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CONVERGENCE OF THE CONJUGATE GRADIENT
METHOD WITH UNBOUNDED OPERATORS

NOE CARUSO AND ALESSANDRO MICHELANGELI

Abstract. In the framework of inverse linear problems on infinite-dimensional Hilbert space,
we prove the convergence of the conjugate gradient iterates to an exact solution to the inverse
problem in the most general case where the self-adjoint, non-negative operator is unbounded and
with minimal, technically unavoidable assumptions on the initial guess of the iterative algorithm.
The convergence is proved to always hold in the Hilbert space norm (error convergence), as well
as at other levels of regularity (energy norm, residual, etc.) depending on the regularity of the
iterates. We also discuss, both analytically and through a selection of numerical tests, the main
features and differences of our convergence result as compared to the case, already available in
the literature, where the operator is bounded.
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