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DISJOINT HYPERCYCLIC POWERS OF WEIGHTED
TRANSLATIONS ON LOCALLY COMPACT HAUSDORFF SPACES

YA WANG AND HONG-GANG ZENG*

(Communicated by G. Misra)

Abstract. In this article, we study the disjoint hypercyclic powers of weighted translations on
the weighted space L?(G,®) in two cases, where G is a locally compact second countable
Hausdorff space with a positive regular Borel measure and @ is a weight on G. In addition,
some examples are given to illustrate our results.

1. Introduction

The notion of disjointness in linear dynamics was introduced by Bernal-Gonzélez
[3] and by Bes and Peris [8] in 2007, respectively. After that, the disjoint hypercyclicity
was studied intensely by many scholars ([4, 5, 6, 7, 18, 20, 21, 22, 23]). For instance,
Shkarin studied the existence of disjoint hypercyclic operators on separable infinite
dimensional topological vector space in [22]. The disjoint hypercyclicity of bilateral
and unilateral weighted backward shifts were characterized by Bes, Martin and Sanders
[5] and by Bes and Peris [8]. In addition, Beés, Martin and Peris in [6] and Martin in
[18] investigated the disjoint hypercyclicity of composition operators.

The notion of disjoint hypercyclicity comes from the much older notion of hyper-
cyclicity in linear dynamics. Let X be a separable, infinite dimensional Banach space
over the complex scalar field C, and L(X) be the algebra of bounded linear operators
on X. An operator T € L(X) is said to be hypercyclic if there is a vector x € X for
which its orbit Orb(T,x) = {T"x : n € N} (where N denotes the set of non-negative
integers)is dense in X. In linear dynamics, it is well known that an operator T is
hypercyclic if and only if it is topologically transitive. An operator T is said to be
topologically transitive if for any nonempty open sets Vp,V; in X, there is a positive
integer m for which Vo N T~™(V}) # 0. This classical conclusion was put forward by
Birkhoff in [9]. The excellent monographs [2], [15] and [17] provide a great deal of
basic information about hypercyclicity.

Given N > 2, hypercyclic operators T1,7>,...,Ty acting on the same space X
are said to be disjoint hypercyclic (in short, d-hypercyclic) if their direct sum @%lem
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has a hypercyclic vector of the form (x,x,---,x) in X". Such a vector x is called a
d-hypercyclic vector for T, T, ..., Ty. If the set of d-hypercyclic vectors is dense in X,
wesay 11, T», ..., Ty are densely d-hypercyclic. We say that Ty, T», ..., Ty in L(X) with
N 2 2 are disjoint topologically transitive (in short, d-topologically transitive) if for any
non-empty open subsets Vy,Vy,...,Vy in X, there exists a positive integer m such that
VonTy"(Vi)NT, " (Vo) N - N Ty ™" (V) # 0. Similarly, in the disjoint setting, the
disjoint topological transitivity is equivalent to densely disjoint hypercyclicity [8]. A
disjoint Hypercyclicity Criterion (in short, d-Hypercyclicity Criterion) is provided in
[8]. The criterion offers a sufficient condition for densely d-hypercyclicity and it has
the following equivalence relation with disjoint topological transitivity.

THEOREM 1.1. [8, Theorem 2.7] Let T1,T5,...,Ty be operators in L(X) with
N > 2. The following statements are equivalent:
(a) The operators Ty, T», ..., Ty satisfy the d-Hypercyclicity Criterion.
r

r

(b) For each integer r > 1, the direct sum operators Ty ®---® Ty, ..., IN®--- DTy
are d-topologically transitive on X'.

Recently, hypercyclic and disjoint hypercyclic weighted translations on locally
compact groups were studied in [10, 11, 12, 13, 16, 24], which generalized the char-
acterizations of hypercyclic and disjoint hypercyclic bilateral weighted backward shifts
offered in [5], [8] and [19].

Now, we introduce a more general definition of weighted translation, which gen-
erated by a continuous injective map on a locally compact Hausdorff space.

Let G be a locally compact Hausdorff space and A be a positive regular Borel
measure on G. Let ¢ : G — G be a continuous injective map such that A is invari-
ant under @ (thatis, A(A) = A(¢@(A)) for each A in the Borel o—algebra #(G)).

Let w : G — R be a positive continuous function such that sup % <o, For 1 <

xe€G

p < oo, we consider the weighted space L?(G,®) = {f: [ |f(x)®@(x)[PdA(x) <o} of
complex-valued functions on G. L?(G,w) is a Banach space with the norm || f]| .0 =
(Jg1f(x)o(x)[PdA (x))% . Since a complex Banach space admits a hypercyclic opera-
tor if and only if it is separable and infinite-dimensional [1], we also assume that G
is second countable so that the question of hypercyclicity is meaningful for the space
L?(G,). A bounded continuous function u : G — C\{0} is called a weight on G.
Now we define a weighted translation T,y : L (G,®) — L (G, ) by

Tupf(x) =u(x)f(9(x)), f€LF(G,0), x€G. (1.1)

We call T,y is a weighted translation generated by ¢ and u. Since sup % < oo
xeG

and u is bounded, it is easy to see that 7, ,, is a bounded operator on L (G,o).
For each integer n with n > 1,

n—1
Tupf(x) = H)u(q)“'(X))f(@"(X)% fel’(G o), xegG, (1.2)
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where ¢@"(x) = (@og@o---0@)(x) (n—fold).
We also define a self-map S, o on the subspace L (G, ®), which consists of func-
tions in L” (G, ) with compact support, by

ﬁ f(y) if there exists an y € G such that x = ¢(y),

Supf(x) = { (1.3)

0 if x € G\@(G).

Then for any integer n with n > 1 we have

éf(y) if there exists an y € G such that x = ¢"(y),

n—1
SZWf(x) = Slzlou(w“(y)
0 if x € G\¢"(G).

Since for any f € LY (G, ) and x € G,

we have
TupSuo(f)=f forfell(G o).

REMARKS 1.2. (1) The mapping ¢ is continuous injective and Proposition 7.1.5
in [14] imply that for each A in #(G), ¢(A) € #(G).

(2) The assumption that the mapping ¢ is injective ensures that S, o is well de-
fined.

(3) Every unilateral or bilateral weighted backward shift on ¢#(N) or ¢P(Z) is a
weighted translation with G=NorZ,¢(i)=i+1 (i€ G) and @ =1 on G.

(4) If we let G be a locally compact group with a right invariant Haar measure
2 and choose a € G. Define the continuous injective map ¢ and positive continuous
function ® on G by

o(x)=xa' forxcG, w=1onG.

Let u be a weight on G and let T, ,, be the weighted translation on L” (G, ®) generated
by ¢ and u. Thatis

Tupf(x) = u(x)f(9(x)) = u(x)f(xa™") for f € L”(G,0) = L7 (G).

In this special case, T,y becomes the weighted convolution operator T, studied in
[10, 11, 12, 13, 24].
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Note that, every unilateral weighted backward shift on ¢7(N) satisfy that, for each
i€ Nji¢ ¢"(N) when n sufficiently large. Since each compact subset of N is a finite
set, the above assertion is equivalent with that for each nonempty compact subset K of
G =N, KN¢"(N) =0 when n sufficiently large.

For the weighted convolution operators T ., , Tauy, -+, Tauy (N > 2) acting on
the space LP(G) of a locally compact group G, Chen showed that if a is a torsion
element (an element a € G is called a torsion element if it is of finite order) then
Touys Ty Ty are not disjoint hypercyclic (see [13, Lemma 2.1]). Thus, Chen
in [13] and Zhang, Lu, Fu and Zhou in [24] were focus on the aperiodic group element
a € G(an element a € G is called aperiodic if the closed subgroup G(a) generated by
a is not compact). For aperiodic elements, Chen and Chu [1 1] showed that an element
a € G is aperiodic if and only if for any compact set K C G, there exists some positive
integer N such that KN Ka™ =0 for all n > N.

Inspired by the above statement, in this paper, we characterize the disjoint hyper-
cyclic powers of weighted translations on LP(G, ®) in the following two cases.

Case 1: Each compact subset K C G lies outside ¢"(G) for all sufficiently large
n, that is, for each compact subset K C G, there exists a positive integer Nx such that
KNo@"(G) =0 for all n > Ng.

Case 2: The mapping @ is onto and (¢"),>; is run away. We call (¢"),>; is run
away, if for each compact subset K C G, there exists a positive integer Nx such that
KNoe"(K) =0 forall n> Ng.

The result in the first case generalizes [8, Theorem 4.1], and the result in the second
case generalizes [13, Theorem 2.2] and [24, Theorem 2.1], respectively.

2. Disjoint hypercyclic powers of weighted translations

In this section, let G be a locally compact second countable Hausdorff space with
a positive regular Borel measure A, where A is invariant under a continuous injec-
tive mapping ¢ : G — G. We characterize the d-hypercyclic powers of finite weighted
translations generated by ¢ in two cases. Before stating the main theorems, we give a
preliminary result.

LEMMA 2.1. Let f € LP(G,0) (1< p <o) with || f||h o < &P for some € > 0.
Then for any compact subset K C G with A(K) > 0 and any non-negative integer n,
there is a subset E C K such that A(K\E) < € and sup |f(¢"x)0(¢"x)| < €. If ¢ is

x€E

onto, we can get the same result for any compact set K C G (A(K) > 0) and n € Z.

Proof. Let K be any compact subset of G with A(K) >0and neN. Let E={x €
K |0(¢"0) f(9"x)| < €}, then €71 > [ | f(X)0()PdAxX > [ ) [f (W)@ ()PdAY >
Ji\e [f(@"x)@(¢@"x)[PdAx > ePA(K\E). Thus,

A(K\E) < € and sup |f(¢"x)o(@"x)| < €.

xeE
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If ¢ is onto, then ¢ becomes a bijection by assumption that ¢ is injective. For
each compact set K C G with A(K) > 0 and each integer n € Z the above argument is
also valid. Thus, the same result follows. [

Now we are ready to state the main results.

THEOREM 2.2. Let 1 < p < oo and integers 1 < r; < rp <--- <ry be given,
where N = 2. For each integer 1 <1 <N, let Ty, o be a welghted translation on
LP(G,w) generated by ¢ and the weight u;. If each compact subset K C G lies outside
©"(G) for all sufficiently large n, then the following conditions are equivalent:

(1) Tyl o, TN o are d-hypercyclic.

(2) For each compact subset K C G with A (K) > 0, there is a sequence of Borel
sets (Ex)y_, in K such that A (K) = liml (Ex) and a strictly increasing sequence

(ni)z_, of positive integers such that for each 1 <I <N we have

0 rng

klEEo rl”kfol(p :()7 (21)
[T woo
t=0

Eplles

and for 1 < s <l <N we have

<a)0(p("l rs nA) (rﬁku 0 @k~ t)
lim

k—so0 ring—1

[T wog
=0

=0. (2.2)
Epllos

(3) T,L"(p7 TMN o satisfy the d-Hypercyclicity Criterion.
(4) Turll Py TN v.p are densely d-hypercyclic.

Proof. (1) = (2). Let K C G be a compact set with A (K) >0 and yx € L? (G, ®)
denote the characteristic function of K. By assumption, there is a positive integer N
such that KN ¢@"(K) C KN @"(G) = 0 for all n > Nk. Since @ is a positive contin-
uous function, ¢ := ;glt; o(x) > 0. Let k be any fixed positive integer, choose a real

number & such that 0 < & < %, 0< % < % and 15"5,{ < % By the d-hypercyclicity

of T, g,..., TuY o, there is a d-hypercyclic vector f; in L (G, ®) and positive integer
n; > Ng (1n fact the selection of n; here can be sufficiently large) such that

Ifill? o < 87 2.3)
and for each integer 1 <!/ <N,

T fe— x|l o < 87 2.4)
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Applying Lemma 2.1 N times to (2.3), we can obtain a subset E} C K with A(K\E}) <
N & such that for each integer 1 <1 <N,

sup |fi (@™ (x)) @ (9" (x))| < & (2.5)

erl

Applying Lemma 2.1 N times to (2.4), we can obtain a subset E? C K with A(K\E?) <
N & such that for each integer 1 <1 <N,

sup | Tl fi(x) — 1] o(x)
xEE
r,nk—l
= sup ( I uz((P’(X))) Ji (@M (x)) — 1 o(x) < &, (2.6)
x€E? t=0

Applying Lemma 2 1 to (2.4) for any integers s,/ with 1 <s <[ < N (thatis, applying
Lemma 2.1 N- Y=L times to (2.4)), we can obtain a subset E} C K with A(K\E}) <
(N - Y518 such that forany 1 <s<I<N,

sup [T fi9!"9" () = (917" ()| (9% 1)
er
reng—1
= sup (o1 (H (@ (97 >>>>fk< (1))
er,?
<8 Q2.7)

Let Ex = E} NE} NE}, then A(K\Ey) < (2N+N-%:1)§,. And by (2.5) and (2.6), for
each 1 <I <N and any x € E; we have

(" (x)) (""" (x)) | fx (¢ (x))| O 1
=1 < & < & < T (2.8)
11 (o) o :
Also, forany x € Ex and 1 < s <I <N, from (2.6) and (2.7) we can get
o (=7 (x)) Tl s (0777 (1)
ring— 1
T (¢ (2)
reng—1
o (orem) (P (o (0 m @) ) Ao o)
- ring—1
T w0 o 0)
Ok 1
< -7 <z (2.9)
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Now condition (2) can be proved by (2.8) and (2.9). Indeed, we just need to take
k=1,2,3,..., and then find the sequences (Ey);_; and (n)7_, by induction.
(2) = (3). By Theorem 1.1, we show that for any positive integer » > 1 the direct

sum operators T, o @& & T, o, ..., T,Y o@®---&T,Y , are d-topologically transi-
tive. Fix r € N with r > 1, let

V07j’V17j7”'aVN,j(j: L,...,r)

be non-empty open subsets of L? (G, ). Our aim is to find a positive integer n such
that

Vo,iNT, " (Vij) N--NT 8" (Viv,j) #0 for each 1< j<r

Since the space C.(G) of continuous functions on G with compact support is dense
in L? (G, ), for each integer 1 < j < r we can pick fo j, g1,j,---,&n,j in Cc (G) such
that fo ; € Vo, j, &1, € V1,j,-**,8n,j € Viv,j. Let K be the union of the compact supports

of foj, &1,js---»8n,j (j=1,---,r) and set C := sup®(x) < e. Suppose (Ey)i> and
xek
(m)r=1 be the sequences satisfying condition (2). Let Nk be the positive integer such

that
KN@"(G) =0 forall n > Ng. (2.10)
For each 1 <1 < N, we consider the self-map S, o defined as (1.3) on the subspace

L (G,m).
By (2.10), it is easy to calculate that for any integer n; € (ny)x>1 with ng > Nk,

Tl (fojxg) =0 onG (1<I<N,1<j<r) (2.11)
and
Tl a S (g5, jx5,) =0 onG  (1<s<I<N,1<j<r). (2.12)

From (2.1), for integers j,I with 1 < j<r and 1 </ <N we have

hm ||Sul, (gluxEA) ||

1

= jim ( /(p,,,lk(c)|55i"€o (g1.528,) (W) o(x)|" dA (x) )F
=) iy |S”"’< ring () [P ,
P (/ o (81,7x8.) (@ ()@ (@ (y))|" dA.( )
r 5
= gim | [ )] a0

[T w(e'(y))
t=0
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! !
. (@'
= hm / ”,_(Ip&gl,j()’) d)L (y)
k—o0 Ey |11k .
u (¢'(y))
t=0
. wo(prlnk A 1
g ]114{{.10 r,nkfl Hgl7-]Hoc (K) r
IT wog
=0 Epllos
= 0 (2.13)

Andfor 1 <s<I<N, 1< j<r by (2.2) we have

lim | 750 (8126 [ .0

rsng P ,1;
o (9= () T us (07" ()
:khlrolo /E ring—1 gl’j(x) di (x)
k 11w (9! (x)
=0. (2.14)

Now for any integers j,k with k > 1 and 1 < j < r let

N
vik = foixe + 2, Sue (gixe) €LP (G, ).

i=1
Since foreach 1 < j < r and any x € G,

N p

foixe (x) = foi(x)+ Y, S (gijxE,) (x)

i=1

S (N+1)P (’fOIXEA — fo,i(x) |+Z}Suf¢> 8w?CEA) )|p>v

thus
N
= foillp0 < V+DPC | fo [ 22 (KNE) + (N + 1) 3|80 (g |10
i=1
Using a similar argument, for any 1 </ <N and 1 < j <r we have
1T'gvin =gl < N+1) HT”"" (oixz) .0+ N+ 1D7C” g1, ][22 (K\EK)

+(N+ 1>p.§l 176 S (8iixe) 1) o
1
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Hence by (2.11), (2.12), (2.13) and (2.14) foreach 1 </<Nand 1 < j<r,
klEEo vj,k = fO,j and ]15130 Tu';]f(ll;c\)jk = gl,j'
Which implies that there is some 7y, € (nx);>_; such that

—ring, TNk,

VoiNTug * (Vi) NNy (Vi) 70 (1< j<r).

The implications (3) = (4) and (4) = (1) are obvious. [

REMARK 1. If G is discrete, condition (2) in above theorem can be replaced by
the following:

(2) There is a strictly increasing sequence (nx);_, of positive integers such that
forany x € G, if 1 <I <N,

(g )

=0, (2.15)
k—soo T1N—1
I [u(e'(x))|
=0
andif 1 <s<I<N,
rshy
o (@l (x)) - TT w9 (x))
lim =1 =0. (2.16)
k—oo rlnk_l

I w(e'(x))
t=0

Indeed, if G is discrete, then each compact subset of G is a finite set, thus (2’ )=
(2) is obvious. To prove (2) = (2'), since G is discrete, we fix G := {iy, iz, ", if, "}
and set Gy := {i, i, --,ix} for eachinteger k > 1. By condition (2), for each G; (k >

1), there is a strictly increasing sequence (nﬁ,’f ));j:l of positive integers such that

(k)
X o @''m
lim L —0 (1<I<N)
m—ee rlnm)_l
[T woe
t=0 Gilloo
and
(k) ré‘”%() (k)
(wo(p(rlfrx)”m ) . H MSO(Pr]nm —
=1
lim =0 (1<s<I<N)
Hi—voo % _q
1Mm
I woo
t=0



160 Y. WANG AND H. G. ZENG

Then for each integer k > 1, there is a positive integer nﬁ,]fg € (nﬁ,]f >);’;=1 such that, for
any x € Gy and integer m > mg we have

rn(k)
@ (@ (x))
®_,

TiMm
(@' (x))]
t=0

1
< forl<I<N, (2.17)

and

(k)

I'slim

(@ (x)). T (o =1 (x))

(k)

iy’ —1

I w(e'(x))
=0

1
<% forl <s<I<N. (2.18)

If we take k= 1,2,3,... in above argument and denote nﬁ,’fg by ng, then by induction

we can find a strictly increasing sequence (n¢);_, of positive integers such that (2.15)
and (2.16) hold.

The following two examples are provided to illustrate Theorem 2.2, where G is
discrete in Example 2.3 and G is not discrete in Example 2.4.

EXAMPLE 2.3. Let 1 < p<eo, N2>2. Foreach 1 <! <N, let 7; be a unilateral
backward weighted shift on ¢7(N) W1th positive weight sequence (a; ;);>1, that is,
Tieo =0 and Tjej = a; je; 1 for j> 1, where (e;)jen is the canonical basis of ¢7(N).
If we let G = N and define the injective map ¢ on G by ¢(j) = j+ 1 for j € N. For
each 1 <I <N, let u; be a weight on G defined by u;(j) = a; j+1 (j € N). Then each
unilateral backward weighted shift 7; is the weighted translation 7;, , on ¢”(N) given
by

Tuof () =w()fG+1) (f € P (N)).
Hence, by Remark 1, for any integers 1 <rj <ry <--- <ry, the operators 7, ,..., Ty

are d-hypercyclic if and only if there is a strictly increasing sequence (1), of positive
integers such that for any j € N,

klim i =0 forl1 <IN, (2.19)
ap j+t
=1
and
reng—1
H a57j+rlnA —t
klim’*?,nk——o for 1 <s<1<N. (2.20)
ap j+t

Which are the same with [8, Theorem 4.1].
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EXAMPLE 2.4. Let G = {rei9 10 <r<oo,—2 <0< Z}. And define the contin-
uous injective mapping ¢ and positive continuous function @ on G by

¢(x) =x+e%i forx € G, a)(reie) =(1/3/2)" for el € G
We define a weight u on G by
|
\/§ lf 3 < 9 < %,

u(re®y=142% if —1 <6 <3,

S

if —2 <0< —

8
NI—

Letuj=up=u,ry=1,rn=2andlet T, o (i=1,2) be the weighted translations on
LP(G,w) (1 < p <) induced by ¢ and u; (i =1,2). Thatis, for i = 1,2,

Tuof (X) = wi(x) f(x+e3') = u(x) f(x+e3) (f € LP(G,w)).

Then T,/ 4, 7,7, satisfy condition (2) in Theorem 2.2. Indeed, if we let K be any
compact subset of G with A(K) > 0, then there exists a positive integer Nk such that
for any integer n > N, if re'® € K+ ne#' then 1 <6< Z. Since K is compact, there

is a positive integer ro such that, sup |x| < ry. Thus for any integers [,n with 1 <7< 2

xeK
and n > Ng + 1 we have
wo Q" — sup o(x+ Inel)
"M wog ek u()u(x+ ¥ - ulet (In— 1))
=0 Klloo

( 3/2)r0+ln
= (@)NKH(\/E)lnprK

— 0 asn— oo,

andfors=1,1=2,

((D o (p(rzfry)n> . <trf‘[r: Uy o (Pr,nz)

rin—1
Il oo
t=0 Klloo
o(x+net?)
= sup = T
ek u(X)u(x+ed')---ulx+(n—1)es’)
( 3/2)r0+n

— 0 asn— oo,

= (\/TE)NKJrl(\/E)n—l—NK

Next we consider the second case.
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THEOREM 2.5. Let 1 < p<ooand 1 <rj <rp<---<ry, where N>2,r; €
N,i=1,---,N. Foreach 1 <I <N, let T, o bea welghted translation on LP (G, ®)
generated by @ and the weight u;. If @ is onto and (Q"),>1 is run away, then the
following conditions are equivalent:

(1) Tyl o, T,) o are densely d-hypercyclic.

(2) For each compact subset K C G with A (K) > 0, there is a sequence of Borel
sets (Ex)7_, in K such that A (K) = 1<h_>n.>1<, A (Ex) and a strictly increasing sequence

(ni)7_, of positive integers such that for 1 <1 <N,

o Q" ) B ring -
lim rlnk+ :]}EI; ((DOQD ”nk)'H”lO(P ' —0, (221
I uo¢f =l Ep || oo
=0 Eplleo
andfor 1 <s<I<N,
<wo (p(rz Iy n;) (Vﬁku o (p”"" t)

kh—I}olo ring— 1 = 07 (222)
IT uo@
=0 Eplleo

(rs—rp)ng Tk rsng—t
0o H ujoQ

klgrolo Fshjp— 1 = 0' (2.23)
H Us © (P[
=0 Epllo

(3) Turlﬂq,, Tur,(,‘ﬂ(p satisfy the d-Hypercyclicity Criterion.

Proof. (1) = (2). Let K C G be a compact set with A (K) >0 and yx € L? (G, ®)
denote the characteristic function of K. By assumption there is a positive integer Nk
such that

KN¢"(K)=0forn > Ng. (2.24)

Since o is a positive continuous function, ¢ := inf a)( ) > 0. Let k be any fixed posi—

tive integer, choose a real number & such that O < 5k < k7 0< 6" <1

By densely d-hypercyclicity of T”17¢7 .. .,TMN#,, there is a d-hypercyclic vector fk in
L? (G, w) and a positive integer n; > Nk (in fact, the selection of n; can be sufficiently
large) such that

i — xkll5.p < 87 (2.25)
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and
T fe— 2 |lh o < 8071 (1 <IN, (2.26)
Applying Lemma 2.1 N + 1 times for (2.25) and 2N + N(N — 1) times for (2.26), we
can obtain a subset E; C K with A(K\Ey) < (3N +1-+N(N — 1)) such that for each
1<I<N,

sup |fi (@™ (x)) — xx (@™ (x))| @(9"™ (x))

XGEk
= sup | (9" (x)) fic (9" (x))[ < O, (2.27)
xeky
sup | fi(x) — 1] o(x) < &, (2.28)
XGEk
sup |T,1"% fie(x) — 1] o(x) < &, (2.29)
x€Ey

sup | T’ il ™" (x)) | (@~ ""x)

r]nk (rllﬁ[kul 7’x ) k(x)

= sup (@
X€E,

< &, (2.30)

and for s,/ with 1 <s<I<N,

sup |28 fi(@"1 79" (3)) = 291~ ()| @( @177 ()

)CEEk
reng—1
T r w<<p<’”s>"k<x>>< I1 u.y<<p’<<p<r”s>"k<x>>>> Fil@"™ (@) (x)))
XELy =0
<6, (2.31)

sup |74 /i~ (1)) —m(qo“v-")"k(x))I (g (x)

x€Ey
ring— 1
= sup (e (x ( [T w(e' (9" " (x )))) Sil@™ (@ (x)))
XELy
< §. (2.32)

Using a similar argument as in (2.8), by (2.27) and (2.29) one can deduce

(e ()
r,nk—l

I w(e'(x))
t=0

1
<§ for1 <I<N. (2.33)

X€EE,
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From (2.28) and (2.30), an easy computation shows that

g

r,nk H ul 7[ x

&

C

1
sup |® < z for 1 <I<N. (2.34)

X€EE,

From (2.29), (2.31) and (2.32), repeating a similar argument as in (2.9), we can obtain
that for 1 <s <I <N,

( rsny t
o () Mus (o (@)| |
sup " < z (2.35)
e M w(g(x)
=0
and
rng
o (o () Mu(e™ )| |
sup — < A (2.36)
x€Ey stk

IT us(¢'(x))
=0

Now, the proof of condition (2) can be completed by (2.33), (2.34), (2.35) and (2.36).
(2)=-(3). The proof of this implication is similar to that in Theorem 2.2. We just
need to replace (2.10) with

KNoe"(K) =0 forall n > Ng,

replace (2.11) with

s

o(@ """ (x Hu, ¢ 'x)foj(x)| d

R
(X)>

i 5 2= o,
=0

forany 1 <IN, 1< j<r
And replace (2.12) with

Jim || 258 50% (8522 .

ring P 7
o (9 7(x)) T (9" () '
=Jim | |, T /()| dA(2)
' 1 (9 (x)
=0
=0
forany 1 <s<I<N,1<j<r.

(3)= (1). This 1mphcat10n is obvious. [l
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REMARK 2. The same argument as used in Remark 1 gives that: if G is discrete,
condition (2) in Theorem 2.5 can be replaced by

(2°) There is a strictly increasing sequence (ny);_, of positive integers such that
forany x € G, if 1 <I <N,

[ 20D o -t 0] -0

k—soo | T —1 k—o0

I w(g'(x))
t=0
if 1<s<I<N,

I'shj

@l (5) - TT (9™ ()

lim =0
k—so0 ring—1

IT w(¢'(x))

=0

and
g
o (@l m(x)) - TT uy (@™ (x))

lim =1 =0.
k—o0 rsng—1

IT us(¢'(x))
t=0

The next example illustrates that the result in case 2 generalizes the works on
disjoint hypercyclicity by Chen in [13] and by Zhang, Lu, Fu and Zhou in [24].

EXAMPLE 2.6. Let G be a locally compact group with a right invariant Haar
measure A and let a be an aperiodic element in G. The continuous injective mapping
¢ and positive continuous function w be defined by

o(x)=xa' forxcG, w=1onG.
Given N > 2, for 1 <I <N, let u; be a weight on G and T, , be the weighted
translation on L” (G, ) generated by ¢ and u;. In this case, each T, o is the weighted
translation T, studied in [24, Theorem 2.1] (or [13, Theorem 2.2]). By Theorem 2.5,
for any integers 1 <ry <ry < -+ <rn, Tak,Tusss---,Tuny are disjoint hypercyclic
if and only if for each compact subset K C G with A (K) > 0, there is a sequence of
Borel sets (Ey);”_, in K suchthat A (K) = klgg A (E}) and a strictly increasing sequence

(nx)i_, of positive integers such that for 1 </ <N,

g

H”l (xd")

t=1

. 1 .
lim sup —_— | lim sup
ek nnﬁ— w(xa™) e

!

t=0

:07
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and for 1 <s<I <N,

Ishy
H us(xat—rlnk)

. =1
lim sup P R = 0,
k—ooxeE, | Tk

T w(xa™)

t=0

nng
IT w; (xa'—7s"%)

. =1
lim sup |———| = 0.
k_mXEEk rsng—1

IT us(xa™")

=0
Which are the same with [24, Theorem 2.1] or [13, Theorem 2.2].

Now we offer two examples, which are particular cases of Theorem 2.5 but not
particular cases of Theorem 2.1 in [24] or Theorem 2.2 in [13].

EXAMPLE 2.7. Let G = {1,2} x Z with the discrete topology and define the in-
jective map ¢ and the weight @ on G by

o(i,j)=(,j+1)for(i,j)€G, andw=1 onG.
Let u be a weight on G given by
2 ifj>0,
u(i,j) =<1 if j=0,
3 ifj<0.
Let u; = up = u and let T;, o (i = 1,2) be the weighted translation on L?(G,w) (1 <

p < o) generated by ¢ and u; (i = 1,2). Then Tul7¢,Tu227(p satisfy condition (2°) in

Remark 2. Indeed, for any (i, j) € G and integers n,l with n > 2|j|+ Ll and [ = 1,2 we
have

1 B 1
In—1 o =1
IT w(e'(i, /) IT u(i,j+1)
t=0 t=0
1
<——
(%)UH‘I-ZI"—M—I

— 0 asn— oo,

In In
Ul”l((l”(i’j))‘ = Ulu(i,j—t)

. In—|j
< 2Vl (%) v —0asn— oo



DISJOINT HYPERCYCLIC POWERS OF WEIGHTED TRANSLATIONS 167

and for s =1, [ =2 we have

tﬁm(“%wﬁ

n—1 n—1

(o) | Tuijt)

and

In
n w (@™ (i, j))

sn—1

=[Jui,j—1)—0asn— oo
(i) |
1=

EXAMPLE 2.8. Let G = C. The continuous injective mapping ¢ and positive
continuous function @ on G are defined by

, , , . 1\" ,
e(re®) =re @ +1 forre® € C, w(re'?)= (§> for re'® € C.
Let u be a weight on G defined by
2 if Rex > 1,

u(x) = 2Rex if 1< Rex<1,

! if Rex < —1.

Let uy =up =u and T,, » (i =1,2) be weighted translations on L” (G, ®) (1 < p < o)
induced by ¢ and u; (i = 1,2). Then TM17(,,,TM227(P satisfy condition (2) in Theorem 2.5.
Indeed, let K be any compact subset of G with A(K) > 0. Then by the definition of ¢,
there is a positive integer Nk such that for any integer n with n > Nk and any re® € K
we have Re (¢"(re'®)) > 1 and Re (9" (re'®)) < —1. Since K is compact, there is a

positive integer ry such that, sup |x| < ry. Hence, for any integers /,n with 1 <1 <2

xek
and n > Nk + 1 we have
o (pln - ( Injg + ln)
In—1 o Sl;lp —1
IT woq! re® ek H u(re(=1)'i0 4-¢)
1=0 Koo
(%)lnfro

—0 asn— o

X (%)NKJrl .2In—Ng—1

and

In In
<a)o (p—ln> _l—Ilul ° (p—t _ S,;lpK (x)(re(_l)mie —1In) l‘[lu(re(_l)/ie —1)
t= re'’ € 1=

1\ (n—r 1\ (n—N,
<(§> 0-2NK~(§> K—>Oasn—>oo.

oo
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And for s =1, [ =2 we have

and

[1]
[2]

[3]
[4]

[5]
[6]
[7]

[8]
[9]

[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]
[18]

(a) o (p(l—S)n> . (tnl Ug 0 (pln—t> w(re(*l)"ie 4 l’l)
In—1 = SUP i
I u[O(pt rei® ek H u(re(—l)’iﬂ —|—t)
t=0 Koo t=0

— 0asn— oo

(CO o (p(s#)n) . <[ll’nll u o (psnz>

sn—1
IT uso0 ¢
=0 Koo
. n .
= sup |o(ret"1)"0 —p) l_[u(re(*l)”6 —t)| = 0asn— oo,
rei® €K t=1
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