz inequality, |α̂n|2 � c2 ∑J
k=0 |αn−k|2 , where c is a constant

that depends only on the zeros z1,z2, . . . ,zJ and the sequence {an} (which of course is
bounded). In fact, we can take

c2 = (J +1) max
0�k�J

|βk|2 max
0�k�J

‖{an}‖2k
�∞ .

Thus, ∑∞
n=0 |α̂n|2 � (J +1)c2 ∑∞

n=0 |αn|2 and f is in H2(D) . �
Given the basis fn(z) = φ(anz)zn and the fact that an → 1 it is reasonable to

ask when functions of the form φ(z) f (z) for f ∈ H2(D) are in H(K) . The rate of
convergence of an to 1 is crucial in assessing when this is the case. Douglas’ Range
Inclusion Lemma (see [6]) will provide the major tool to answer this question.

To this end, let L be the matrix whose n th column consists of the Taylor co-
efficients of fn(z) and let L̂ be the matrix whose n th column consists of the Taylor
coefficients of znφ(z) . By Douglas’ Lemma, φ(z)H2(D) ⊂ H(K) if and only if there
is a bounded matrix C =

(
c j,k
)

j,k�0 such that L̂ = LC . Solving this equation for C

is complicated and will involve a recursion. First note that L and L̂ are both lower
triangular which implies that C is as well. So one must solve⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 0 0 · · ·
β1 β0 0 · · ·
β2 β1 β0

. . .
...

...
...

. . .
. . .

βJ βJ−1 βJ−2
. . .

0 βJ βJ−1
. . .

0 0 βJ
. . .

...
...

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 0 0 · · ·
β1a0 β0 0 · · ·
β2a2

0 β1a1 β0
. . .

...
...

...
. . .

. . .

βJaJ
0 βJ−1a

J−1
1 βJ−2a

J−2
2

. . .

0 βJaJ
1 βJ−1a

J−1
2

. . .

0 0 βJaJ
2

. . .
...

...
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0 0 0 · · ·
c1,0 c1,1 0

. . .

c2,0 c2,1 c2,2
. . .

c3,0 c3,1 c3,2
. . .

c4,0 c4,1 c4,2
. . .

c5,0 c5,1 c5,2
. . .

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

for C .
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Considering the n th column of matrix C and using the fact that β0 = 1 for all n ,
leads to the recursion:

cn,n = 1 for all n,

cn+k,n = βk −
k

∑
i=1

βia
i
n+k−icn+k−i,n if 1 � k � J, ∗

cn+k,n = −
J

∑
i=1

βia
i
n+k−icn+k−i,n if k > J. ∗ ∗

This recursion is profitably viewed as a vector recursion. For n � 0 and j � n+J ,
let �v j,n =

(
c j−J+1,n,c j−J+2,n, . . . ,c j,n

)T
. The J by J matrix

Mn =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · 0 1
−βJaJ

n−J+1 −βJ−1a
J−1
n−J+2 −βJ−2a

J−2
n−J+3 · · · −β2a2

n−1 −β1an

⎞⎟⎟⎟⎟⎟⎠
encodes the map which takes (c1,c2, . . . ,cJ)T to

(
c2,c3, . . . ,cJ ,−∑J

i=1 βiai
n−i+1cJ+1−i

)T
.

This allows equation ** to be expressed by the recursion: �vn+k,n = Mn+k�vn+k−1,n for
k > J . Tracing the recursion backwards, one obtains

�vn+k,n = Mn+kMn+k−1 · · ·Mn+J+1�vn+J,n for k > J.

The recursion matrix Mn and its pointwise limit

M∞ =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . . 1 0
0 0 0 . . . 0 1

−βJ −βJ−1 −βJ−2 . . . −β2 −β1

⎞⎟⎟⎟⎟⎟⎠
will play dominant roles in what follows. Note that �ν j =

(
zJ−1

j ,zJ−2
j , . . . ,z j,1

)T
is

an eigenvector for M∞ with eigenvalue wj for j = 1, . . . ,J . It is well-known that
{�ν j : j = 1,2, . . .J} forms a basis for CJ , and it turns out that in the proceeding section
it will be useful to describe the action of Mn in terms of a basis of these eigenvectors.

To determine when C is bounded, we will estimate the norms of such matrix
products for large k . The following result due to Adams and McGuire in [3] will then
provide the desired condition:
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THEOREM 2.2. (Adams-McGuire) If p > 0 , then the matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

p
2 0 0 0 . . .

p
2 ( 2

3 )p p
3 0 0 . . .

p
2 ( 2

4 )p p
3 ( 3

4 )p p
3 0 . . .

p
2 ( 2

5 )p p
3 ( 3

5 )p p
4 ( 4

5 )p p
5 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is bounded if and only if p > 1

2 .

The following result gives sufficient conditions on the decay of the norms of prod-
ucts of the matrices Mn and the norms of the “starting vectors” in order for the contain-
ment φ(z)H2(D) ⊂ H(K) to hold.

THEOREM 2.3. If Mn is the recursion matrix defined above and for some p >
1/2 , μ ∈ Z

+ , N � J , and D1 > 0 , we have the estimate

||Mn+μ−1Mn+μ−2 · · ·Mn|| � (1− pμ/n)

for all n � N , and

||�vn+J,n|| � D1
p

n+ J

for all n , then φ(z)H2(D) ⊂ H(K) .

Proof. First notice that it suffices to prove that the matrix C defined above is the
matrix of a bounded operator on �2 . Let D2 = supn‖Mn‖ . Note it is clear that D2 < ∞
as the entries in Mn are uniformly bounded in n .

Given n,k ∈ Z+ with k � N + J , let m be the largest integer such that k−mμ �
N + J . Then m � 0, and from the recursion∣∣cn+k,n

∣∣ �
∥∥�vn+k,n

∥∥
=
∥∥Mn+kMn+k−1 · · ·Mn+k−mμ+1�vn+k−mμ,n

∥∥
�
∥∥Mn+kMn+k−1 · · ·Mn+k−mμ+1

∥∥‖�vn+k−mμ,n‖

�
m

∏
j=1

(1− pμ/(n+ k+1− jμ))‖‖�vn+k−mμ,n‖.
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For 0 < ε < 1, log(1− ε) < −ε . Without loss of generality we may assume N > pμ ,
which affords

log
m

∏
j=1

(1− pμ/(n+ k+1− jμ)) <
m

∑
j=1

(−pμ/(n+ k+1− jμ))

<
m−1

∑
j=0

(−pμ/(n+N+ J +1+( j +1)μ))

�
∫ m

0

(
− pμ

N′ + μx

)
dx

= −p log(N′ + μx)
∣∣m
0

= log

([
N′

N′ +mμ

]p)
where N′ = n+N + J + μ +1. Therefore,

|cn+k,n| �
[

N′

N′ +mμ

]p

‖�vn+k−mμ,n‖

=
[

N′

N′ +mμ

]p

‖Mn+k−mμMn+k−mμ−1,n · · ·Mn+J+1�vn+J,n‖

�
[

N′

N′ +mμ

]p

DN+μ
2 ‖�vn+J,n‖

� DN+μ
2 D1

p
n+ J

[
N′

N′ +mμ

]p

.

Recalling that the Schur or Hadamard product of a bounded matrix with another
matrix with entries bounded away from 0 and ∞ is bounded (see Lemma 2.1 in [3]), a
simple application of the preceding theorem demonstrates that C is bounded. �

3. Finite bandwidth reproducing kernels

In this section, we obtain an explicit decomposition for these spaces in analogy
with [3] in the case p > 1/2 and limn→∞ n(1− an) = p . In doing so we substantially
extend their results to arbitrary bandwidths and more general weight sequences.

The following two lemmas have routine proofs and are needed for the purposes of
computation.

LEMMA 3.1. If A1,A2, . . . ,Ak are n× n matrices with complex entries bounded
in modulus by c then

||A1 . . .Ak|| � nkck.

LEMMA 3.2. If z1,z2, . . . ,zJ are points on the unit circle T , then (1,1, . . . ,1) ∈
C

J is a limit point of the set {(zμ
1 ,zμ

2 , . . . ,zμ
J

)
: μ ∈ Z

+} .
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Proof. Repeatedly apply the compactness of T . �
We now proceed to the statement and proof of the main lemma.

LEMMA 3.3. Let Mn denote the recursion matrix defined above, {an} a sequence
satisfying limn→∞ n(1− an) = p where p > 1/2 , and X the change of basis matrix
whose j th column is the eigenvector �ν j of the limiting matrix M∞. If M̂n = X−1MnX ,
then for all ε > 0, there exist positive integers μ and N such that for all n > N

||M̂n+μ−1 . . .M̂n|| � 1− (μ p− ε)
n

.

Proof. Let μ be a large positive integer to be chosen later and fix k with 0 � k <
μ−1. We will choose N later based on an appropriate choice of μ . Linearize Mn+k by
writing Mn+k = M∞ +(p/n)B+Rn,k, where B is the J by J matrix whose first J− 1
rows are zero and whose last row is(

JβJ (J−1)βJ−1 (J−2)βJ−2 . . . 2β2 β1
)

and Rn,k is the J by J matrix whose first J−1 rows are zero and whose J th row is((
1−aJ

n−J+k+1− pJ
n

)
βJ . . .

(
1−a2

n−1+k− 2p
n

)
β2
(
1−an+k− p

n

)
β1

)
.

Since Rn,k can be bounded entrywise by E(n)
n , where E(n) is some function sat-

isfying limn→∞ E(n) = 0, it follows by Lemma 3.1 that ||Rn,k|| � JE(n)
n . We compute

M̂n+μ−1 . . .M̂n = X−1
μ−1

∏
k=0

(M∞ +
pB
n

+Rn,k)X

= X−1

(
Mμ

∞ +
μ−1

∑
k=0

Mk
∞

pB
n

Mμ−1−k
∞ +R

)
X ,

where R is the sum of all products in the expansion involving the matrices Rn,k . (There

are 3μ − μ − 1 such terms). Thus, ||X−1RX || < C1E(n)
n where C1 is a constant that

depends only on J and μ .
The crucial norm estimate will come from

X−1

(
Mμ

∞ +
μ−1

∑
k=0

Mk
∞

B
n

Mμ−1−k
∞

)
X ,

so we turn to a computation of this norm. A straightforward Gaussian elimination
shows that the vector �ν0 = (0,0, . . . ,0,1) can be expressed in terms of the eigenvectors
for M∞ as ∑J

j=1 −wj/φ ′(z j)�ν j .

To compute the norm of X−1
(
Mμ

∞ + ∑μ−1
k=0 Mk

∞
B
n Mμ−1−k

∞

)
X , consider the action

of ∑μ−1
k=0 Mk

∞
B
n Mμ−1−k

∞ on �νh for h ∈ {1,2, . . . ,J} . Note that φ(z) = 1+ ∑J
k=1 βkzk =
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∏J
j=1(1−wjz) and notice that

φ ′(zh) = −wh ∏
j: j 	=h

(1−wjzh) =
J

∑
k=1

kβkz
k−1
h .

Now, z j is on the unit circle, so (1−wjzh) = wj(z j − zh).
Thus,

φ ′(zh) = (−
J

∏
j=1

wj) ∏
j: j 	=h

(z j − zh).

Therefore,

B�νh = φ ′(zh)�ν0

= φ ′(zh)
J

∑
j=1

−wj/φ ′(z j)�ν j

= −wh�νh − ∑
j: j 	=h

wj
φ ′(zh)
φ ′(z j)

�ν j.

Thus,

μ−1

∑
k=0

Mk
∞

pB
n

Mμ−1−k
∞ �νh =

μ−1

∑
k=0

wμ−1−k
h Mk

∞
pB
n

�νh

= − p
n
wμ−1

h

μ−1

∑
k=0

w−k
h Mk

∞

(
wh�νh + ∑

j: j 	=h

wj
φ ′(zh)
φ ′(z j)

�ν j

)

= − p
n
wμ−1

h

μ−1

∑
k=0

w−k
h

(
wk+1

h �νh + ∑
j: j 	=h

wk+1
j

φ ′(zh)
φ ′(z j)

�ν j

)

= −μ p
n

wμ
h�νh + ∑

j: j 	=h

− p
n

wj

w1−μ
h

(
1− (wj/wh)μ

1−wj/wh

)
φ ′(zh)
φ ′(z j)

�ν j.

By Lemma 3.2, for each ε > 0, there is a μ ∈ N such that each of the modulus of each
of coefficients of v j for j 	= h above is less than ε

2Jn .

Since Mμ
∞�νh = wμ

h �vh , it follows that the norm of X−1
(
Mμ

∞ + ∑μ−1
k=0 Mk

∞
B
n Mμ−1−k

∞

)
X

is bounded above by the norm of the matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
1− μ p

n

) ε
2Jn

ε
2Jn

ε
2Jn . . . ε

2Jnε
2Jn

(
1− μ p

n

) ε
2Jn

ε
2Jn . . . ε

2Jnε
2Jn

ε
2Jn

(
1− μ p

n

) ε
2Jn . . . ε

2Jnε
2Jn

ε
2Jn

ε
2Jn

(
1− μ p

n

)
. . . ε

2Jn
...

...
...

...
. . .

...
ε

2Jn
ε

2Jn
ε

2Jn
ε

2Jn · · · (1− μ p
n

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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But from the triangle inequality we have the estimate

||P|| �
(
1− μ p

n

)
+

ε
2n

.

Putting all of our calculations together and choosing N large enough so that for
n > N , E(n) < ε

2C1
, we deduce that, for all n > N :∥∥∥M̂n+μ−1 . . .M̂n

∥∥∥� 1− μ p
n

+
ε
2n

+
ε
2n

= 1− (μ p− ε)
n

. �

Now we are ready to prove the containment result.

THEOREM 3.4. If H(K) denotes the reproducing kernel Hilbert space with or-
thonormal basis

fn(z) = φ(anz)zn

satisfying p > 1/2 and limn→∞ n(1−an) = p, then φ(z)H2(D) ⊂ H(K) .

Proof. This is a simple application of Theorem 2.3 and Lemma 3.3. First, choose
ε > 0 sufficiently small so that p−ε > 1/2. By Lemma 3.3, there exist positive integers
μ and N such that for all n > N

||M̂n+μ−1 . . .M̂n|| � 1− (μ p− ε)
n

= 1− μ p′

n
,

where p′ = p− ε
μ > 1/2. Note∥∥Mn+μ−1Mn+μ−2 · · ·Mn

∥∥ =
∥∥∥XM̂n+μ−1M̂n+μ−2 · · ·M̂nX

−1
∥∥∥

�
∥∥∥M̂n+kM̂n+k−1 · · ·M̂n+k−mμ+1

∥∥∥‖X‖‖X−1‖

� ‖X‖‖X−1‖
(

1− μ p′

n

)
.

The extra constant is harmless in regards to the proof of Theorem 2.3.
It only remains to check the growth rate on the starting vectors �vn+J,n , using our

previous notation. We claim that for each 1 � j � J , there exists a bounded sequence of
complex numbers {αn, j}n , such that for all n∈N , cn+ j,n = (1−an)αn, j . Note that this
implies there exists a positive real constant M such that ||�vn+J,n|| � M|1− an| , which
in turn implies the starting vectors satisfy the growth rate of Theorem 2.3.

We prove the claim by induction on j . For the base case, note that cn+1,n =
β1−anβ1cn,n = β1(1−an) . Then notice that

cn+ j,n = β j(1−a j
n)−

j−1

∑
i=1

βia
i
n+ j−icn+ j−i,n

= β j(1+an +a2
n + . . .+a j−1

n )(1−an)−
j−1

∑
i=1

βia
i
n+ j−i(1−an)αn, j−i.
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By induction, the claim holds.
As the hypotheses of Theorem 2.3 are evidently satisfied, the containment fol-

lows. �

EXAMPLE 3.5. This example shows that if an → 1 more rapidly then an = 1−
p/n , then the containment of the previous result does not occur. Specifically, if J = 2,
z1 = 1, z2 = −1, and an = 1− 1

(n+2)2 , then (1− z)(1+ z)H2(D) ⊆ H(K) if and only if

there is a bounded matrix C satisfying L̂ = LC , where

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
0 1 0 · · ·
−1 0 1 · · ·
0 −1 0

. . .

0 0 −1
. . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
0 1 0 · · ·

− 9
16 0 1 · · ·
0 − 64

81 0
. . .

0 0 − 225
256

. . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0 0 0 · · ·
c1,0 c1,1 0 · · ·
c2,0 c2,1 c2,2

. . .

c3,0 c3,1 c3,2
. . .

c4,0 c4,1 c4,2
. . .

c5,0 c5,1 c5,2
. . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The entries of C are completely determined by this equation and it is straightfor-
ward to show that limcn,0 	= 0 and thus that C is not bounded. The same argument
works for an = 1− 1

(n+2)p with p > 1.

Before tackling the second half of the decomposition, a few different results will be
required. First, to ensure this decomposition actually makes sense we need to establish
that the natural domain of H(K) , which we denote by D , of H(K) consists of the unit
disc D plus the J “extra” points on the boundary z1,z2, . . . ,zJ .

PROPOSITION 3.6. If D denotes the natural domain of the space H(K) , then

D = D∪{z1,z2, . . . zJ}

Proof. It suffices to verify that for 1 � j � J we have ∑∞
n=0 | fn(z j)|2 < ∞ . But this

is clear, as ∑∞
n=0 | fn(z j)|2 � ∑∞

n=0 |1−an|2 which is comparable to ∑∞
n=0

p2

n2 < ∞ . �
Next, we proceed to state two technical propositions that we will need in the forth-

coming proof. The proofs are postponed to the next section. The second theorem relies
on results from the theory of symmetrical polynomials.

PROPOSITION 3.7. The matrix A defined by

A =

⎛⎜⎜⎜⎝
K(z1,z1) K(z2,z1) · · · K(zJ ,z1)
K(z1,z2) K(z2,z2) · · · K(zJ ,z2)

...
... · · · ...

K(z1,zJ) K(z2,zJ) · · · K(zJ ,zJ)

⎞⎟⎟⎟⎠
is invertible.
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PROPOSITION 3.8. For j ∈ {1,2, . . .J} define

μ j = ∏
k 	= j

(wj −wk).

If, for n ∈ Z

Qn(x) =
J

∑
j=1

wJ
j

μ j
φ(x/wj)wn

j ,

then Q0(x),Q1(x), . . . satisfy the recursion:

n

∑
i=0

βiQn−i(x) = βn+1(xn+1−1).

THEOREM 3.9. For every f ∈ H(K), there exists a g ∈ H2(D) and constants
b1,b2, . . . ,bJ ∈ C, such that

f (z) = φ(z)g(z)+b1K(z,z1)+ · · ·+bJK(z,zJ).

Proof. Given f ∈ H(K) , first choose b1,b2, . . . ,bJ so that

f (z)−b1K(z,z1)−b2K(z,z2)−·· ·−bJK(z,zJ)

vanishes at z = z1, . . . ,zJ . Note this is always possible in light of Proposition 3.7. Thus,
assume, without loss of generality, that f ∈ H(K) satisfies f (z1) = f (z2) = · · · =
f (zJ) = 0 for j = 1,2, . . . ,J . Our goal now becomes to demonstrate the existence
of a g ∈ H2(D) so f = φg .

As f ∈ H(K), there exists {αn} ∈ �2 such that

f (z) =
∞

∑
n=0

αn fn(z).

We shall refer to such a sequence {αn} as permissable. We will produce a sequence
{gn} ∈ �2 such that

f (z) = φ(z)

(
∞

∑
n=0

gnz
n

)
.

Expanding both expressions for f and equating gives:

∞

∑
n=0

J

∑
k=0

αna
k
nβkz

kzn =
∞

∑
n=0

J

∑
k=0

gnβkz
kzn

Equating like powers of z above leads to the equation

J

∑
k=0

αn−kβka
k
n−k −gn−kβk = 0 for n = 0,1,2, . . . .
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where any quantities with negative subscripts are treated as zero. Since β0 = 1, this
relationship can be expressed as the recursion:

* gn = αn +

(
n−1

∑
j=n−J

α jβn− ja
n− j
j −g jβn− j

)
.

Recursion * shows that one may express g j as a linear combination,

gn =
n

∑
k=0

cn,kαk,

for some constants cn,k.
Applying * and equating like coefficients leads to

cn,n = 1,

cn,k = βn−ka
n−k
k −

n−k

∑
i=1

βicn−i,k n− J � k � n−1,

and for 0 � k � n− J−1,

cn,k = −
J

∑
i=1

βicn−i,k.

This suggests that one let {pn : n∈ Z+} be the sequence of polynomials defined by the
linear recursion:

p0(x) = 1,

p1(x) = −β1(1− x),

...

pn(x) = βnx
n−

n

∑
i=1

βi pn−i(x)

...

pJ(x) = βJx
J −

J

∑
i=1

βi pJ−i(x)

and thereafter, if n � J +1,

** pn(x) = −
J

∑
i=1

βi pn−i(x).

Then
cn+k,k = pn(ak) if n � 0.

To prove this claim, notice that it follows directly for all k � 0 if n = 0,1, . . . ,J using
induction. The cases n > J then follow from the recursion by induction.



FINITE BANDWIDTH REPRODUCING KERNEL HILBERT SPACES 1533

Thus the map {αn} �→ {gn} is encoded by the following matrix Bp (that is,
{gn}∞

n=0 = Bp{αn}∞
n=0 ) where

Bp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 . . .
p1(a0) 1 0 0 0 0 . . .

p2(a0) p1(a1) 1 0 0 0
. . .

p3(a0) p2(a1) p1(a2) 1 0 0
. . .

p4(a0) p3(a1) p2(a2) p1(a3) 1 0
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If the matrix Bp were bounded as an operator, then the desired result would follow
immediately. However, the columns of Bp are not in �2 . We will use the assumption
that f (z j) = 0 for j = 1,2, . . . ,J , to find an equivalent encoding of the map {αn} �→
{gn} which is bounded.

To find this alternate encoding of Bp , begin by considering the vector

�vn =
(
pn(a0) pn−1(a1) · · · p2(an−2) p1(an−1) 1 0 · · ·)

which equals the n’th row of Bp . Let z j be a root of φ . The fact that f (z j) = 0 is
equivalent to the equation ∑∞

n=0 αnφ(anz j)zn
j = 0 which in turn means that the vector

�wj =
(
φ(a0z j) φ(a1z j)z j φ(a2z j)z2

j φ(a3z j)z3
j · · ·

)
for j ∈ {1,2, . . .J}

is orthogonal to any permissible �α = (αn)∞
n=0.

Let q j,n(x) = φ(xz j)z−n
j for n ∈ Z . Then the polynomial sequence {q j,n : n ∈ Z}

satisfies condition ** satisfied by {pn : n ∈ Z+} . (This follows directly from the fact
that z j is a root of φ .) Moreover, the vector

�u j =
(
q j,n(a0) q j,n−1(a1) . . . q j,1(an−1) q j,0(an) q j,−1(an+1) · · ·

)
equals wn

j�wj and thus is orthogonal to all permissible sequences.
Therefore, the n th row �vn of Bp can be replaced by �vn less any linear combi-

nation of the vectors �u1,�u2, . . .�uJ without changing the action on permissible vectors.
Proposition 3.8 shows that subtracting �v′n = (Qn−1(a0),Qn−2(a1)),Qn−3(a2), . . .) from
�vn zeroes out the first n entries. Thus, an equivalent encoding of Bp is given by the
matrix

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1−Q−1(a0) −Q−2(a1) −Q−3(a2) −Q−4(a3) . . .
0 1−Q−1(a1) −Q−2(a2) −Q−3(a3) . . .

0 0 1−Q−1(a2) −Q−2(a3)
. . .

0 0 0 1−Q−1(a3)
. . .

· · · · · · · · · . . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Since w1,w2, . . . ,wJ are discrete points on the unit circle, it is a straightforward
exercise to show that there exists a constant c , independent of m and n , such that
|Qn(am)| � c(1−am).

Thus the map {α j} �→ {g j} is bounded if the matrix Ĉ is bounded where

Ĉ =

⎛⎜⎜⎜⎜⎜⎝
1−a0 1−a1 1−a2 . . .

0 1−a1 1−a2
. . .

0 0 1−a3
. . .

· · · · · · . . .
. . .

⎞⎟⎟⎟⎟⎟⎠ .

But this matrix is known to be bounded since the entries behave asymptotically
like p

n (see Theorem 2.2 in [3]), establishing the result. �

REMARK 3.10. Note that the preceding result is independent of p (it holds for
all p > 0). Compare this to Theorem 3.4.

REMARK 3.11. Note that the proof of the preceding theorem demonstrates that
if we had taken a js with a slower convergence rate, we would not have obtained a

bounded matrix for Ĉ . In particular, suppose that a j = 1−
(

1
j+2

)p
where p < 1/2.

Then we would obtain

Ĉ =

⎛⎜⎜⎜⎜⎜⎝
1
2p

1
3p

1
4p . . .

0 1
3p

1
4p

. . .

0 0 1
4p

. . .

· · · · · · . . .
. . .

⎞⎟⎟⎟⎟⎟⎠ .

This matrix is easily seen to be unbounded (in particular the �2 norms of its
columns approach ∞), which suggests (but does not prove) that we might not obtain
the result of the theorem in this case. Together with Example 3.5, this helps justify
the consideration of spaces with the specific growth rate given in the hypothesis of the
theorem.

Theorem 3.9 admits the following corollary, completing our characterization of
these spaces when p > 1

2 and limn→∞ n(1−an) = p :

COROLLARY 3.12. If p > 1/2 and limn→∞ n(1−an) = p, then

H(K) = φ(z)H2(D)+CK(z,z1)+CK(z,z2)+ · · ·+CK(z,zJ).
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4. Proof of combinatorial propositions

LEMMA 4.1. If fn(z) = φ(anz)zn
j is the nth basis vector for H(K) , then for some

n, the matrix

Bn =

⎛⎜⎜⎜⎝
fn(z1) fn(z2) · · · fn(zJ)

fn+1(z1) fn+1(z2) · · · fn+1(zJ)
...

...
...

...
fn+J−1(z1) fn+J−1(z2) · · · fn+J−1(zJ)

⎞⎟⎟⎟⎠
is invertible.

Proof. Define φ j(z) = ∏k 	= j(1−wkz) and notice that fn(z j) = φ j(anz j)zn
j (1−an).

Notice that Bn can be written as the product Bn = D1CnD2 where D1 is the diagonal
matrix with entries 1−an,1−an+1, . . .1−an+J−1 and D2 is the diagonal matrix with
entries zn+1

1 ,zn+1
2 , . . . zn+1

J . Thus,

Cn =
(

φ j(an+iz j)zi−1
j

)J

i, j=1
.

Notice that the component-wise limit of Cn as n → ∞ is

C∞ =
(

φ j(z j)zi−1
j

)J

i, j=1
,

which is the matrix product of the Vandermonde matrix V =
(
zi−1

j

)J

i, j=1
with the diag-

onal matrix D3 with entries φ1(z1),φ2(z2), . . . ,φJ(zJ) . Since these matrices are invert-
ible, so too is C∞ . Since the invertible matrices form an open set set in CJ2

, Cn must
be invertible for some n. �

Proof of Proposition 3.7. Suppose that A�v =�0 for some �v ∈ CJ . Then

0 = 〈A�v,�v〉 = ||
J

∑
k=1

vkK(z,zk)||2

But, this implies that ∑J
k=1 vkK(z,zk) = 0.

Use the preceding lemma to find J elements g1,g2, . . . ,gJ of H(K) with the prop-
erty that g j(zk) = 0, if k 	= j and g j(z j) = 1. Thus,

v j =
J

∑
k=1

〈g j(z),vkK(z,zk)〉 = 〈g j(z),
J

∑
k=1

vkK(z,zk)〉 = 〈g j(z),0〉 = 0.

In other words, A has trivial kernel, so must be invertible. �

The following two theorems from combinatorics provide the necessary tools to
prove Proposition 3.8. Theorem 4.2 appears in [5] while Theorem 4.3 is a well-known
result in combinatorics.
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THEOREM 4.2. (See [5] Theorem 2.2.) For each integer m � 0 ,

J

∑
j=1

xm
j /μ j = hm−J+1(x1,x2, . . . ,xJ),

where hk is the k ’th homogeneous symmetric polynomial, which is defined to be zero
for k < 0 .

THEOREM 4.3. For each integer m > 0 ,

m

∑
i=0

βihm−i(x1,x2, . . . ,xJ) = 0.

Theorem 4.3 is a well-known result in the field of symmetric polynomials and we
omit its proof. Now we are in a position to prove Proposition 3.8:

Proof of Proposition 3.8. First assume 0 � n < J , and write

n

∑
i=0

βiQn−i(x) =
J

∑
k=0

akx
k.

Then

n

∑
i=0

βiQn−i(x) =
n

∑
i=0

βi

J

∑
j=1

wJ
j

μ j
φ(x/wj)wn−i

j

=
n

∑
i=0

βi

J

∑
j=1

J

∑
k=0

wJ
j

μ j
βk

(
x
wj

)k

wn−i
j

=
J

∑
k=0

βkx
k

n

∑
i=0

βi

J

∑
j=1

wJ+n−i−k
j

μ j

=
J

∑
k=0

βkx
k

n

∑
i=0

βihn−k−i+1(w1, . . . ,wJ).

Thus,

a0 = β0

n

∑
i=0

βihn−i+1(w1, . . . ,wJ).

Now β0 = 1 and from Theorem 2, ∑n+1
i=0 βihn−i+1(w1, . . . ,wJ) = 0. Thus, a0 =−βn+1.

Now suppose 1 � k � n . Then

ak = βk

n

∑
i=0

βihn−k−i+1(w1, . . . ,wJ)

= βk

n−k+1

∑
i=0

βihn−k−i+1(w1, . . . ,wJ)

= 0.
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For k = n+1,

an+1 = βn+1

n

∑
i=0

βih−i(w1, . . . ,wJ) = βn+1

since only the first term in the sum is non-zero.
If n+1 < k < J , then n− k− i+1 is always negative for i � 0 so

ak = βk

n

∑
i=0

βihn+1−k−i(w1, . . . ,wJ) = 0.

This shows that recursion * holds for 0 � n < J .
Now, suppose n � J. Then,

n

∑
i=0

βiQn−i(x) =
J

∑
k=0

βkx
k

n

∑
i=0

βihn−k−i+1(x1, . . . ,xJ)

Since n � J , and β j = 0 for j > J , Theorem 2 applies to show that the sum ∑n
i=0 βiQn−i(x)

equals zero. �

5. Some additional consequences

Consider next the natural question of whether H(K) is closed under multiplication
by the independent variable z . We have the following result:

THEOREM 5.1. If p > 1
2 and limn→∞ n(1− an) = p, then z is a multiplier on

H(K).

Proof. It is sufficient to show that the matrix representation of Mz with respect
to the orthonormal basis { fn : n ∈ N} is bounded as a matrix. Denote this matrix as
C = (ck,n) . Thus

Mz( fn) =
∞

∑
k=0

ck,n fk

with the coefficients ck,n yet to be determined. Expanding the sum and rearranging as
powers of z shows that ck,n = 0 for k � n and leads to the recursion:

cn+1,n = 1,

cn+ j+1,n = β ja
j
n−

j

∑
i=1

βia
i
n+ j+1−icn+ j+1−i,n if 0 � j � J,

cn+J+k+1,n = −
J

∑
i=1

βia
i
n+J+k+1−icn+J+k+1−i,n if 1 � k.

Notice that for k � 1, this is precisely the same recursion encoded by Mn and Theorem
3.4 applies to demonstrate the boundedness of C (as before, it is straightforward to
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show the starting vectors have the appropriate decay and we omit the details, just note
that the diagonal of 1s can be removed without affecting the boundedness of C ). �

Thus, in addition to establishing that the multiplier algebra of H(K) contains the
polynomials, we get the following nice result:

COROLLARY 5.2. Let H(K) denote the reproducing kernel Hilbert space with
orthonormal basis

fn(z) = φ(anz)zn.

If p > 1/2 and limn→∞ n(1−an) = p, then H(K) contains the polynomials.

Proof. In light of Theorem 5.1, it suffices to show that 1 ∈ H(K) . Write

1 =
∞

∑
n=0

cn fn(z) =
∞

∑
n=0

(
J

∑
j=0

cnβ ja
j
nz

j+n

)
.

It is enough to show {cn} ∈ �2 . Equating like powers of z leads to the recursion with
starting value c0 = 1 and thereafter:

c j = −
j

∑
i=1

c j−iβia
i
j−i if j � 1

where we recall that βi = 0 if i > J . Once again, the vectors �vn = (cn−J+1,cn−J+2, . . . ,cn)
T

satisfy the recursion �vn+1 = Mn+1�vn for n = J,J + 1, . . . and the result follows as be-
fore. �

Much future work could be done in this area. For instance, one could try to obtain
a full characterization of the multiplier algebras of these finite bandwidth spaces.
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