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EXPANSIVE OPERATORS WHICH ARE

POWER BOUNDED OR ALGEBRAIC

B. P. DUGGAL AND I. H. KIM

Abstract. Given Hilbert space operators P,T ∈ B(H ),P � 0 invertible, T is (m,P) -expansive

(resp., (m,P) -isometric) for some positive integer m if �m
T ∗ ,T (P)= ∑m

j=0(−1) j

(
m
j

)
T ∗ jPT j �

0 (resp., �m
T ∗ ,T (P) = 0). Power bounded (m,P) -expansive operators, and algebraic (m,I) -

expansive operators have a simple structure. A power bounded operator T is an (m,P) -expansive
operator if and only if it is a C1· -operator such that ‖QTx‖ = ‖Qx‖ (i.e., T is Q -isometric) for
some invertible positive operator Q . If, instead, T is an algebraic (m,I) -expansive operator,
then either the spectral radius r(T) of T is greater than one or T is the perturbation of a unitary
by a nilpotent such that T is (2n−1,I) -isometric for some positive integers m0 � m , m0 odd,
and n � m0+1

2 .
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