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MULTILINEAR HAUSDORFF OPERATOR AND COMMUTATORS
ON WEIGHTED MORREY AND HERZ SPACES

DAO VAN DUONG* AND NGO THI HONG

(Communicated by S. McCullough)

Abstract. In this paper, we establish some necessary and sufficient conditions for the bound-
edness of multilinear Hausdorff operators on weighted central Morrey and Herz type spaces.
Moreover, we also discuss some sufficient conditions for the boundedness of commutators of
multilinear Hausdorff operators on weighted Morrey—Herz spaces. By these, we generalize some
previous known results.

1. Introduction

The Hausdorff operator is of fundamental importance in many branches of mathe-
matical analysis, and has been intensively studied since its important applications. The
history of the Hausdorff operator can be traced back to the work of Hurwitz and Sil-
verman [22] in 1917, and then was proposed by Hausdorff [21] to study summability
of number series (see also [18], [19], [20] for more details). Let us recall that the
one-dimensional Hausdorff operator is defined by

Hop(f)(x) =7@f (Jt—c) dt, (1.1)
0

where ¢ is alocally integrable function on the positive half-line. It is worth pointing out
that the Hausdorff operator reduces to many other classical operators in analysis such as
the Cesaro operator, Hardy—Littlewood—Pdlya operator, Riemann—Liouville fractional
integral operator and Hardy—Littlewood average operator, by choosing the kernel func-
tion ¢ appropriately, (see, e.g., [17], [26] and references therein).

The Hausdorff operator is extended to the high dimensional space by Brown and
Moricz [4] and independently by Lerner and Liflyand [29]. More details, let ® be a
locally integrable function on R". The Hausdorft operator /g 4 is then defined by

Hoa(NHX) = | @@)f(A[)x)dr, xR, (1.2)
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where A(r) is an n X n matrix satisfying detA(r) # O for almost everywhere ¢ in the
support of @ and x is assumed to be the column n-vector. It should be pointed out
that if we take @(t) = y(t1)x(o,1#(t) and A(t) = 111, (I, is an identity matrix), for
t=(t1,t2,...,1,), where y: [0, 1] — [0,00) is a measurable function, then .7 4 reduces
to the weighted Hardy—Littlewood operator (see [20] for more details) defined by

Aoy f (x) / Fex)w()dr, xe R (1.3)

More information on the weighted Hardy—Littlewood operator as well as its applica-
tions can be found in [14], [33], [34] and references therein.

In recent years, the Hausdorff operators, weighted Hardy-Littlewood operators,
Hardy—Cesaro operators and their commutators have been significantly developed into
different contexts, and studied on many function spaces such as Lebesgue, Morrey,
Herz, Morrey—Herz, Hardy and BMO spaces including the weighted settings. For more
details, one may find in [1], [2], [3], [4], [5], [7], [8], [10], [13], [16], [24], [25], [27],
[28], [29], [31], [32] and references therein. Very recently, Chuong, Duong and Dung
[9] have introduced and studied a more general class of multilinear Hausdorff operators
defined as follows.

DEFINITION 1. Let @ : R" — [0,o0) and A;(y) be n x n invertible matrices for
almost everywhere y in the support of @, for all i =1,...,m. Given fi,f>,...,fn:
R" — C be measurable functions, the multilinear Hausdorff operator Hy 3 is defined
by '

Hy 4( (F)x /‘D i(v)x)dy, xeR", (1.4)

for f=(fi,....fm) and A = (A,..., Ap).

Let us take measurable functions s;(y),...,s,(y) # 0 almost everywhere in R”.
Consider a special case where the matrices A;(y) = diag[si(y),...,si(y)], for all i =
1,...,m. Then, we aslo investigate the multilinear operator of the form

Ho3(f)(x) / (Hf,s, )dy, xeR". (1.5)

Note that by letting ®(y) = w(y)xjo,12(y), it is evident that 7 5 reduces to the
weighted multilinear Hardy—Cesaro operator introduced by Hung and Ky [23] as

U (f) /(Hf,s, ) y)dy, x€R". (1.6)

o4

Let b be a measurable function. We denote by .#} the multiplication opera-
tor defined by ., f(x) = b(x)f(x) for any measurable function f. If J# is a linear
operator on some measurable function space, the commutator, in the sense of Coifman—
Rochberg—Weiss [6], formed by .#), and 5 is defined by [.#},, 7| f(x) = (Mp 7 —
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F Mp)f(x). Similarly, the commutators of Coifman—Rochberg—Weiss type of multi-
linear Hausdorff operator are defined by

m

Az = [ OO0 -ba) [ThAwan xe®. a

where b = (b1,...,bm), and b; are locally integrable functions on R”.

It is well known that the multilinear Hausdorff operators, the weighted multilinear
Hardy—Cesaro operator and their commutators have been extended to study on some
function spaces. The interested reader is referred to the works [9], [11], [12], [15] and
[23] for more details.

Motivated by above results, the main purpose of this paper is to give some neces-
sary and sufficient conditions for the boundedness of multilinear Hausdorff operators
on central Morrey and Morrey—Herz spaces with arbitrary weighted functions. Further-
more, some sufficient conditions for the boundedness of commutators of multilinear
Hausdorff operators with the Lipschitz functions on weighted Morrey—Herz spaces are
also obtained. As a consequence, we generalize some previous known results.

Our paper is organized as follows. In Section 2, we present some notations and pre-
liminaries on weighted Lebesgue spaces, central Morrey spaces, Herz spaces, Morrey—
Herz spaces, and Lipschitz spaces. Our main theorems and their proofs are given in
Section 3.

2. Preliminaries

Let us start with this section by recalling some standard definitions and notations
pertaining to our work. Throughout the whole paper, n denotes the dimensional number
of the Euclidean space R". Let us denote by ||T||x—y, the norm of T between two
normed vector spaces X and Y. We write a < b to mean that there is a positive constant
C, independent of the main parameters, such that @ < Cb. The symbol f ~ ¢ means that
f isequivalentto g (i.e. C~' f < g < Cf). The weighted functions are locally integrable
non-negative measurable functions on R". For any measurable set €2, we denote by
Xq its characteristic function, and (0(Q))%* = (o ®(x)dx)* for any weighted function
o. Let L (R") (0 < p < o) be the space of all measurable functions f on R" such
that

1f1lp, = (/R |f(x)1’a)(x)dx> 1/p .

The space LI} (R", ) is defined as the set of all measurable functions f on R” satis-

fying [q |f(x)|9®(x)dx < e for any compact subset Q of R". Also, L (R"\ {0}, ®)
is defined in a similar way to the space L (R", ).

Now, let us recall some definitions of the weighted Morrey, Herz, and Morrey—
Herz spaces. For their deep applications in harmonic analysis, one may find in the
book [30]. For k € Z, let By = {x € R" : |x| <2}, S; = B;\Bi_1, and j; denotes the
characteristic function of the set S;. Denote B, = {x € R" : |x| < r} forall r > 0.
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DEFINITION 2. Let 0< p<eoand —1/p <A <0. Let @ be a weighted function.
The weighted central Morrey space is defined by

A, n n .
wa(R ) = {f € L{:)c( 7(0) M Hf”MZL,’P(R”) < oo}?

where
_ 1
”fHMZ‘,” = igg |Br‘l+1/17 Hf”Lz,(B,)'

It is well known that the Herz space is first introduced by Herz to study of abso-
lutely convergent Fourier transforms. Next, we turn to the definition of weighted Herz
spaces, and weighted Morrey—Herz spaces.

DEFINITION 3. Let 0 < p < oo, 0 < g <o and @ € R. Let @ be a weighted
function. Then, the homogeneous weighted Herz space Kg‘ 4(R", @) is defined to be
the set of all functions f € L{ (R™\{0}, ®) such that ||fHK;3¢q(w) < oo, wWhere

loc

o 1/p
Wiig o= £ 2010my)

k——oco

DEFINITION 4. Let ¢ € R,0 < p < 00,0 < g <o0,A >0 and ® be a weighted
function. The weighted Morrey—Herz space Mf(gf;f (R", @) is defined as the space of
all functions f € L{ (R"\{0}, ®) such that Hf”MKa’l(w) < oo, where

P9

loc
ko I/p
—koA
1 prge () = sup 27k (kz 2k°‘p||ka||ZZ)>

In particular, for A = 0, it is easily seen that MKy (R", ) = Ky, (R",®). This
means that the weighted Herz space is a special case of the weighted Morrey—Herz
space. Some applications of weighted Morrey—Herz spaces to the Hardy—Cesaro oper-
ators as well as the multilinear Hausdorff operators may be found, for example, in the
works [10], [12] and [13].

DEFINITION 5. Let 0 < y < 1. The Lipschitz space Ay(R") is defined as the set
of all functions f: R" — C such that || f||s, < e, where

[flla,= sup M

x,yeR" x#£y ‘x - y‘Y
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3. The main results

First, for simplicity of notation, we denote
m 1/ qi
o(x)
Wup(y) = esssup (7) .
P xeR? ,11 @;(Ai(y)x)

and

o o(x) 1/q;
Wint(y) = efesﬁgfg <m> .

In what follows, we assume that a,0; € R, A,A; is non-negative real numbers, 0 <
p,pi <eo,and 1 < q,q; <oo, fori=1,...,m, satisfying
=01+ + O, A’ZAI—F"'—’_A’I‘H?

and
1 1 1 1 1

1

_ e —, -

p P1 Pm q qi dm
(

For a matrix A = a,-j)nxn , the norm of A is defined by

|Ax|
[All="sup ——.
XERM x#£0 x|

Clearly, we have |Ax| < ||A]| - |x| for any x € R". Especially, if A is invertible, we then
have

IA]I7" < [det(A=H)] < A=,
Remark that if the matrix A(y) satisfying

esssup JA()[| - [|[A7' ()] = p < oo, (3.1)
yeRd

then we have ||A(y)|| ~ [|[A=!(y)||~! for almost all y € R?. In addition, it is easy to
show that

IAG® S IAT )78, for all {E€R,
and
AW)x[S 2 AT ) C1xl6, for all { €R, xeR"

Obviously, the class of real orthogonal matrices satisfies the condition (3.1) above.

Now, we are in a position to state and prove our first main results concerning
the boundedness of multilinear Hausdorff operators on the product of central Morrey
spaces with arbitrary weights.
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THEOREM 1. Let —1/q; < A; <0, and o, @; be arbitrary weighted functions for
ali=1,....m

@ If
g = [ 100) T Idetdi0) " Puap () < == 62
i=1
then the operator .y, ; is bounded from [T} gl 4R 10 MEI(RM). Moreover,

||%’XHH,'-”:|M£§%—’M$‘J S

(i) Suppose @ is a non-negative function. If ,%”q)’g is determined as a bounded

operator from H;’LIMZ;’,?‘I" (R") 10 M&;q(R”), we have

= [, POTTIAO™ )y < = (3.3)
and
mn(Ai+1/qi
170 il iy %-m. (3.4)
Proof. (i) Let f= (fi,....fn) € [T, M&% (R") and B, = B(0,r) be a ball in

R". By the Minkowski inequality, the Holder S mequahty and change of variables, we
have

m l/q
175 3(F)ll s, s, = (/B) RdCD(y)Hﬁ(Ai(y)X)dy‘qw(X)dX>

i=1
<
o0 (|fircaomo o], ,, ) o

S /Rd [P ¥sup(y (l:[”fz Yoo 4 (Ai(y)) | Br>
:/Rd (D) [T 1detAi ()]~ ¥up () (Hﬁ||L‘g.(A,-(y)B,)> dy
i=1 i=1 '

= / (Hsz‘h . )dy, (3.5)

Jo!/4(x)

dy

where

= D) [T Idetds (»)] /4P gup (). (3.6)
i=1
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From the definition of weighted central Morrey space and by (3.5), we have

. 1 .
176 4 () 20 = e ATRvE 176 4(F)ll 4 (8,

m B\ (o
< sup( Rd%()’) =l |Bl,|7t+1r/q dy il:IlHﬁHngi

r>0

< ( | ) [T 1detai(y)| a0 dy) (Hﬁll a)
i=1

Ao (Hﬁll a>

This asserts that the case (i) is proved.

(ii) Let us choose fy = (f1,05---,fmo) such that
Frox) = x| (@i(x)) /.
It is not hard to show that f; € Mﬁ,’;’q" (R"), and

‘Sn—1|_}w
n(Ai+1/q;)’

where S, | = {x € R": |x| = 1}. It s easy to see that |A;(y)x|} > ||A;(y)||* |x|*, for
every A; < 0. This leads to that

Ay i(Fo (/ (y HnA )" <>x>dy> N

Ifioll g =

Therefore,

1

|7, A(fO)” /lq SUPWH q;A(fO)HL”
. 1/q
- niq
>$Z{mf Sup|B ‘;LJrl/q (/ ‘x‘ dx)
mon(Ai+1/q;)

Because /g, ; is bounded from [T}~ ’q' (R") to M~9(R"), we have s < oo, and

the 1nequahty (3.4) holds. Therefore, Theorem lis proved. U

Let us consider the special case A;(y) = s;i(y) - I, where I, is an identity matrix.
Suppose that @;(rx) = v;(t)w;(x) for all £ € R, where v; are non-negative functions,
and @(x) := [T", @;(x)%/% . Then we have

\Psup( mf HVz Sl l/q,-.



1548 D. V. DUONG AND N. T. HONG

In particualr, let us take @; € #j,, where #j, is the set of absolutely homogeneous
weighted functions of degree B; in R, namely, @;(tx) = |t|P @;(x) forall 1 #0, x € R”
(see [13] for more details). For @ € #p such that B/q = ¥!" B;/q:, we have

\Psup( mf H ‘Sz ‘ ﬁl/ql

forall y € R9. Thus, by Theorem 1, we have the following result.

COROLLARY 1. Let @ be a non-negative function and ®, ®; be weighted func-
tions satisfying @(x) = [T, @i(x)7/% . Suppose that w;(tx) = vi(t)wi(x) for all t €
R, where Vv; are non- negative functions. Then, we have that #g 5 is bounded from

"M, ”q’(Rn) to M~9(R") if and only if

Jy:/Rdcl)(y)ilm[l|Si(y)|n)L'-v,-(s,-(y))_l/qidy<m.

Moreover, in this case, we have

minit1/a)

< |74 < .
n(l—f—l/q) || <I>S|| kq, qu

Next, we also give the boundedness and bound of the multilinear Hausdorff oper-
ator on the weighted Morrey—Herz spaces.

THEOREM 2. Let w, w; be arbitrary weighted functions for all i =1,...,m. Let
v = V(y) be the greatest integer number satisfying

max {[lA()[|- A7 0} <27V, for ae. yeR

(M Let 1<p<e,or0<p<landA>0.If

0
g = [ 10O T it ) 14,01 (3 25070 g0y <o
=v—

k 1

then H, 3 is bounded from 17, MKS4 (R, @) 10 MKS; (R", ). Moreover;

17 4 S Psup-

e, MK (wz)HMK ( )~
(ii) Let ® be a non-negative function, and

esssup [ Ai(y)I|- A7 )] = p < o=, (3.7)
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Suppose that A, 3 is a bounded operator from [T;Z MKy (R” w;) to MK} (R" )

forall 1< p<°oand7L =0, 0r 0< p <ooand A; > 0. We thus have

m
Bint = /]Rd o(y) [Tl4i(y) || M= 04 () dy < oo
i=1
Moreover,
- > B
”%'AHH;'LIMK;?.QI‘(@')—’MK;!&}(@) = Bint.

Proof. Using a similar argument as the inequality (3.5), we have

|1 Ply < [, 0) (Hnﬁnﬂ. )dy,

(3.8)

where .7 (y) is in (3.6). Because detA;(y) # 0 almost everywhere y in R?, there is an
integer number ¢; = £;(y) such that 2471 < ||A;(y)|| < 2%. Set z = A;(y)x for x € S.

It is evident that
2| < JJAi(y) 1] < 24,

and
[Ai )] - |x] k+litv—2
2] :
14 - A7 )
This implies that
0
Hﬁ”LZJi(Ai(J’)Sk) < j—;—l ||fiXk+€,-+jHqui’_'

By the definition of weighted Morrey—Herz spaces, we have, by (3.9), that

ko 1/p
170 5 (Dl yget (@) = SUP 2~toh ( > 2’““”%3(1‘)%&)

k0€Z k=—o0

” N\ U/p
<sup2” kO}L( Y oker (/ H(y H Z ﬁ%k+£,—+j||L§’g.>dy> )

k=—o0 i=1 " j=v-1

Now we consider two cases as follows.
Case 1: 1 < p <oo.
Applying the Minkowski inequality, we have

173Dl ) < L, 7 G)00I:

(3.9)

(3.10)

(3.11)
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where
0 P\ Up
(y) = sup 2o ( > sza'p< > ﬁ){k+£,-+j||LZ§.> ) :
ko€EZ k=—ooi j=v—1 !
By the Holder inequality and the Minkowski inequality, we have

o ko 0 pi\ 1/pi
@(y) < sup 20 H( D kb ( D ﬁ%k+£,—+j||L‘g_> )
.= j 1 1

k=—o0 =V —

m 0 m
S (hi=a) (i) .
1;[ :; 1 ngHMKm’hx/(wi)
m 0 m
,S < HAi(y)Hli—Oti 2 2](1,‘-%)) (HflMKg’qk’(a))> . (3.12)
i=1 idi S

i=1 j=v—1

Combining (3.11) and (3.12), we have

“%7A(f)“MKg;(w) S %sup : (H”JCI”MKZ’;’(%)> )

which is the desired result
Case?2: 0 < p<e and A > 0.
It follows from the definition of weighted Morrey—Herz space that

2 (Ai—04) (k+Li+ ) (KAl

||fllxk+/fi+jHLZ£’_ < MK;!I;LI(CO[)
52"“"’“")2’“"’“")IIAi(y)Hl"’“"HﬁHMK by = Vo0
(3.13)
Set w(y) =TT, lAi(y) ||~ 29_, _; 2/4~%) for simplicity. By (3.10) and (3.13), we

have

102 F) gt o

ko 1/p m
< qup 2 kot okAp ( / H d ) i1 .
S (k;_w oo X W)y ,-Ule sk
< d il
S (/Rdjif(y)w(y) y) (H"fMKP,!,g*,’(wi))

m
5 e%sup : (H ||ﬁMI'(g?‘,])L.i(w~)> .
i=1 e

Thus the proof of part (i) is finished.
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(ii) Suppose that %75 is a bounded operator from H?’;lMKg"j;t" (R", ;) to
MK (R, ).

Case 1: 1< p<ooand A; =0. Thenitis clearly that MK% (R", @) = Ky, (R", @)

and MKS0(R", @) = K% ,.(R", ). Let us choose fe = (fie,.-.,fme) for € >0 such
that

-1
fl_’g(x):{& -  k<p

x| ~%n/9i=¢ (@;(x)) /4, otherwise.

By similar arguments as the proof of Theorem 2 in [11], we have

2(1=0)ep \ V77 [ paitarre) _ 1\ 14
() =\ 2epi — | qgi(o; +€) ’ (3.14)

where 6 is the smallest integer number satisfying 6 > —Inp /In2. Set

U={yeR: |A(y)x| > p~ ! forall i=1,...,m},
and
Ve={yeR: |Ai(y)|| =&, forall i=1,...,m}.
It is not hard to check that
Ve CU, forall xeR"\B(0,e"). (3.15)

Hence, for any x € R"\B(0,&!), by (3.15), we deduce that
—oi—njai—e . —1/g;
Haz 70> [ OO/ 0 M pay

T IAG)x] o a9, () dy
=1

(/@ HIIA e <>>y> (@),

where g¢(x) = |x| =% "/a-me Xrn\B(0,e-1) - Observe that one may find the integer number
ko such that 2%0=2 < =1 < 2%~1 Thus we have for any k > ko,

”%,X(ﬁ:)lk”t{o > B(€)1gexkllLe,

where

= [ @O TTIAWI "/ W)y
€ i=1
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So,

pla\ /P
175G g o (2 o ([ oo )

k=ko

2 —komep 1/p 2q(o+me)—1 1/a
> - - . 1
R #e) ( 1— 2—’“8P> q(o+me) (3.16)

By assuming that .7, ; is bounded from [T, Kp? 4, (R", @) to K&, (R", @), by (3.14)
and (3.16), letting € A 0 it immediately follows from the Fatou lemma that

/Rd D) [TIAi )]~ %™ 1P (y)dy < oo.
i=1

This completes the proof of the case 1.
Case?2: 0 < p <o and A; > 0.

Similarly, we also take go = (g1,0,--.,8m0) such that
gio(x) =[xl gy (x) Vi =1, m.

A simple calculation gives us that

; o A < oo, 3.17
g0l o (3.17)
It is evident that
A i—n/qi 1/qi
Haz@)0) = [, @) T a4y
N%inf'h(x)7

where /(x) = [x|*~% /4 w(x)~1/4. It is not hard to show that HhHMI'(a‘)L(w) < oo, Com-
P9
bining this with (3.17), we obtain

||%A(§O)||MK;?;‘(Q)) Z Bing - ”hHMK l(w)

R %

ng,",}?,-'- (o7)
Therefore, Theorem 2 is proved. [

In particular, we have necessary and sufficient conditions of J7g, ; on the product
of weighted Lebesgue spaces in the case o = A = A; = 0; =0 and p; = ¢; for all
i=1,...,m. More precisely, we have the following result.
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COROLLARY 2. Let 1 < q,q; < oo, and ®, w; be arbitrary weighted functions.

@ 1f
Csup _/ |H|detA i Vg Woup(y)dy < oo,
then g, ; is bounded from L (R") x -« x LI (R") to LY, (R™). Moreover,

”%AHH['."ZIL%I.(R")HLZ,(R") < Csup-
(ii) Let @ be a non-negative function, and

esssup A )[| - 147 )l = p < .
yeRD i=1,....m

Suppose Ay, ; is bounded from Lgs (R") x -+ x Ly, (R") to Lg,(R"). We thus have

Cint = /Rd o(y) [TlA4i(y) | 9 (y)dy < oo.
i=1

Moreover,

170 e, 125 )1,y 2 i
It is worth pointing out that Corollary 3 extends and strengthens the results of
Theorem 3.1 and Theorem 3.2 in [3] to the setting of multilinear Hausdorff operator.
By virtue of Theorem 2 and Corollary 2, we have some necessary and sufficient
conditions for the boundedness of 773 on the product of weighted Herz spaces, and
sharp bound of 73 y on the product of Lebesgue spaces with power weights. Namely,
the following is true.

COROLLARY 3. Let 1 < p < oo, and ® be a non-negative function. Let ®(x) =
Ix|B, w;(x) = |x|F forall i=1,...,m, such that

20
Then, s is a bounded operator from TII, Kp' ¢, (R", ;) to Ky (R", @) if and only
if
9 = / q) H ‘S —0i— n+ﬁl)/qldy < oo,

Moreover,

| Ao 5 ~ 9.

e, &%, (o) 8 (0)

In particular, we have

| _ T (s ()|~ +Bi) 0
L (R LY (RY) = qu)(Y)il:Il\sz(Y)\ dy.
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Finally, we shall discuss the boundedness of commutators of g, ; with the sym-
bols in the Lipschitz spaces on the product of weighted Morrey—Herz spaces.

THEOREM 3. Let 0 < p <oo, 1 <qg"<g<oo,and 4; >0, v,% >0, r; >0,
o, o be real numbers such that

1 noq
—5‘1‘;;» Y=n-+-+%Yn

of = o — yZ—.
11

Let bj € Ay, (R"), and o, w; be arbitrary weighted functions. Assume that
m
T = [, 100 Fap ) [T i)y <
i=1
where

) 1= A) = 11 1A | B denas (v)] =1/ (

0 k(Ai—
k(Ai—0 )

k=v—1

and v is given in Theorem 2. Then the commutator ji” b b is determined as a bounded

operator from 1" MKy (R" ;) to MKa A(R" w? /‘1) Jorany A >0and 0 < p <
oo, or A =20and 1 < p<eo.

Proof. For simplicity of exposition, we denote

D (y) = Yaup()[@)], DP2(y) = (ﬁllAi(y)—In”> Dy (y),

m
(HdetA 1/%)@2() and [|b]la, = [T1I6illa,-
i=1

It is obvious that for all b; € A, (R") and x € R", we have
[110:(x) = bi(Ai(y)x)] < [18]la, TTIAi ) = Ll [
i=1

Let us write v = @9 /9 for simplicity. By the Minkowski inequality, the Holder in-
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equality, and change of variables, we have

-,

168 Pl

m

1/q*
(&Hm qwi(X)_bi(Ai(Y)X)Iq*v(@dx) @ (y)|dy
<[l ( [ (1rta
—1
1/qi
</RdH< |fi(A ()x)qiwi(Ai(y)x)dx)

1=

<T1( [ 10s >>"dx)l/”c1>1<y>dy
<, [, 11 ( [ atmrroami) ([ 1ea) @00

0

s IIBHAVZ’C(“’“*)/R[,H< S kil ) @30y, (3.18)

=1 " j=v—1

1/q*
)7 wi(Ai( ’””')HIb i()x)]? dX> @ (y)dy

where recall that 25! < [|A;(y)|| < 2%. From the definition of weighted Morrey—Herz
spaces, we have

}; -,
1 P e 3

ko 1/p
= sup 2—ko ( 2 okt pH,}fh (f)Xqu*>

kQEZ k=—o0

j=v—1

ko " 0 P\ /P
SIBlla, sup 2ot (3 20 ([ TT( X Wfierevnslly ) @s0)dy
koEZ k= —oo0 Rd i=1 @;

Analogous to the proof of Theorem 2 for the case (i), we can prove that

-,

I i ey S Foo Bl T

forall 0<p<land A >0,0r 1 <p <o and A > 0. Thus, Theorem 3 is proved
completely. [J
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