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MULTILINEAR HAUSDORFF OPERATOR AND COMMUTATORS

ON WEIGHTED MORREY AND HERZ SPACES

DAO VAN DUONG ∗ AND NGO THI HONG

(Communicated by S. McCullough)

Abstract. In this paper, we establish some necessary and sufficient conditions for the bound-
edness of multilinear Hausdorff operators on weighted central Morrey and Herz type spaces.
Moreover, we also discuss some sufficient conditions for the boundedness of commutators of
multilinear Hausdorff operators on weighted Morrey–Herz spaces. By these, we generalize some
previous known results.

1. Introduction

The Hausdorff operator is of fundamental importance in many branches of mathe-
matical analysis, and has been intensively studied since its important applications. The
history of the Hausdorff operator can be traced back to the work of Hurwitz and Sil-
verman [22] in 1917, and then was proposed by Hausdorff [21] to study summability
of number series (see also [18], [19], [20] for more details). Let us recall that the
one-dimensional Hausdorff operator is defined by

Hϕ ( f )(x) =
∞∫

0

ϕ(t)
t

f
(x

t

)
dt, (1.1)

where ϕ is a locally integrable function on the positive half-line. It is worth pointing out
that the Hausdorff operator reduces to many other classical operators in analysis such as
the Cesàro operator, Hardy–Littlewood–Pólya operator, Riemann–Liouville fractional
integral operator and Hardy–Littlewood average operator, by choosing the kernel func-
tion ϕ appropriately, (see, e.g., [17], [26] and references therein).

The Hausdorff operator is extended to the high dimensional space by Brown and
Móricz [4] and independently by Lerner and Liflyand [29]. More details, let Φ be a
locally integrable function on Rn . The Hausdorff operator HΦ,A is then defined by

HΦ,A( f )(x) =
∫

Rn
Φ(t) f (A(t)x)dt, x ∈ R

n, (1.2)
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where A(t) is an n× n matrix satisfying detA(t) �= 0 for almost everywhere t in the
support of Φ and x is assumed to be the column n -vector. It should be pointed out
that if we take Φ(t) = ψ(t1)χ[0,1]n(t) and A(t) = t1In ( In is an identity matrix), for
t = (t1, t2, . . . ,tn) , where ψ : [0,1]→ [0,∞) is a measurable function, then HΦ,A reduces
to the weighted Hardy–Littlewood operator (see [20] for more details) defined by

Hψ f (x) =
∫ 1

0
f (tx)ψ(t)dt, x ∈ R

n. (1.3)

More information on the weighted Hardy–Littlewood operator as well as its applica-
tions can be found in [14], [33], [34] and references therein.

In recent years, the Hausdorff operators, weighted Hardy–Littlewood operators,
Hardy–Cesàro operators and their commutators have been significantly developed into
different contexts, and studied on many function spaces such as Lebesgue, Morrey,
Herz, Morrey–Herz, Hardy and BMO spaces including the weighted settings. For more
details, one may find in [1], [2], [3], [4], [5], [7], [8], [10], [13], [16], [24], [25], [27],
[28], [29], [31], [32] and references therein. Very recently, Chuong, Duong and Dung
[9] have introduced and studied a more general class of multilinear Hausdorff operators
defined as follows.

DEFINITION 1. Let Φ : Rn → [0,∞) and Ai(y) be n× n invertible matrices for
almost everywhere y in the support of Φ , for all i = 1, . . . ,m . Given f1, f2, . . . , fm :
R

n → C be measurable functions, the multilinear Hausdorff operator HΦ,�A is defined
by

HΦ,�A(�f )(x) =
∫
Rd

Φ(y)
m

∏
i=1

fi(Ai(y)x)dy, x ∈ R
n, (1.4)

for �f = ( f1, . . . , fm) and �A = (A1, . . . ,Am) .

Let us take measurable functions s1(y), . . . ,sm(y) �= 0 almost everywhere in Rn .
Consider a special case where the matrices Ai(y) = diag[si(y), . . . ,si(y)] , for all i =
1, . . . ,m . Then, we aslo investigate the multilinear operator of the form

HΦ,�s(�f )(x) =
∫

Rd
Φ(y)

(
m

∏
i=1

fi(si(y)x)

)
dy, x ∈ R

n. (1.5)

Note that by letting Φ(y) = ψ(y)χ[0,1]n(y) , it is evident that HΦ,�s reduces to the
weighted multilinear Hardy–Cesàro operator introduced by Hung and Ky [23] as

Um,d
ψ,�s (�f )(x) =

∫
[0,1]d

( m

∏
i=1

fi(si(y)x)
)

ψ(y)dy, x ∈ R
n. (1.6)

Let b be a measurable function. We denote by Mb the multiplication opera-
tor defined by Mb f (x) = b(x) f (x) for any measurable function f . If H is a linear
operator on some measurable function space, the commutator, in the sense of Coifman–
Rochberg–Weiss [6], formed by Mb and H is defined by [Mb,H ] f (x) = (MbH −
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H Mb) f (x) . Similarly, the commutators of Coifman–Rochberg–Weiss type of multi-
linear Hausdorff operator are defined by

H
�b
Φ,�A

(�f )(x) =
∫

Rd
Φ(y)

m

∏
i=1

(bi(x)−bi(Ai(y)x))
m

∏
i=1

fi(Ai(y)x)dy, x ∈ R
n, (1.7)

where �b = (b1, . . . ,bm) , and bi are locally integrable functions on Rn .
It is well known that the multilinear Hausdorff operators, the weighted multilinear

Hardy–Cesàro operator and their commutators have been extended to study on some
function spaces. The interested reader is referred to the works [9], [11], [12], [15] and
[23] for more details.

Motivated by above results, the main purpose of this paper is to give some neces-
sary and sufficient conditions for the boundedness of multilinear Hausdorff operators
on central Morrey and Morrey–Herz spaces with arbitrary weighted functions. Further-
more, some sufficient conditions for the boundedness of commutators of multilinear
Hausdorff operators with the Lipschitz functions on weighted Morrey–Herz spaces are
also obtained. As a consequence, we generalize some previous known results.

Our paper is organized as follows. In Section 2, we present some notations and pre-
liminaries on weighted Lebesgue spaces, central Morrey spaces, Herz spaces, Morrey–
Herz spaces, and Lipschitz spaces. Our main theorems and their proofs are given in
Section 3.

2. Preliminaries

Let us start with this section by recalling some standard definitions and notations
pertaining to our work. Throughout the whole paper, n denotes the dimensional number
of the Euclidean space Rn . Let us denote by ‖T‖X→Y , the norm of T between two
normed vector spaces X and Y . We write a � b to mean that there is a positive constant
C , independent of the main parameters, such that a�Cb . The symbol f � g means that
f is equivalent to g (i.e. C−1 f � g �C f ). The weighted functions are locally integrable
non-negative measurable functions on Rn . For any measurable set Ω , we denote by
χΩ its characteristic function, and (ω(Ω))α = (

∫
Ω ω(x)dx)α for any weighted function

ω . Let Lp
ω (Rn) (0 < p < ∞) be the space of all measurable functions f on Rn such

that

‖ f‖Lp
ω

=
(∫

Rn
| f (x)|pω(x)dx

)1/p

< ∞.

The space Lp
loc(R

n,ω) is defined as the set of all measurable functions f on Rn satis-
fying

∫
Ω | f (x)|qω(x)dx < ∞ for any compact subset Ω of R

n . Also, Lp
loc(R

n \{0},ω)
is defined in a similar way to the space Lp

loc(R
n,ω) .

Now, let us recall some definitions of the weighted Morrey, Herz, and Morrey–
Herz spaces. For their deep applications in harmonic analysis, one may find in the
book [30]. For k ∈ Z , let Bk = {x ∈ Rn : |x| � 2k} , Sk = Bk\Bk−1 , and χk denotes the
characteristic function of the set Sk . Denote Br = {x ∈ R

n : |x| � r} for all r > 0.
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DEFINITION 2. Let 0< p< ∞ and −1/p< λ < 0. Let ω be a weighted function.
The weighted central Morrey space is defined by

Ṁλ ,p
ω (Rn) = { f ∈ Lp

loc(R
n,ω) : ‖ f‖

Ṁλ ,p
ω (Rn)

< ∞},

where

‖ f‖
Ṁλ ,p

ω
= sup

r>0

1

|Br|λ+1/p
‖ f‖Lp

ω (Br).

It is well known that the Herz space is first introduced by Herz to study of abso-
lutely convergent Fourier transforms. Next, we turn to the definition of weighted Herz
spaces, and weighted Morrey–Herz spaces.

DEFINITION 3. Let 0 < p < ∞ , 0 < q < ∞ and α ∈ R . Let ω be a weighted
function. Then, the homogeneous weighted Herz space K̇α

p,q(Rn,ω) is defined to be
the set of all functions f ∈ Lq

loc(R
n\{0},ω) such that ‖ f‖K̇α

p,q(ω) < ∞ , where

‖ f‖K̇α
p,q(ω) =

(
∞

∑
k=−∞

2kα p‖ f χk‖p
Lq

ω

)1/p

.

DEFINITION 4. Let α ∈ R,0 < p < ∞,0 < q < ∞,λ � 0 and ω be a weighted
function. The weighted Morrey–Herz space MK̇α ,λ

p,q (Rn,ω) is defined as the space of
all functions f ∈ Lq

loc(R
n\{0},ω) such that ‖ f‖

MK̇α,λ
p,q (ω)

< ∞ , where

‖ f‖
MK̇α,λ

p,q (ω)
= sup

k0∈Z

⎛
⎝2−k0λ

(
k0

∑
k=−∞

2kα p‖ f χk‖p
Lq

ω

)1/p
⎞
⎠ .

In particular, for λ = 0, it is easily seen that MK̇α ,0
p,q (Rn,ω) = K̇α

p,q(R
n,ω) . This

means that the weighted Herz space is a special case of the weighted Morrey–Herz
space. Some applications of weighted Morrey–Herz spaces to the Hardy–Cesàro oper-
ators as well as the multilinear Hausdorff operators may be found, for example, in the
works [10], [12] and [13].

DEFINITION 5. Let 0 < γ � 1. The Lipschitz space Λγ(Rn) is defined as the set
of all functions f : Rn → C such that ‖ f‖Λγ < ∞ , where

‖ f‖Λγ = sup
x,y∈Rn,x�=y

| f (x)− f (y)|
|x− y|γ .
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3. The main results

First, for simplicity of notation, we denote

Ψsup(y) = esssup
x∈Rn

m

∏
i=1

(
ω(x)

ωi(Ai(y)x)

)1/qi

,

and

Ψinf(y) = ess inf
x∈Rn

m

∏
i=1

(
ω(x)

ωi(Ai(y)x)

)1/qi

.

In what follows, we assume that α,αi ∈ R , λ ,λi is non-negative real numbers, 0 <
p, pi < ∞ , and 1 � q,qi < ∞ , for i = 1, . . . ,m , satisfying

α = α1 + · · ·+ αm, λ = λ1 + · · ·+ λm,

and
1
p

=
1
p1

+ · · ·+ 1
pm

,
1
q

=
1
q1

+ · · ·+ 1
qm

.

For a matrix A = (ai j)n×n , the norm of A is defined by

‖A‖ = sup
x∈Rn,x�=0

|Ax|
|x| .

Clearly, we have |Ax|� ‖A‖ · |x| for any x ∈ Rn . Especially, if A is invertible, we then
have

‖A‖−n � |det(A−1)| � ‖A−1‖n.

Remark that if the matrix A(y) satisfying

esssup
y∈Rd

‖A(y)‖ · ‖A−1(y)‖ = ρ < ∞, (3.1)

then we have ‖A(y)‖ � ‖A−1(y)‖−1 for almost all y ∈ Rd . In addition, it is easy to
show that

‖A(y)‖ζ � ‖A−1(y)‖−ζ , for all ζ ∈ R,

and

|A(y)x|ζ � ‖A−1(y)‖−ζ |x|ζ , for all ζ ∈ R, x ∈ R
n.

Obviously, the class of real orthogonal matrices satisfies the condition (3.1) above.
Now, we are in a position to state and prove our first main results concerning

the boundedness of multilinear Hausdorff operators on the product of central Morrey
spaces with arbitrary weights.



1546 D. V. DUONG AND N. T. HONG

THEOREM 1. Let −1/qi < λi < 0 , and ω , ωi be arbitrary weighted functions for
all i = 1, . . . ,m.

(i) If

Asup =
∫

Rd
|Φ(y)|

m

∏
i=1

|detAi(y)|λi Ψsup(y)dy < ∞, (3.2)

then the operator HΦ,�A is bounded from ∏m
i=1 Ṁλi ,qi

ωi (Rn) to Ṁλ ,q
ω (Rn) . Moreover,

‖HΦ,�A‖∏m
i=1 Ṁ

λi ,qi
ωi

→Ṁλ ,q
ω

� Asup.

(ii) Suppose Φ is a non-negative function. If HΦ,�A is determined as a bounded

operator from ∏m
i=1 Ṁλi,qi

ωi (Rn) to Ṁλ ,q
ω (Rn) , we have

Ainf =
∫

Rd
Φ(y)

m

∏
i=1

‖Ai(y)‖nλi Ψinf(y)dy < ∞, (3.3)

and

‖HΦ,�A‖∏m
i=1 Ṁ

λi ,qi
ωi

→Ṁλ ,q
ω

� ∏m
i=1 n(λi +1/qi)
n(λ +1/q)

·Ainf. (3.4)

Proof. (i) Let �f = ( f1, . . . , fm) ∈ ∏m
i=1 Ṁλi,qi

ωi (Rn) and Br = B(0,r) be a ball in
Rn . By the Minkowski inequality, the Hölder’s inequality and change of variables, we
have

‖HΦ,�A(�f )‖Lq
ω (Br) =

(∫
Br

∣∣∣∫
Rd

Φ(y)
m

∏
i=1

fi(Ai(y)x)dy
∣∣∣qω(x)dx

)1/q

�
∫

Rd
|Φ(y)|

(∥∥∥ m

∏
i=1

fi(Ai(y)x)ω1/q(x)
∥∥∥

Lq(Br)

)
dy

�
∫

Rd
|Φ(y)|Ψsup(y)

(
m

∏
i=1

‖ fi(Ai(y)x)ω
1/qi
i (Ai(y)x)‖Lqi (Br)

)
dy

=
∫

Rd
|Φ(y)|

m

∏
i=1

|detAi(y)|−1/qiΨsup(y)

(
m

∏
i=1

‖ fi‖L
qi
ωi

(Ai(y)Br)

)
dy

=:
∫

Rd
K (y)

(
m

∏
i=1

‖ fi‖L
qi
ωi

(Ai(y)Br)

)
dy, (3.5)

where

K (y) = |Φ(y)|
m

∏
i=1

|detAi(y)|−1/qiΨsup(y). (3.6)
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From the definition of weighted central Morrey space and by (3.5), we have

‖HΦ,�A(�f )‖
Ṁλ ,q

ω
= sup

r>0

1

|Br|λ+1/q
‖HΦ,�A(�f )‖Lq

ω (Br)

� sup
r>0

(∫
Rd

K (y)∏m
i=1 |Ai(y)Br|λi+1/qi

|Br|λ+1/q
dy

)(
m

∏
i=1

‖ fi‖Ṁ
λi ,qi
ωi

)

�
(∫

Rd
K (y)

m

∏
i=1

|detAi(y)|(λi+1/qi)dy

)(
m

∏
i=1

‖ fi‖Ṁ
λi,qi
ωi

)

� Asup ·
(

m

∏
i=1

‖ fi‖Ṁ
λi,qi
ωi

)
.

This asserts that the case (i) is proved.

(ii) Let us choose �f0 = ( f1,0, . . . , fm,0) such that

fi,0(x) = |x|nλi(ωi(x))−1/qi .

It is not hard to show that fi,0 ∈ Ṁλi,qi
ωi (Rn) , and

‖ fi,0‖Ṁ
λi,qi
ωi

=
|Sn−1|−λi

n(λi +1/qi)
,

where Sn−1 = {x ∈ Rn : |x| = 1} . It is easy to see that |Ai(y)x|λi � ‖Ai(y)‖λi |x|λi , for
every λi < 0. This leads to that

HΦ,�A(�f0)(x) �
(∫

Rd
Φ(y)

m

∏
i=1

‖Ai(y)‖nλiω−1/qi
i (Ai(y)x)dy

)
|x|nλ .

Therefore,

‖HΦ,�A(�f0)‖Ṁλ ,q
ω

= sup
r>0

1

|Br|λ+1/q
‖HΦ,�A(�f0)‖Lq

ω (Br)

� Ainf · sup
r>0

1

|Br|λ+1/q

(∫
Br

|x|nλqdx

)1/q

� ∏m
i=1 n(λi +1/qi)
n(λ +1/q)

·Ainf ·
m

∏
i=1

‖ fi,0‖M
λi ,qi
ωi

.

Because HΦ,�A is bounded from ∏m
i=1 Ṁλi,qi

ωi (Rn) to Ṁλ ,q
ω (Rn) , we have Ainf < ∞ , and

the inequality (3.4) holds. Therefore, Theorem 1 is proved. �
Let us consider the special case Ai(y) = si(y) · In , where In is an identity matrix.

Suppose that ωi(tx) = vi(t)ωi(x) for all t ∈ R , where vi are non-negative functions,
and ω(x) := ∏m

i=1 ωi(x)q/qi . Then we have

Ψsup(y) = Ψinf(y) =
m

∏
i=1

vi(si(y))−1/qi .
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In particualr, let us take ωi ∈ Wβi
, where Wβi

is the set of absolutely homogeneous

weighted functions of degree βi in R
n , namely, ωi(tx) = |t|βiωi(x) for all t �= 0, x∈R

n

(see [13] for more details). For ω ∈ Wβ such that β/q = ∑m
i=1 βi/qi , we have

Ψsup(y) = Ψinf(y) =
m

∏
i=1

|si(y)|−βi/qi ,

for all y ∈ Rd . Thus, by Theorem 1, we have the following result.

COROLLARY 1. Let Φ be a non-negative function and ω , ωi be weighted func-
tions satisfying ω(x) = ∏m

i=1 ωi(x)q/qi . Suppose that ωi(tx) = vi(t)ωi(x) for all t ∈
R , where vi are non-negative functions. Then, we have that HΦ,�s is bounded from

∏m
i=1 Ṁλi,qi

ωi (Rn) to Ṁλ ,q
ω (Rn) if and only if

A =
∫

Rd
Φ(y)

m

∏
i=1

|si(y)|nλivi(si(y))−1/qidy < ∞.

Moreover, in this case, we have

∏m
i=1 n(λi +1/qi)
n(λ +1/q)

·A � ‖HΦ,�s‖∏m
i=1 Ṁ

λi ,qi
ωi

→Ṁλ ,q
ω

� A .

Next, we also give the boundedness and bound of the multilinear Hausdorff oper-
ator on the weighted Morrey–Herz spaces.

THEOREM 2. Let ω , ωi be arbitrary weighted functions for all i = 1, . . . ,m. Let
ν = ν(y) be the greatest integer number satisfying

max
i=1,...,m

{‖Ai(y)‖ · ‖A−1
i (y)‖} < 2−ν , for a.e. y ∈ R

d .

(i) Let 1 � p < ∞ , or 0 < p < 1 and λ > 0 . If

Bsup =
∫

Rd
|Φ(y)|

m

∏
i=1

|detAi(y)|−1/qi‖Ai(y)‖λi−αi
( 0

∑
k=ν−1

2k(λi−αi)
)

Ψsup(y)dy < ∞,

then HΦ,�A is bounded from ∏m
i=1 MK̇αi,λi

pi,qi (R
n,ωi) to MK̇α ,λ

p,q (Rn,ω) . Moreover,

‖HΦ,�A‖∏m
i=1 MK̇

αi ,λi
pi ,qi (ωi)→MK̇α,λ

p,q (ω)
� Bsup.

(ii) Let Φ be a non-negative function, and

esssup
y∈Rd ,i=1,...,m

‖Ai(y)‖ · ‖A−1
i (y)‖ = ρ < ∞. (3.7)
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Suppose that HΦ,�A is a bounded operator from ∏m
i=1 MK̇αi,λi

pi,qi (R
n,ωi) to MK̇α ,λ

p,q (Rn,ω)
for all 1 � p < ∞ and λi = 0 , or 0 < p < ∞ and λi > 0 . We thus have

Binf =
∫

Rd
Φ(y)

m

∏
i=1

‖Ai(y)‖λi−αi−n/qiΨinf(y)dy < ∞.

Moreover,

‖HΦ,�A‖∏m
i=1 MK̇

αi ,λi
pi ,qi (ωi)→MK̇α,λ

p,q (ω)
� Binf.

Proof. Using a similar argument as the inequality (3.5), we have

‖HΦ,�A(�f )χk‖Lq
ω

�
∫

Rd
K (y)

(
m

∏
i=1

‖ fi‖L
qi
ωi

(Ai(y)Sk)

)
dy, (3.8)

where K (y) is in (3.6). Because detAi(y) �= 0 almost everywhere y in Rd , there is an
integer number �i = �i(y) such that 2�i−1 < ‖Ai(y)‖ � 2�i . Set z = Ai(y)x for x ∈ Sk .
It is evident that

|z| � ‖Ai(y)‖|x| � 2k+�i ,

and

|z| � ‖Ai(y)‖ · |x|
‖Ai(y)‖ · ‖A−1

i (y)‖ > 2k+�i+ν−2.

This implies that

‖ fi‖L
qi
ωi

(Ai(y)Sk)
�

0

∑
j=ν−1

‖ fiχk+�i+ j‖L
qi
ωi

. (3.9)

By the definition of weighted Morrey–Herz spaces, we have, by (3.9), that

‖HΦ,�A(�f )‖
MK̇α,λ

p,q (ω)
= sup

k0∈Z

2−k0λ

(
k0

∑
k=−∞

2kα p‖HΦ,�A(�f )χk‖p
Lq

ω

)1/p

� sup
k0∈Z

2−k0λ

(
k0

∑
k=−∞

2kα p

(∫
Rd

K (y)
m

∏
i=1

( 0

∑
j=ν−1

‖ fiχk+�i+ j‖L
qi
ωi

)
dy

)p)1/p

(3.10)

Now we consider two cases as follows.

Case 1: 1 � p < ∞ .

Applying the Minkowski inequality, we have

‖HΦ,�A(�f )‖
MK̇α,λ

p,q (ω)
�
∫

Rd
K (y)ϕ(y)dy, (3.11)
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where

ϕ(y) := sup
k0∈Z

2−k0λ

(
k0

∑
k=−∞

m

∏
i=1

2kαi p

(
0

∑
j=ν−1

‖ fiχk+�i+ j‖L
qi
ωi

)p)1/p

.

By the Hölder inequality and the Minkowski inequality, we have

ϕ(y) � sup
k0∈Z

2−k0λ
m

∏
i=1

(
k0

∑
k=−∞

2kαi pi

(
0

∑
j=ν−1

‖ fiχk+�i+ j‖L
qi
ωi

)pi
)1/pi

�
m

∏
i=1

0

∑
j=ν−1

2(λi−αi)(�i+ j)

(
m

∏
i=1

‖ fi‖MK̇
αi ,λi
pi,qi (ωi)

)

�
(

m

∏
i=1

‖Ai(y)‖λi−αi
0

∑
j=ν−1

2 j(λi−αi)

)(
m

∏
i=1

‖ fi‖MK̇
αi ,λi
pi,qi (ωi)

)
. (3.12)

Combining (3.11) and (3.12), we have

‖HΦ,�A(�f )‖
MK̇α,λ

p,q (ω)
� Bsup ·

(
m

∏
i=1

‖ fi‖MK̇
αi ,λi
pi ,qi (ωi)

)
,

which is the desired result

Case 2: 0 < p < ∞ and λ > 0.

It follows from the definition of weighted Morrey–Herz space that

‖ fiχk+�i+ j‖L
qi
ωi

� 2(λi−αi)(k+�i+ j)‖ fi‖MK̇
αi ,λi
pi,qi (ωi)

� 2k(λi−αi)2 j(λi−αi)‖Ai(y)‖λi−αi‖ fi‖MK̇
αi ,λi
pi,qi (ωi)

, j = −ν, . . . ,0.

(3.13)

Set ψ(y) = ∏m
i=1 ‖Ai(y)‖λi−αi ∑0

j=ν−1 2 j(λi−αi) for simplicity. By (3.10) and (3.13), we
have

‖HΦ,�A(�f )‖
MK̇α,λ

p,q (ω)

� sup
k0∈Z

2−k0λ

(
k0

∑
k=−∞

2kλ p

)1/p(∫
Rd

K (y)ψ(y)dy

)( m

∏
i=1

‖ fi‖MK̇
αi ,λi
pi ,qi (ωi)

)

�
(∫

Rd
K (y)ψ(y)dy

)( m

∏
i=1

‖ fi‖MK̇
αi ,λi
pi,qi (ωi)

)

� Bsup ·
(

m

∏
i=1

‖ fi‖MK̇
αi,λi
pi,qi (ωi)

)
.

Thus the proof of part (i) is finished.
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(ii) Suppose that HΦ,�A is a bounded operator from ∏m
i=1 MK̇αi ,λi

pi ,qi (R
n,ωi) to

MK̇α ,λ
p,q (Rn,ω) .

Case 1: 1 � p < ∞ and λi = 0. Then it is clearly that MK̇α ,0
p,q (Rn,ω)= K̇α

p,q(Rn,ω)
and MK̇αi,0

pi,qi(R
n,ω) = K̇αi

pi,qi(R
n,ω) . Let us choose �fε = ( f1,ε , . . . , fm,ε ) for ε > 0 such

that

fi,ε (x) =

{
0, |x| < ρ−1,

|x|−αi−n/qi−ε(ωi(x))−1/qi , otherwise.

By similar arguments as the proof of Theorem 2 in [11], we have

‖ fi,ε‖K̇
αi
pi,qi (ωi)

�
(

2(1−θ)ε pi

2ε pi −1

)1/pi
(

2qi(αi+ε)−1
qi(αi + ε)

)1/qi

, (3.14)

where θ is the smallest integer number satisfying θ � −lnρ/ln2. Set

Ux = {y ∈ R
d : |Ai(y)x| � ρ−1 for all i = 1, . . . ,m},

and

Vε = {y ∈ R
d : ‖Ai(y)‖ � ε, for all i = 1, . . . ,m}.

It is not hard to check that

Vε ⊂Ux for all x ∈ R
n\B(0,ε−1) . (3.15)

Hence, for any x ∈ Rn\B(0,ε−1) , by (3.15), we deduce that

HΦ,�A(�fε )(x) �
∫
Ux

Φ(y)
m

∏
i=1

|Ai(y)x|−αi−n/qi−εω−1/qi
i (Ai(y)x)dy

�
∫
Vε

Φ(y)
m

∏
i=1

|Ai(y)x|−αi−n/qi−εω−1/qi
i (Ai(y)x)dy

�
(∫

Vε
Φ(y)

m

∏
i=1

‖Ai(y)‖−αi−n/qi−εω−1/qi
i (Ai(y)x)dy

)
gε(x),

where gε(x) = |x|−α−n/q−mε χRn\B(0,ε−1) . Observe that one may find the integer number

k0 such that 2k0−2 < ε−1 � 2k0−1 . Thus we have for any k � k0 ,

‖HΦ,�A(�fε )χk‖Lq
ω

� B(ε)‖gε χk‖Lq ,

where

B(ε) =
∫
Vε

Φ(y)
m

∏
i=1

‖Ai(y)‖−αi−n/qi−εΨinf(y)dy.
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So,

‖HΦ,�A(�fε )‖K̇α
p,q(ω) � B(ε)

(
∞

∑
k=k0

2kα p
(∫

Sk

|x|−αq−n−mεqdx

)p/q
)1/p

� B(ε)
(

2−k0mε p

1−2−mε p

)1/p
(

2q(α+mε)−1

q(α +mε)

)1/q

. (3.16)

By assuming that HΦ,�A is bounded from ∏m
i=1 K̇αi

pi,qi(R
n,ωi) to K̇α

p,q(R
n,ω) , by (3.14)

and (3.16), letting ε → 0, it immediately follows from the Fatou lemma that

∫
Rd

Φ(y)
m

∏
i=1

‖Ai(y)‖−αi−n/qiΨinf(y)dy < ∞.

This completes the proof of the case 1.

Case 2: 0 < p < ∞ and λi > 0.

Similarly, we also take �g0 = (g1,0, . . . ,gm,0) such that

gi,0(x) = |x|λi−αi−n/qi ωi(x)−1/qi , i = 1, . . . ,m.

A simple calculation gives us that

‖gi,0‖MK̇
αi ,λi
pi,qi (ωi)

< ∞. (3.17)

It is evident that

HΦ,�A(�g0)(x) =
∫

Rd
Φ(y)

m

∏
i=1

|Ai(y)x|λi−αi−n/qi
h ω−1/qi

i (Ai(y)x)dy

� Binf ·h(x),

where h(x) = |x|λ−α−n/q ω(x)−1/q . It is not hard to show that ‖h‖
MK̇α,λ

p,q (ω)
< ∞ . Com-

bining this with (3.17), we obtain

‖HΦ,�A(�g0)‖MK̇α,λ
p,q (ω)

� Binf · ‖h‖MK̇α,λ
p,q (ω)

� Binf ·
m

∏
i=1

‖gi,0‖MK̇
αi ,λi
pi,qi (ωi)

.

Therefore, Theorem 2 is proved. �

In particular, we have necessary and sufficient conditions of HΦ,�A on the product
of weighted Lebesgue spaces in the case α = λ = λi = αi = 0 and pi = qi for all
i = 1, . . . ,m . More precisely, we have the following result.



MULTILINEAR HAUSDORFF OPERATORS 1553

COROLLARY 2. Let 1 � q,qi < ∞ , and ω , ωi be arbitrary weighted functions.
(i) If

Csup =
∫

Rd
|Φ(y)|

m

∏
i=1

|detAi(y)|−1/qiΨsup(y)dy < ∞,

then HΦ,�A is bounded from Lq1
ω1(R

n)×·· ·×Lqm
ωm(Rn) to Lq

ω(Rn) . Moreover,

‖HΦ,�A‖∏m
i=1 L

qi
ωi

(Rn)→Lq
ω (Rn) � Csup.

(ii) Let Φ be a non-negative function, and

esssup
y∈Rd ,i=1,...,m

‖Ai(y)‖ · ‖A−1
i (y)‖ = ρ < ∞.

Suppose HΦ,�A is bounded from Lq1
ω1(R

n)×·· ·×Lqm
ωm(Rn) to Lq

ω (Rn) . We thus have

Cinf =
∫

Rd
Φ(y)

m

∏
i=1

‖Ai(y)‖−n/qiΨinf(y)dy < ∞.

Moreover,

‖HΦ,�A‖∏m
i=1 L

qi
ωi

(Rn)→Lq
ω (Rn) � Cinf.

It is worth pointing out that Corollary 3 extends and strengthens the results of
Theorem 3.1 and Theorem 3.2 in [3] to the setting of multilinear Hausdorff operator.

By virtue of Theorem 2 and Corollary 2, we have some necessary and sufficient
conditions for the boundedness of HΦ,�s on the product of weighted Herz spaces, and
sharp bound of HΦ,�s on the product of Lebesgue spaces with power weights. Namely,
the following is true.

COROLLARY 3. Let 1 � p < ∞ , and Φ be a non-negative function. Let ω(x) =
|x|β , ωi(x) = |x|βi for all i = 1, . . . ,m, such that

m

∑
i=1

βi

qi
=

β
q

.

Then, HΦ,�s is a bounded operator from ∏m
i=1 K̇αi

pi,qi(R
n,ωi) to K̇α

p,q(R
n,ω) if and only

if

D =
∫

Rd
Φ(y)

m

∏
i=1

|si(y)|−αi−(n+βi)/qidy < ∞.

Moreover,

‖HΦ,�s‖∏m
i=1 K̇

αi
pi,qi (ωi)→K̇α

p,q(ω) � D .

In particular, we have

‖HΦ,�s‖∏m
i=1 L

qi
ωi

(Rn)→Lq
ω (Rn) =

∫
Rd

Φ(y)
m

∏
i=1

|si(y)|−(n+βi)/qidy.
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Finally, we shall discuss the boundedness of commutators of HΦ,�A with the sym-
bols in the Lipschitz spaces on the product of weighted Morrey–Herz spaces.

THEOREM 3. Let 0 < p < ∞ , 1 � q∗ � q < ∞ , and λi � 0 , γ,γi > 0 , ri > 0 ,
α∗,αi be real numbers such that

1
q∗

=
1
q

+
m

∑
i=1

1
ri

, γ = γ1 + · · ·+ γm,

α∗ = α − γ −
m

∑
i=1

n
ri

.

Let bi ∈ Λγi(R
n) , and ω , ωi be arbitrary weighted functions. Assume that

Dsup =
∫

Rd
|Φ(y)|Ψsup(y)

m

∏
i=1

Ki(y)dy < ∞,

where

Ki(y) := ‖Ai(y)− I‖γi ‖Ai(y)‖(λi−αi)|detAi(y)|−1/qi

( 0

∑
k=ν−1

2k(λi−αi)
)
,

and ν is given in Theorem 2. Then the commutator H
�b
Φ,�A

is determined as a bounded

operator from ∏m
i=1 MK̇αi,λi

pi,qi (R
n,ωi) to MK̇α∗,λ

p,q∗ (Rn,ωq∗/q) for any λ > 0 and 0 < p <

∞ , or λ � 0 and 1 � p < ∞ .

Proof. For simplicity of exposition, we denote

Φ1(y) = Ψsup(y)|Φ(y)|, Φ2(y) =

(
m

∏
i=1

‖Ai(y)− In‖γi

)
Φ1(y),

Φ3(y) =

(
m

∏
i=1

|detAi(y)|−1/qi

)
Φ2(y), and ‖�b‖Λγ =

m

∏
i=1

‖bi‖Λγi
.

It is obvious that for all bi ∈ Λγi(R
n) and x ∈ Rn , we have

m

∏
i=1

|bi(x)−bi(Ai(y)x)| � ‖�b‖Λγ

m

∏
i=1

‖Ai(y)− In‖γi |x|γi .

Let us write υ = ωq∗/q for simplicity. By the Minkowski inequality, the Hölder in-
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equality, and change of variables, we have

‖H �b
Φ,�A

(�f )χk‖Lq∗
υ

�
∫

Rd

(∫
Sk

m

∏
i=1

| fi(Ai(y)x)|q∗
m

∏
i=1

|bi(x)−bi(Ai(y)x)|q∗υ(x)dx

)1/q∗

|Φ(y)|dy

�
∫

Rd

(∫
Sk

m

∏
i=1

(
| fi(Ai(y)x)|q∗ωi(Ai(y)x)q∗/qi

) m

∏
i=1

|bi(x)−bi(Ai(y)x)|q∗dx

)1/q∗

Φ1(y)dy

�
∫

Rd

m

∏
i=1

(∫
Sk

| fi(Ai(y)x)|qiωi(Ai(y)x)dx

)1/qi

×
m

∏
i=1

(∫
Sk

|bi(x)−bi(Ai(y)x)|ri dx

)1/ri

Φ1(y)dy

� ‖�b‖Λγ

∫
Rd

m

∏
i=1

(∫
Sk

| fi(Ai(y)x)|qiωi(Ai(y)x)dx

)1/qi m

∏
i=1

(∫
Sk

|x|γiridx

)1/ri

Φ2(y)dy

� ‖�b‖Λγ 2
k(α−α∗)

∫
Rd

m

∏
i=1

( 0

∑
j=ν−1

‖ fiχk+�i+ j‖L
qi
ωi

)
Φ3(y)dy, (3.18)

where recall that 2�i−1 < ‖Ai(y)‖ � 2�i . From the definition of weighted Morrey–Herz
spaces, we have

‖H �b
Φ,�A

(�f )‖
MK̇α∗ ,λ

p,q∗ (υ)

= sup
k0∈Z

2−k0λ

(
k0

∑
k=−∞

2kα∗p‖H �b
Φ,�A

(�f )χk‖p

Lq∗
υ

)1/p

� ‖�b‖Λγ sup
k0∈Z

2−k0λ

(
k0

∑
k=−∞

2kα p

(∫
Rd

m

∏
i=1

( 0

∑
j=ν−1

‖ fiχk+�i+ j‖L
qi
ωi

)
Φ3(y)dy

)p)1/p

Analogous to the proof of Theorem 2 for the case (i), we can prove that

‖H �b
ϕ,�A

(�f )‖
MK̇α∗ ,λ

p,q∗ (υ)
� Dsup · ‖�b‖Λγ ·

m

∏
i=1

‖ fi‖MK̇
αi ,λi
pi,qi (ωi)

,

for all 0 < p < 1 and λ > 0, or 1 � p < ∞ and λ � 0. Thus, Theorem 3 is proved
completely. �
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